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MESH SIMPLIFICATION IN PARALLEL

CHRISTIAN LANGIS & GERHARD ROTH

National Research Council, Ottawa, Canada, {Christian.Langis,Gerhard.Roth}@nrc.ca

FRANK DEHNE

School of Computer Science, Carleton University, Ottawa, Canada, frank@dehne.net

This paper presents a parallel method for progressive mesh simplification. A progressive

mesh (PM) is a continuous mesh representation of a given 3D object  which makes it possible

to efficiently access all mesh representations between a low and a high level of resolution.

The creation of a progressive mesh is a time consuming process and has a need for

parallelization. Our parallel approach considers the original mesh as a graph and performs

first a greedy graph partitioning. Then, each partition is sent to a processor of a coarse-

grained parallel system. The individual mesh partitions are converted in parallel to the PM

format using a serial algorithm on each processor. The results are then merged together to

produce a single large PM file. This merging process also solves the border problem within

the partition in a simple and efficient way. Our approach enables us to achieve close to

optimal speedup. We demonstrate the results experimentally on a number of data sets.

1 Introduction

Mesh simplification is the process of approximating a high-resolution mesh by a

coarser mesh with a lower triangle count. Traditional mesh simplification methods

produce a coarser mesh but only at a single given resolution. By contrast, the

Progressive Mesh (PM) representation [6] is a continuous resolution mesh. This

category of representation stores in a compact fashion all resolutions between the

lowest resolution (which is predefined) and  the original high resolution mesh.

In a PM representation, an arbitrary mesh M is stored as a much coarser

mesh M
0
 together with a sequence of vertex splits that indicates how to

incrementally convert M
0
 back into the original mesh M = M

n
. The PM

representation of M thus defines a continuous sequence of meshes M
0
, M

1
, ..., M

n
 of

increasing accuracy. The inverse of the vertex split is the edge collapse. With these

two operations it is possible to create a mesh at any given resolution between the

original high resolution mesh (M) and the lowest resolution mesh M
0
 (see Figure 1).
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Figure 1: Simplification/Refinement Operation



Since the simplification and refinement operations are very efficient, they

can be performed in real-time. The PM representation has many applications. The

most obvious is to use the representation for real-time level of detail (LOD) control

for graphical rendering [10, 3]. Another application is the incremental transmission

of a mesh on a network. The coarse M
0
 can be transmitted first, and the higher

resolutions can be displayed incrementally as the vertex split operations are

transmitted. Finally, the PM representation can be used to perform viewpoint

dependent refinement [9].

While the display of the PM format is efficient, the creation of the PM

sequence of edge collapses/vertex splits is more time consuming. At each step in the

process it is necessary to choose which edge to collapse. This makes it necessary to

compute the geometric error produced by each potential edge collapse and associate

a cost with it. Once a cost is assigned to every edge, all potential edge collapses are

sorted by cost. For large meshes this is a computationally intensive process.

Therefore, the creation of the PM sequence is a potential application for

parallel processing. Our approach is to parallelize at the coarse-grained

multiprocessor level by assigning different portions of the input mesh to different

processes. We use a greedy graph partitioning algorithm to divide the mesh into

disjoint subsets. Each mesh subset is sent to a “slave” processor where it is

converted into the PM format using a serial algorithm. An important issue in such

partition based parallel algorithms is the partition border problem. In this

application, this problem manifests itself in the question of how to rejoin the PM

representations at the border of the mesh partitions. We provide a solution to the

partition border problem that is both simple and efficient. Our solution enables our

parallelization approach to have a close to linear speedup, which is optimal. To our

knowledge, no such parallel implementation of a continuous mesh creation

algorithm exists in the literature.

The remainder of this paper is organised as follows. In Section 2, we give

an overview of the parallel mesh simplification algorithm. In Section 3, we discuss

the parallel implementation itself. Section 4 shows the results of our experimental

performance analysis and we discuss the quality of our PM obtained in Section 5.

Section 6 concludes the paper.

2 Parallel Mesh Simplification

Our parallel implementation of the mesh simplification makes use of a standard

serial algorithm for mesh simplification [6]. The approach for our parallelization is

to partition the original high resolution mesh on a master processor and then to send

each mesh partition to a slave processor. Each slave processor simplifies its

associated mesh subset into a PM. Once this task is complete, each slave returns its



PM to the master processor which now merges them together to create a single PM

file for the entire mesh. The following is the basic outline of our parallel algorithm:

