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Abstract 
This paper describes the participation of the machine translation team at NRC Canada in the Mandarin-to-English open evaluation task 
of the 2006 TC-STAR Workshop on Speech-to-Speech Translation. We describe PORTAGE, a statistical phrase-based machine 
translation system, and discuss the experimental results two variants of the system obtained in the evaluation.  Both variants of the 
system used hand-coded rules to translate numbers and dates, along with a small number of Chinese names (those encountered in the 
dev corpus). The secondary variant of PORTAGE carried out Good-Turing smoothing of the phrase tables. Both variants, especially 
the primary one, performed extremely well on the two metrics related to weighted N-gram models (WNM); we suspect this is due to  
the incorporation of rules for translating Chinese names.  
 
 

1. Introduction 
PORTAGE is a research and development system that 

carries out statistical machine translation (SMT); it has 
been under development at the National Research Council 
of Canada (NRC Canada) since September 2004. This 
system was evaluated in the framework of the Chinese to 
English SLT “verbatim” track of the 2006 TC-STAR 
Workshop on Speech-to-Speech Translation. This track 
evaluates translation performance on transcriptions of 
Mandarin speech produced by ELDA; the transcriptions 
include spontaneous speech phenomena such as 
hesitations, corrections, etc.  

The NRC group does not currently have a version of 
PORTAGE that is designed specifically for input derived 
from speech. Though the primary variant of PORTAGE 
tested in the evaluation had parameter weights optimized 
on the development corpus for TC-STAR’s “verbatim” 
track, the two variants of PORTAGE that participated in 
TC-STAR had roughly the same design as those that 
participate in text-only tasks, such as the NAACL 
WMT06 Workshop (Johnson et al., 2006). Both systems 
employed rule-based translation of numbers and dates, 
and a tiny dictionary of named entities (82 entities) based 
on names seen in the development corpus. The secondary 
variant employed Good-Turing smoothing of the phrase 
tables, which will be discussed in more detail below.  

2. Basic Structure of PORTAGE  
PORTAGE was described in detail in (Sadat et al., 

2005). The system operates in four main phases: 
preprocessing of raw data into tokens, with translation 
suggestions for some words or phrases being generated by 
rules; decoding to produce one or more translation 
hypotheses; error-driven rescoring to choose the best final 
hypothesis; and postprocessing to enforce appropriate 
case and punctuation.  

2.1 Preprocessing 
In Chinese texts, the characters are typically presented 

continuously, with only occasional punctuation marks 

dividing them. The first step of PORTAGE’s Chinese 
preprocessing is to tokenize the input using the LDC 
segmenter: that is, to insert white spaces between groups 
of characters to create Chinese “words” analogous to 
those in European languages. The size of the Chinese 
vocabulary of the version of PORTAGE evaluated in TC-
STAR was 49,235 “words” made up purely of Chinese 
characters. If words containing other symbols (e.g., digits, 
letters from the Latin alphabet, etc.) are included, the 
Chinese vocabulary of the system is much larger: 516,816 
“words”. 

In the next step of preprocessing, numbers and dates 
are translated from Chinese to English using hand-coded 
rules. These rules are not obligatory; the weight 
optimization process for the decoder (see next subsection, 
2.1) decides how strongly they should be enforced. Thus, 
in some cases the decoder may choose to override the 
rules and use a translation based on phrase translations 
stored in the phrase table instead. (A hypothetical example 
might be a case where the decoder chooses to translate the 
Chinese equivalent of “December 25” to “Christmas” – 
based on that translation being stored in a phrase table – 
rather than as “December 25” in English.) In this step, we 
also remove some Chinese interjections in the 
transcriptions that do not assist translation.  

Finally, a small number of named entities are also 
translated. Just before the evaluation, we managed to find 
a Chinese informant who was able to provide translations 
for some of the named entities found in the TC-STAR 
development data. We informally tested two ways of 
incorporating these translations: adding them to an 
existing phrase table containing Chinese/English 
dictionary entries, and incorporating them as rules. The 
rule-based approach gave us more flexibility to control the 
expression of this valuable domain-specific knowledge, so 
we used it for both variants of PORTAGE that 
participated in the evaluation. In a later section, we 
analyze the impact of including these translations of 
named entities on PORTAGE’s BLEU score for the TC-
STAR translation task. These experiments showed that 
including the named-entity rules yielded a BLEU score 
that was approximately 0.5% higher (from about 12.4 



BLEU to 12.9 BLEU). These rules also affected the two 
weighted N-gram (WNM) scores, though the results here 
are harder to interpret.  

