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Abstract. This paper presents experimental results of a parallel imple-
mentation of a soft-computing algorithm for model discovery in multi-
variate time series, possibly with missing values. It uses a hybrid neu-
ral network with two different types of neurons trained with a non-
traditional procedure. Models describing the multivariate time depen-
dencies are encoded as binary strings representing neural networks, and
evolved using genetic algorithms. The present paper studies its properties
from an experimental point of view (using homogeneous and heteroge-
neous clusters) focussing on: i) the influence of missing values, ii) the
factors controlling the parallel computation, and iii) the effectiveness of
the time series prediction results. Results confirm that i) the algorithm
possesses high tolerance to missing data, ii) Athon-based homogeneous
clusters have higher throughput than Xeon-based homogeneous clusters,
iii) an increase of the number of slaves reduces the processing time until
communication overhead dominates (as expected), and iv) running the
algorithm in parallel does not affect the RMS error (as expected). Even
though much of this behavior could be qualitatively expected, appropri-
ate tradeoffs between error and time were actually discovered, thereby
enabling more effective, systematic, future uses of the system.

1 INTRODUCTION

Multivariate time series modelling and prediction is a very important subject
as development in sensor, communication and computer technologies allow the
monitoring of complex processes of interest in many domains (industry, envi-
ronment, medicine, economics, etc.). It is very important to discover patterns of
delayed cause-effect dependencies relating the different variables and factors, and
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this situation turns very complex when the multivariate time dependent process
is composed by heterogeneous variables (numeric, non-numeric, fuzzy quantities
and others), and when missing information affects data quality. Finding mod-
els in this situation is a formidable task, given the size of the search space and
the computational effort required, thus making a parallel approach immediately
appealing. An algorithm oriented to these kinds of problems was developed else-
where [V02], as well as a parallel implementation [VM02]. This paper studies its
properties in more depth from an experimental point of view, focussing on the
influence of missing values and the factors controlling the parallel computation,
and on the effectiveness of the time series prediction results.

2 THE ALGORITHM

The purpose is to discover dependency models in heterogeneous multivariate time
varying processes. They expresses the relationship between values of a previously
selected time series (the target), and past values of the entire set of series. Het-
erogeneity means the presence of ratio, interval, ordinal or nominal scales, fuzzy
and other magnitudes. Moreover, the series may contain missing values. The
class of functional models considered is a generalized non-linear auto-regressive
(AR) model (1) (other functional models are also possible),

ST (t) = F









S1(t− τ1,1), · · · , S1(t− τ1,p1
),

S2(t− τ2,1), · · · , S2(t− τ2,p2
),

. . .
Sn(t− τn,1), · · · , Sn(t− τn,pn

)









(1)

where ST (t) is the target signal at time t, Si is the i-th time series, n is
the total number of signals, pi is the number of time lag terms from signal i
influencing ST (t), τi,k is the k-th lag term corresponding to signal i (k ∈ [1, pi]),
and F is the unknown function describing the process. This approach requires the
simultaneous determination of: i) the number of required lags for each series, ii)
the particular lags within each one carrying the dependency information, and iii)
the prediction function. A requirement on function F is to minimize a suitable
prediction error. This is approached with a soft computing precedure based on:
i) exploration of a subset of the model space with a genetic algorithm, and ii)
use of a similarity-based neuro-fuzzy system representation for the unknown
prediction function.

Evolving neuro-fuzzy networks with genetic algorithms has been done for
training single networks. The situation here involves the construction and eval-
uation of thousands or millions of networks, due to the equivalency between
the model and the network spaces. Thus, the use of conventional architectures
and training procedures becomes prohibitive. Other difficulties with classical
approaches include finding the number and composition of hidden layers, us-
ing mixed numeric, non-numeric, fuzzy and missing values, etc. The present
approach is based on the heterogeneous neuron model [VG97], [B00], [V02a],
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which considers a neuron as a general mapping between heterogeneous multidi-
mensional spaces h : Ĥ × Ĥ → Y, where Y is an abstract set. If ←−x ,←−w ∈ Ĥ (the
input and the neuron weights respectively) and y ∈ Y, then y = h(←−x ,←−w ).