Parallel_Simplification(Mesh M, PartitionSize p)

if (ProcID == 0) //Master section
(M1, ..., Mp) = Partition(M, p)

for i=1..p

send Mi to Proci
for i=1..p

receive PMi from Proci

merge ∀ PMi into PM
return PM

else //Slave section

receive MProcID from Proc0
PMProcID = Simplify(MProcID)

send PMProcID to Proc0

Figure 2: Parallel Algorithm Pseudocode

2.1  Greedy Partition Method

The first step is to partition the mesh. We use is a simple greedy method where the

graph partitioning problem is solved by accumulating vertices (or faces) in subsets

when travelling through the graph. A starting vertex vs is chosen and marked. The

accumulation process is performed by selecting the neighbours of vs, then the

neighbours of the neighbours and so on until the subset has reached the required

number of vertices. Then, other subsets are created the same way until the p-way

partition is complete (e.g. each vertex is part of one subset). In the general case,

such a p-way partition is built from p partial Breadth-First-Search traversals of the

graph. The algorithm terminates when all vertices have been visited [2].

This simple greedy heuristic will yield acceptable partitions in much less

time than more complicated methods. Furthermore, the algorithm can be made

probabilistic if necessary [1]. It suffices to initialize it with a random vertex seed to

generate different partitions for a same input graph. Figure 3 shows one 8-way

partition example of this algorithm on a 3D mesh representing a duck [13].

The subsets being built may get blocked in the process before they reach

full size. Then, two versions of the algorithm are possible: allow subset size

imbalance or subset multi-connectivity. The former produces uneven subset sizes

(workload on processors) and the latter produces bigger edge-cuts (more

communication between processors). We chose the latter for better load balancing

[4].



Figure 3: An exploded view of a 8-way partition of the 4K faces NRC Duck

2.2 Partition Border Problem

The main algorithmic problem for parallel progressive mesh simplification is the

border problem. That is, how do we handle the triangles intersecting the border

between different parts of the mesh as each part is processed in parallel on a

different processor. Recall that the vertex set V of the mesh is partitioned into p

disjoint subsets Vi whose union is V. Therefore, there are edges (and faces) between

partition subsets (part of the edge-cut). Ideally, those edge-cut edges need to be dealt

with just like subset edges. That is, during the parallel execution, at synchronisation

points, there is an exchange of information between slave processors (potentially

through the master processor) regarding the state of the mesh. Then, either of the

neighbouring slave processors processes the shared edges using the edge

information from the neighbours. This interdependence management scheme is

costly but most applications are border-sensitive and require it. The graphs

considered here are meshes representing 3D objects. The human eye accuracy sets

the required quality level of processing. Hence, invisible degradation of the optimal

result is allowed. In fact, we chose to avoid the border problem as long as possible.

By not collapsing the edge-cut, one might expect to see the mesh separator in full

resolution when the PM mesh is displayed at a coarse resolution. Fortunately, this is

not the case. The edge-cut will be indirectly simplified along with any other edge.

This phenomenon is shown in Figure 4.
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Figure 4: Edge-cut Face Deletion

The partition snapshot represents the border between two subsets at some point

during simplification. The  two bold lines represent the link of each subset (the edge

borders of subsets). The darker triangles belong to subset A and those in white

belong to B. In this situation, the edge e from subset A will be collapsed. Note that,

this edge has part of its neighbourhood in subset B. More precisely, e’s

neighborhood has seven edges and six triangles joined to B by four vertices of B.

However, if we simply force the collapse of e, the collapse affects only the structure

(topology) of subset A. The neighbourhood part outside of A (vertices and edges

and triangles of B) is left unchanged, topologically. It is only used to compute the

best vertex position and the edge collapse cost for e. Following the collapse, two

faces from A are deleted, including one from the edge-cut (between subsets).

Therefore the parallel algorithm can simplify meshes as much as the sequential

algorithm does, without the need for synchronisation steps or communications

between processors.

3 Parallel Implementation

The code was written in C, using an MPI package for communication (more

precisely, the free LAM-MPI [11]). The master processor partitions the mesh into p

subsets. The partitioner will return a size |V| integer array. Each array cell

corresponds to a mesh vertex and contains a subset ID ∈  [1..p] indicating the

processor to which the vertex is assigned. The next step is to send that partition

array to the slave processors. Then, all processors read the same mesh file into a

Mesh object exactly as in the sequential version. With the partition array at hand, the

slave processors build a working mesh structure of edges and faces which are either

part of their partition subset or adjacent to it (surrounding edge-cut). Those edge-cut

elements are included to address the border problem. Next, the slave processors

build their edge collapse priority queues. In the parallel version, they do so with one

extra condition: each edge must have both end-points in the slave processor’s vertex

subset to allow a collapse. From that point on, the slave processor’s task remains the

same as in the sequential program: it has a priority queue of edges to collapse.