Table 1 shows the non-Chinese names found in the 
Chinese development corpus that are included in this 
phrase table. Note the ethnic and geographic diversity of 
these names, and also how the choice of names reflects 
news events at a given time (the list is full of personalities 
from the Clinton era, and reflects the events of the civil 
war in Yugoslavia). Table 2 shows the Chinese names in 
the same phrase table. One Chinese name has two English 
translations (Chao Tzu-yang, Zhao Ziyang) and two 
Chinese names (Qin Yongmin and Wei Ke) each have two 
different ideogrammatic “spellings” in Chinese. Note also 
the inconsistency in English punctuation for Chinese 
names, which might well reduce scores for automatic 
measures of MT quality like BLEU: e.g., “Jin YinQin” 
might also have been spelled “Jin Yinqin”, “Jin Yin-qin”, 
or “Jin Yin Qin”.  All these considerations show the 
extreme difficulty of designing a good module for 
translating named entities from Chinese to English. 
Nevertheless, in future work on the Chinese-to-English 
system, we plan to invest more effort in named entity 
recognition and translation.  

 
Albright  Angola Annan Anwar Arafat Ashrawi 

Aziz Belgrade Bob Bosnia Butler Clinton 

Conte Dayton Galster Hanan 

Ashrawi 

Herze-

govina 

Holbrooke 

Hun Sen Ivanov Jimmy 

Carter 

Keizo 

Obuchi 

Kissinger Kurd 

Lansana 

Conte 

Lewinsky Lieber-

man 

Lord Mama-

douba 

McClary 

Milosevic Netan-

yahu 

Ocalan Omar Pinochet Ross 

Schwarz Serushago Solana Tate Vance  Westen-

dorp 

 
Table 1: Non-Chinese Names Translated From 

Chinese 
 

Chao 

Tzu-

yang = 

Zhao 

Ziyang  

Chen 

Zhonghe 

Chen 

Zhong-xin 

Deng 

Xiao-

ping 

Dong 

Fang 

Guo 

Zheng-

liang 

He 

Xintong 

He 

Zong-an 

Hi 

Jiangxia 

Hu 

Jintao 

Hu 

Yaobang 

Hua 

Guofeng 

Huang 

Dashu 

Jiang 

Tian 

Jiang 

Zemin 

Jin 

YinQin 

Lee 

Teng-

hui 

Li 

Zhaoxing 

Lian 

Zhan 

Ma 

Kaiyue 

Ma Ying-

jeou 

Qi 

Yong-

min 

Qin 

Qingguo 

Qin 

Yongmin 

(2) 

Shen 

Honghui 

Ti Na Ti Najin Wan Li Wang 

Ce 

Wang 

Wenjiang 

Wang 

Yiru 

Wang 

Youcai 

Wei Ke 

(2) 

Wu 

Zuodong 

Xiao Ti 

Na 

Xu 

Guang 

Xu 

Wenli 

Zhang 

Jianlong 

Zhao 

Wancheng 

Zhu 

Rongji 

 

  

 
Table 2: Chinese Names Translated From Chinese 

 

2.2 Decoding 
Decoding is the central phase in statistical machine 

translation (SMT), involving a search for the word 
sequence hypotheses T that have the highest probabilities 
of being translations of the source sentence S according   
to a model for P(T|S). The PORTAGE decoder’s model 
for P(T|S) is a loglinear model that incorporates the 
following features: phrase translation models in the P(S|T) 
direction, language models, a distortion penalty, and a 
word penalty. The phrase models are learned from word-
aligned parallel corpora using the “diag-and” method 
described in (Koehn et al., 2003), and the language 
models are trained using the SRILM toolkit (Stolcke 
2002) with Kneser-Ney smoothing. Loglinear weights are 
set to maximize BLEU score, using Och's algorithm on a 
development corpus (Och 2003). As mentioned above, 
this algorithm also implicitly determines the weights on 
the rules for translating numbers, dates, and domain-
specific named entities. These rules generate entries which 
are inserted into all phrase tables with a specified 
probability. In all experiments we report below, this 
probability was set to 1. This essentially means that rule-
based translations will override automatically learned 
translations unless there is very strong counter-evidence 
from the language model.  The ability of the language 
model to select alternative translations depends on its 
weight relative to the translation model as assigned by 
Och’s algorithm. 

For each preprocessed source sentence, N best 
translations are identified using Viterbi beam search with 
a loglinear model. 