In the similarity-based h-neuron model, the aggregation function is given by
a similarity function s(x,w) between the input and the neuron weights (vectors
from a heterogeneous space), whereas the activation is a non-linear function. This
neuron maps a n-dimensional heterogeneous space onto the extended [0,1] real
interval. The output expresses the degree of similarity between the input pattern
and the neuron weights s : (Ĥ×Ĥ)→ [0, 1]∪{X}, where X is the symbol denoting
the missing value (Fig-1 (left)). A hybrid network layout using heterogeneous
neurons in the hidden layer and classical neurons in the output layer is suitable
for the purpose of model mining. For multivariate heterogeneous time series,
where a single time series is targeted for prediction, the network architecture is
shown in (Fig-1 (right)).

During network operation each hidden layer neuron computes its similarity
with the input vector and the k-best responses are retained (k is a pre-set number
of h-neurons to select). They represent the fuzzy memberships of the inputs
w.r.t. the classes defined by their weights. Neurons in the output layer compute
a normalized linear combination of the expected target values used as neuron
weights (Wi), with the k-similarities coming from the hidden layer.

output = (1/Θ)
∑

i∈K

hiWi, Θ =
∑

i∈K

hi (2)

where K is the set of k-best h-neurons of the hidden layer and hi is the similarity
of the i-best h-neuron w.r.t the input vector.The network output is a fuzzy
estimate of the predicted value.

Given a similarity function S and a target series the network is built and
trained as follows: Set a similarity threshold T ∈ [0, 1] and extract the subset L
of input patterns Ω (L ⊆ Ω) such that for every x ∈ Ω, there exist a l ∈ L such
that S(x, l) ≥ T . The elements of L will be the hidden layer h-neurons, while the
output layer is built by using the corresponding target outputs as the weights of
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Fig. 1. Left: A heterogeneous neuron. Right: A hybrid neuro-fuzzy network.
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the neuron(s). This procedure is very fast and allows for the rapid construction
and training of many networks.

2.1 PARALLEL IMPLEMENTATION

A parallel implementation following a master-slave approach was made. Paral-
lelization of the algorithm is done at the population level. The master initializes
the evolutionary mechanism and distributes the generated chromosomes (model
encodings). The master also controls the integration of the corresponding evalu-
ations returned by the slaves. For a received chromosome, a slave constructs the
corresponding network, trains it, evaluates it on the test set, and returns the root
mean squared error (RMS error) to the master. This is thus a coarse grained,
embarassingly parallel approach. Medium and fine grained parallel levels also
exist, associated with the evaluation of the neural network and the computation
of the similarity functions respectively. Further studies should address these lat-
ter 2 parallel levels. The coarse-grained system architecture is shown in Fig-2.

Fig. 2. Multivariate Time Series Model Miner System Architecture. The arc is the
parallel genetic algorithm evolving populations of similarity-based networks. They rep-
resent different dependency patterns which are generated by the master and evaluated
by the slaves during the search process.

The system was implemented in C++ using the GaLib version 2.4.5 [WM96],
which was modified to run using LAM-MPI versions 6.5.4/MPI 2 and 6.5.8/MPI
2, C++/ROMIO [MPI].
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3 EXPERIMENTAL SETUP

A multivariate time series data set consisting of 10 series with 1140 observations
of average monthly temperatures from different sites in the Washington State
(USA) was chosen. They were recorded during the period 1895-1989 [M95], and
compiled by the National Oceanic and Atmospheric Administration (USA). Orig-
inally this data had no missing values and is shown in Fig-3. The West Olympic
Coastal drainage region (the top series) was chosen as the target. No preprocess-
ing was applied to the time series in order to test the approximation capacity
and robustness of the algorithm in the worst conditions.
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Fig. 3. Temperature data from 10 Washington State sites (in degrees Farenheit).