After simplification, the slave processors must transmit their sub-results to

the master processor for merging. This caused a technical difficulty. The data is now

in the form of vectors, stacks and hashbags of vertices, edges and faces. Previously,

the master sent an array of integers to the slaves. Now, the slave processors respond

with arrays of more general objects. Our version of MPI does not support data

communication other than standard data types. Therefore, we had to manually

convert our arrays of objects to streams of standard data types and then back to

objects. Once the data has been correctly communicated to the master processor and

reconverted, the master contains p sets of four items sent by the p slaves: p hashbags

of not deleted faces, p stacks of deleted faces, p vectors of collapsed edges and p

vectors of new vertices. Those edge collapses were created independently. The

master processor’s task is to synchronise them. For each collapse, an edge, a vertex

and two faces are extracted from the data of one slave processor. The slaves collapse

sets are visited in round-robin and their collapses are extracted one after another,

from the best collapse performed to the most destructive one (See [4]). Another

problem to be dealt with are duplicate faces. As mentioned, the subsets are sent to

slave processors along with their surrounding edge-cut. Therefore, slave processors

work independently on duplicate data. Consequently, all faces from the edge-cut will

be replicated in the data returned by the slaves. For this reason, as the PM mesh is

built, it must constantly be filtered for duplicate faces.

4 Performance Analysis

To evaluate the quality and performance of our implementation, we performed a

series of tests on a network of Linux/Pentium 120Mhz/32Mb workstations (some

were Pentium MMX 166Mhz). P0 was the master processor. We tested our program

with 2, 4, 8, and 16 processors connected to a 10Mbps Ethernet network. We ran

these tests when most of the machines were idle. Unfortunately, there was no

guarantee that the timings were not influenced by other users. This is clearly a very

low cost and not state-of-the-art parallel processing platform. However, since we are

mainly interested in measuring speedup, this platform was sufficient. Furthermore, if

our method performs well on such a low cost platform, it will clearly be even better

on more expensive and newer parallel machines.

Our tests were conducted on two basic input meshes: the NRC Duck [13]

and the Stanford Dragon [14]. We used various size meshes as input and processed

each using various numbers of processors. The performace results are shown in

Tables 1 and 2 below. Besides the total running time (T), we also measured the time

to transfer the partition array to slave processors and read the input mesh on each

processor (PC) as well as the PM computation time on each slave processor (S). Of

particular importance is the load balance between slave processors. Recall that the

mesh partitioning was obtained by a greedy partitioning algorithm as outlined in

Section 2.1.  We measured the difference between the slowest and fastest slave



processor with respect to S in order to see how the computational load is balanced

between processors. For each input size |V| (the number of vertices in the input

mesh) and number of processors p, we performed five test runs. All time values are

in seconds. The bold numbers are averaged values and the italicised numbers in

square brackets are their standard deviations. The blank lines no. 16 and 17 in Table

2 are caused by memory overflow. For meshes of such size, we needed to partition

them among at least four processors so that each partition can fit into a processor’s

memory.

|V| p PC S ∆S T

1 1 - - - 618.0

2 2 0.0 [0.0] 283.2 [42.6] 71.0 [57.8] 295.6 [41.1]

3 2K 4 0.2 [0.4] 133.0 [4.1] 51.6 [16.2] 150.4 [4.2]

4 8 0.2 [0.4] 66.8 [8.6] 35.0 [7.8] 84.2 [8.2]

5 16 1.2 [1.5] 30.4 [1.3] 18.0 [2.0] 49.2 [2.4]

6 1 - - - 4774

7 2 2.0 [0.0] 2244 [70.7] 640 [117.5] 2350 [72.1]

8 12.3K 4 2.4 [0.5] 1368 [243.6] 539 [304.9] 1473 [242.6]

9 8 3.8 [3.1] 642 [79.1] 319 [91.4] 747 [80.8]

10 16 8.4 [6.3] 322 [30.8] 178 [40.5] 445 [36.4]

11 1 - - - 26345

12 2 13.4 [0.5] 11966 [422] 2792 [619] 12376 [382]

13 50K 4 12.8 [5.1] 6920 [136] 2686 [181] 7321 [145]

14 8 15.2 [12.0] 3325 [246] 1553 [311] 3764 [272]

15 16 67.3 [17.6] 1813 [119] 979 [128] 2321 [167]

Table 1: Parallel Simplification Statistics: NRC Duck

We now discuss our performance results in Tables 1 and 2. The main

observation is that, despite the low cost communication network, the total time (T)

observed for our method shows close to linear speedup. As expected, speedups are

slightly lower for smaller data sets (|V|) and improve for larger data sets. The time

for partitioning the data set (PC) increases with growing number of processors, as

expected. What is very interesting to observe is that S often shows a more than

linear speedup. How is this possible? The parallel algorithm does not explicitly

collapse the edges that span the boundaries of the partition. The number of such

edges increases with growing p. This effect does actually decrease the total work

performed and, therefore, we can observe more than linear speedup. The load

balancing of our method is measured in the ∆S column. Here, we observe that the

load imbalance can be as high as 50%. Note, however, that finding an optimal

partitioning of a mesh while minimizing the number of edges crossing boundaries is

an NP complete problem. In our solution, we are using a greedy heuristic and for

such a simple heuristic to be within a factor two of optimal is actually quite good.