2.3 Rescoring 
The N best hypotheses generated by the decoder can 

be rescored. Our secondary submission for TC-STAR 
carried out rescoring on 1000-best lists, using a loglinear 
model with the same features as used by the decoder, plus 
IBM model probabilities in both directions (P(T|S) and 
P(S|T)), plus IBM-based features to detect untranslated 
words in both directions. Och’s algorithm was used to 
learn loglinear weights, with maximum BLEU as the 
learning criterion. 

2.4 Postprocessing 
Raw English output is truecased using the method 

described in (Agbago et al., 2005). The method uses a 
combination of statistical components, including an N-
gram language model, a case mapping model, and a 
specialized language model for unknown words. After the 
output has been truecased, it is detokenized using simple 
heuristics.  

3 Phrase Table Smoothing   
It is surprising how little systematic attention has been 

paid to phrase table smoothing in the SMT literature. That 
is, although it is practiced by several SMT groups, and is 
often mentioned casually in SMT papers whose main 
subject is something else, there does not (to our 
knowledge) exist a published paper describing detailed 
experiments in which various phrase table smoothing 
techniques are compared. By contrast, surveys of the 
statistical language modeling literature such as (Chen and 



Goodman 1999; Goodman 2001) deal extensively with 
techniques for smoothing language models. 

Smoothing is typically applied when training data is 
too sparse to estimate accurately the parameters of a 
statistical model. For instance, given a trigram language 
model for a language with a vocabulary of 100,000 = 105 

words, there are (105)3 = 1015 parameters to be estimated. 
Even for gigantic training corpora, this is impractical. 
Thus, trigram distributions estimated from the training 
data are smoothed with lower-order distributions, such as 
bigram and unigram distributions. 

In the case of phrase-based SMT systems, two core 
components – the phrase translation models P(t|s) and 
P(s|t), both contained in data structures called “phrase 
tables”, where “phrases” s and t are contiguous sequences 
of words in the source and target language respectively – 
are estimated on the basis of extraordinarily sparse data. 
The maximum phrase length permitted in a typical SMT 
system might be on the order of eight words for both 
languages. If the vocabulary for each language consists 
(again) of roughly 100,000 words, accurately estimating 
the frequency of co-occurrence of all possible eight-word 
source-language sequences with all possible eight-word 
target-language sequences would require estimation of 
roughly (105)8 * (105)8 = 1080 parameters. Thus, phrase 
tables are estimated on the basis of data that are even more 
sparse, compared to the number of parameters they 
represent, than the data used to train N-gram language 
models. The logical conclusion is that it is even more 
important to smooth phrase tables correctly than it is to 
smooth N-gram language models. 

Recently, we have begun to compare phrase table 
smoothing techniques; some of this work is described in 
(Johnson et al., 2006). Consider P(s|t); typically, this is 
estimated by dividing the number of times s and t were 
observed to be aligned by the number of times t was 
observed (the relative frequency estimate). We distinguish 
between “glass box” and “black box” techniques for 
smoothing such relative frequency estimates.  

Glass box techniques break phrases down into their 
component words: for instance, if phrase s is made up of 
words s1 through sn (s = s1 ... sn) then one might estimate 
P(s|t) through some sort of combination of the information 
found in P(s1|t), …, P(sn|t). The “noisy-or” technique 
described in (Zens and Ney, 2004) and the technique 
described in (Koehn et al., 2005) differ, but they are both 
“glass box” techniques, because they both smooth relative 
frequency estimates by using estimates based on 
individual words in phrase s. 

By contrast, “black box” smoothing techniques 
directly manipulate the count of co-occurrences of s and t, 
without decomposing these phrases: the phrases are 
treated as black boxes which cannot be analyzed. In 
practice, this involves shrinking counts of infrequent 
phrase co-occurrences, on the grounds that they are less 
reliable. Such observations with low counts represent a 
tiny sample from the large population of possible events 
with low probability, most of which were not observed in 
the training data. To leave some probability mass in the 
model available for such unobserved events, it is 
necessary to subtract probability mass from observed 
events (with low-count observations giving up 
proportionately more probability mass than high-count 
observations). “Black box” smoothing is less sophisticated 
than “glass box” smoothing, but has the advantage of 

being very easy to implement: one simply applies the 
appropriate formula to a set of phrase co-occurrence 
counts to generate modified counts, then produces a new 
phrase table from the modified counts.  

Another nice feature of “black box” smoothing of 
phrase tables is that it includes techniques that are directly 
analogous to techniques used for smoothing N-gram 
language models. In (Johnson et al., 2006) we tried 
several of these, including Good-Turing smoothing and 
Kneser-Ney smoothing.  