Three new sets of time series were constructed by introducing 25%, 50% and
75% of uniformly distributed missing values into all 10 original series. Missing
values were introduced in a signal-wise manner. Each series was divided evenly
into a training set and a test set. The training set for each signal contains the
same percentage of introduced missing values, while the test sets were left intact.
In this way, all signals contain exactly the same amount of missing values, as
defined by the corresponding preset percentage.

The similarity function used is the non linear transformation (s = 1/(1 + d),
where s is a similarity and d a distance) of a modified Euclidean distance, accept-
ing missing values. Given two vectors ←−x =< x1, · · · , xn >,←−y =< y1, · · · , yn >∈

�
n, defined by a set of variables (i.e. attributes) A = {A1, · · · , An}, let Ac ⊆ A be

the subset of attributes s.t. xi 6= X and yi 6= X. The modified distance function is
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de = (1/card(Ac))
∑

Ac

(xi − yi)
2, which is a normalized distance and therefore,

independent of the number of attributes. Consequently, no imputation of miss-
ing values to the data set is performed. The number of responsive neurons in the
hidden layer was fixed at 7. The similarity threshold was set to 1, the maximum
lag depth to 20, and the relative percentage of training/test to 50%. For the
genetic algorithm, the number of generations was fixed at 10 and the population
size to 50. Binary chromosomes encoding model components as given by (1) were
used with a double point crossover operator and standard bit-reversal mutation.
Selection was kept constant (roulette wheel method) and complete population
replacement with elitism were used. Crossover and mutation probabilities were
0.6 and 0.01 respectively.

Experiments were conceived to observe how timing and RMS error were af-
fected by several factors in the parallel implementation: the number of slaves,
the number of units, and the use of homogeneous and heterogeneous clusters.
A total of 640 experiments were evenly distributed among 8 different clus-
ter configurations with 80 experiments per configuration (see Table-1). Within
each configuration (a fixed number of units), the percentage of missing spans
[0%, 25%, 50%, 75%] and the number of slave processes ranges over [6, 8, 10, ..., 44].

Cluster Identifier Cluster Type Number of Units Composition

1 Homogeneous (IIT) 3 3 dual Xeons
2 Homogeneous (IBD) 3 3 dual Athlons
3 Homogeneous (IIT) 2 2 dual Xeons
4 Homogeneous (IBD) 2 2 dual Athlons
5 Homogeneous (IIT) 1 1 dual Xeon
6 Homogeneous (IBD) 1 1 dual Athlon
7 Heterogeneous (IBD) 3 1 Xeon, 2 PIII
8 Heterogeneous (IBD) 17 all active units

Table 1. Selected Cluster Configurations from the National Research Council Canada.
IIT: Institute for Information Technology, IBD: Institute for Biodiagnostics.

The homogeneous Beowulf cluster configurations located at IIT, consist of
subsets from 3 dual Xeon processor units operating at 2 Ghz frequency, each
with 1Gb RAM using Red Hat Linux 7.2 with LAM/MPI 6.5.4.

The cluster at IBD is composed by 4 dual Athlon processor units operating
at 1.666Ghz frequency, each with 2Gb RAM, 5 Xeon processor units operating
at 1.6Ghz with 1Gb RAM, 2 Pentium III units at 1Ghz with 256Mb RAM, 1
Pentium III unit at 1Ghz with 512Mb RAM, 1 Pentium III unit at 930Mhz with
256Mb RAM, and 4 Pentium III units at 860Mhz with 512Mb RAM. This cluster
uses Red Hat Linux 7.3, LAM/MPI 6.5.8 and has a shared network drive.
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4 RESULTS

Results are organized by the type of cluster used for the parallel experiments.

4.1 EXPERIMENTS WITH HOMOGENEOUS CLUSTERS

The behavior of time and RMS error with the number of slaves and the % of
missing values for cluster 1 is shown in Fig-4(a-b). Time is inversely proportion-
ate to the % of missing values (due to data dilution), and almost independently
of the number of slaves (as expected). Time is almost unaffected by the increase
of the number of slaves within the range [6− 28], for all missing value variants.
However, for more than 28 slaves, time slowly increases (almost linearly) for the
whole missing value range. RMS error is independent of the number of slaves
(as expected) and % missing except for the extreme case (75%), which is an
indication of the algorithm’s robustness.