We need to balance the time it takes to compute the partitioning (PC) versus the

imbalance created (∆S) and the close to linear speedup for the total time T seems to

indicate that the greedy heuristic used is a good compromise solution. With respect

to the variances measured, we observe that they are fairly large. Clearly, the

heuristic itself creates fluctuations but another important factor here is that we were

performing our experiments in a multi-user environment. Furthermore, we observe

that the variances for the total time (T) observed are considerably smaller than those

for the other times measured.

|V| p PC S ∆S T

1 1 - - - 572

2 2 0.8 [0.4] 265.4 [2.3] 79.2 [2.9] 307.2 [3.1]

3 5.2K 4 1.0 [0.0] 132.2 [7.8] 42.2 [15.0] 171.6 [7.4]

4 8 1.4 [0.8] 66.0 [7.6] 31.0 [11.1] 107.6 [6.2]

5 16 2.6 [2.7] 39.0 [2.6] 25.4 [2.5] 80.8 [5.2]

6 1 - - - 3813

7 2 5.4 [1.2] 1878 [310] 560 [362] 2079 [308]

8 23K 4 6.0 [2.4] 949 [38] 328 [71] 1141 [39]

9 8 6.8 [3.6] 462 [22] 178 [36] 657 [28]

10 16 11.2 [12.4] 233 [13] 108 [17] 425 [12]

11 1 - - - 34811

12 2 52.8 [28.4] 15617 [452] 4057 [161] 16577 [429]

13 100.3K 4 68.5 [56.5] 7158 [70] 2086 [126] 8211 [174]

14 8 82.8 [1.8] 3449 [68] 1260 [127] 4427 [96]

15 16 162.8 [3.1] 1776 [75] 709 [99] 2874 [130]

16 1 - - - -

17 2 - - - -

18 198.3K 4 103 [12] 29640 [1367] 9483 [2768] 32103 [1638]

19 8 184 [20] 11338 [58] 3749 [307] 13714 [59]

20 16 369 [73] 5620 [13] 1873 [131] 8315 [353]

Table 2: Parallel Simplification Statistics: Stanford Dragon.

In summary, we conclude that the total time (T) observed for our method shows

close to optimal linear speedup, even on a very low-cost, low-tech, communication

network. We plan to test the method on other more advance machines, like a Cray

T3E or IBM SP2, where we expect to obtain even better timing results.

5 Quality Analysis

Besides analyzing the runtime of our method, we also need to study the quality of

the progressive mesh simplication obtained in comparison with the results of a

purely sequential algorithm. Here, the main concern is about the edges that span the



boundaries of the partition. Everything else is processed with a sequential algorithm

and is therefore of the same quality. With respect to the edges that span the

boundaries of the partition, anomalies could appear in the obtained progressive

meshes, along those boundaries. For example, the boundaries could become visible

because there are “breaks” or different triangle densities along those boundaries. In

Figure 4, process A collapses edge e whose neighbourhood contains four vertices

from B. Furthermore, B collapses edges connected to those four vertices, indeed

widening the extent of e’s neighbourhood (vertices) on B’s side. An edge collapse

can be considered as the merge of a pair of vertices. Merging those four vertices

with other vertices of B extends the neighbourhood of e on B’s side. Therefore, any

vertex in B merged to one of those four neighbourhood vertices becomes part of e’s

neighbourhood. However, as edge collapses are not communicated between slave

processors, A will never be aware of it. Thus, the border edge neighbourhoods may

include too few vertices from the adjacent vertex subsets. On the other hand, border

edges remain as duplicates, and this may alleviate the problem. We examined

progressive meshes obtained from using our algorithm on the NRC duck and other

data and observed that, there are no visible breaks or inconsistency along the

borders of our partitioning.

6 Conclusion

This paper presented a parallel algorithm for progressive mesh simplification. Our

experiments show that the proposed method yields close to optimal speedup, even

on a low-cost parallel platform. We presented a very simple solution for the problem

of how to manage the border between different parts of the mesh partitioning. As

mesh simplifications are becoming more important in 3D graphics, and parallel

processing platforms are becoming more affordable (e.g. multi processor Pentium

boards), parallel progressive mesh simplification methods will have an important

role to play in such applications as parallel VR systems or the transmission of 3D

models over networks.
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