(a) (b)

(c) (d)

Fig. 4. Behavior of overall time and RMS error for Cluster 1 (a,b), and Cluster 2 (c,d).

The behavior of time and RMS error with the number of slaves and the % of
missing values for cluster 2 (Fig-4(c-d)) is similar to that of cluster 1. However,
there is a significant time difference, of approximately one half, between the two.
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This shows the higher throughput of the Athlon processor-based cluster (with
the same number of units but smaller frequency). The time is much less affected
by the number of slaves than for cluster 1.

Clusters 3 − 4 exhibit similar characteristics (figures deleted for brevity).
However, overall execution time increases w.r.t. clusters 1− 2 by approximately
a 1.5 factor, and the influence of the number of slaves (on time) is close to none.
Again, the Athlon-based cluster outperforms the Xeon-based one substantially.
RMS errors behave almost the same. There are changes due to the increased
influence of the missing values, but of small magnitude (again, evidence of the
algorithm’s robustness).

Clusters 5-6 (Fig-5), exhibits slightly different characteristics. Overall exe-
cution time increases w.r.t. clusters 3-4 by approximately a factor of 2. It is
interesting to note that cluster 6 has similar time characteristics to cluster 3,
except for the different trend w.r.t. the number of slaves. That is, as the num-
ber of slaves increases within cluster 3, the number of slaves within cluster 6
decreases slightly, and then flattens. The RMS error is affected by the number
of slaves and the % of missing values as in clusters 3-4 (no markedly different
differences).

In terms of time, cluster 6 is approximately 4 times faster than cluster 5.
Again, this shows the Athlon-based cluster outperforms the Xeon-based one
substantially (Fig-5(a),(c)). RMS errors behave almost the same for cluster 5
and 6 (Fig-5(b),(d)) when compared against to each other and to cluster 3 and
4, indicating the number of processing units does not affect the RMS error (as
expected).

4.2 EXPERIMENTS WITH HETEROGENEOUS CLUSTERS

The performance of cluster 7 is shown in Fig-6(a)(b). When compared against
clusters 1 and 2 (see Fig-4), time is approximately 1.5 times slower, and approxi-
mately 3 times slower than cluster 2. This is due to the slower processors used to
compose cluster 7. Its timing seems to most closely match cluster 3 and cluster
6. It is interesting to observe that this 3 unit heterogeneous cluster is outper-
formed by a one unit cluster. Further, time does not appear to be influenced by
the number of slaves.

Cluster 8’s timing (Fig-6(c)) is significantly smaller than all previous clusters.
This is due to the large increase in the number of units (17 in this case vs. a
maximum of 3 in all previous cases). The % of missing values influences time
in the same way as all previous cases. However, time is dramatically reduced as
the number of slaves increase from 6 to approximately 28. From 6 to 17, this
phenomenon can be explained because the cluster is using more an more units
(at least 1 slave per unit). Possibly, the reduction in processing time when the
number of slaves is increased from 18 to 28 is due to slaves not having to wait for
data to be transferred. That is, one slave can be computing while a second slave
is blocked. Further studies are required to understand more clearly this process.
Notice that time is not affected when the number of slaves increases past 28.
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(a) (b)

(c) (d)

Fig. 5. Behavior of overall time and RMS error for Cluster 5 (a,b), and Cluster 6 (c,d).

The RMS error (Fig-6(d)) is not significantly different from all previous clusters
(again, as theoretically expected).

5 CONCLUSIONS

The results are conditioned to the properties of the data set and cluster con-
figurations used. The discovered dependency model errors are not affected by
parallelizing the algorithm, but are affected by the increased presence of miss-
ing information. The choice of cluster configuration dramatically affects time
performance. The results also show which parallel settings may lead to close to
optimal use of the clusters for this algorithm implementation. The speed with
which models can be generated and explored, makes it a suitable data mining
technique for rapid prototyping. Further experiments are necessary with larger
more complex data sets using different levels of granularity of parallelization.
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