For the TC-STAR experiments, we applied Good-
Turing phrase table smoothing. Good-Turing smoothing 
(Church and Gale, 1991) modifies observed counts c 
according to the following formula: 
 

cg = (c + 1)*nc+1 / nc 
 

where cg is the modified count value used to replace c in 
subsequent relative frequency estimates, and nc is the 
number of events having count c. When applied to phrase 
pair counts, this means, for instance, that all counts of 1 
are replaced by a new value of 2*n2/n1, where n2 is the 
number of doubleton pairs observed, and n1 is the number 
of singleton pairs observed. Since n2/n1 is considerably 
less than 0.5 – it is 0.088 in our largest phrase table, 
containing 25M entries - this results in all counts of 1 
being reduced to 0.176. 

The observant reader will have noticed there is a 
potential problem here for high counts: when estimating 
the modified value for c = 347,623 one may have zero 
count for c = 347,624; according to the formula, this 
should yield a modified count of 0 for c = 347,623 – 
highly undesirable! A form of least squares fitting is 
applied to handle this problem, as suggested in (Gale and 
Church, 1991). 

4 Experiments 
 
4.1 Data 
 
The training data used for both our primary and secondary 
submissions are shown in Table 3. For size reasons, we 
divided the parallel training material into two portions: the 
UN corpus and all others (except the Xinhua corpus, 
which hurt performance). We trained one phrase table on 
each of these two corpora, and one language model on 
each of their English halves. One additional phrase table 
was derived from a merge of the supplied Chinese-English 
lexicon and named-entity list.  One additional language 
model was trained on the Xinhua and CNA subsets of the 
English Gigaword corpus. 
 
CORPUS USE SENTENCES 
Non-UN parallel Phrasetable 1 3,164,180 
UN parallel Phrasetable 2 4,979,345 
Lexicon + NE list Phrasetable 3 *1,155,405  

Non-UN English LM 1 3,164,180 
UN English LM 2 4,979,345 
Gigaword English LM 3 11,681,852 

 
Table 3: Training corpora. (* Indicates the number of 
entries in the table rather than number of sentence pairs.) 
 



The development and test corpora are shown in Table 
4.  We divided the supplied development set into three 
parts (corresponding to documents in chronological 
order), and used the first two for tuning loglinear weights 
in the primary submission, and the third for testing. Apart 
from the named-entity translation rules described above, 
this material was not used in any other way, i.e. it was not 
incorporated into any phrase tables. The development data 
for tuning loglinear weights in the secondary submission 
was LDC’s multiple-translation Chinese corpus, part 3. 
 
CORPUS USE SENTENCES 
TC-STAR dev., 
1st two docs  

Dev for sys1 336 

Multiple 
translation, part 3 
LDC2004T07 

Dev for sys2 935 

TC-STAR dev.,  
last doc 

Test 158 

TC-STAR eval Eval 1232 
 
Table 4: Development and test corpora. 
 
4.2 Results 
 
We report all results using our version of the case-
independent BLEU metric, which is identical to the 
official version except for small differences in 
tokenization. Table 5 compares this metric with the 
official results on the evaluation set. 
 
System Official BLEU NRC BLEU 
Primary 13.67 13.29 
Secondary 14.25 14.55 
 
Table 5: Evaluation results with NRC’s BLEU metric.  
 

Table 6 shows the results of a set of tests to determine 
the best smoothing method for the secondary system, 
comparing plain relative frequencies, Good-Turing 
smoothing as described above, and Kneser-Ney smoothing 
as described in (Johnson et al., 2006). The results on the 
test corpus appear rather inconclusive: relative frequency 
estimation is the best technique when no rescoring step is 
used, but Good-Turing is best when rescoring is applied 
(using 1000-best lists, with the base feature group 
described below). As rescoring seems to give a slight 
advantage, we used rescored Good-Turing for the 
evaluation run. It can be seen from the eval column that 
rescored Kneser-Ney would have been a slightly better 
choice, though it is not clear that the differences in any of 
these results are statistically significant. 
 
Smoothing Test Eval 
Relative freq. 16.42 14.19 
Good-Turing 15.63 14.10 
Kneser-Ney 16.13 14.61 
 Rescored results  
Relative freq. 16.22 14.42 
Good-Turing 16.43 14.55 
Kneser-Ney 16.40 14.67 
Table 6: Results for different smoothing techniques with 
secondary system.  

 
Another set of tests was carried out to determine the 

best configuration for rescoring the primary system. The 
features added to the loglinear model (in addition to the 
basic set for decoding) are summarized in Table 7. All 
features were used in both directions (source to target and 
target to source) except for Consensus and charlen. Two 
groups of features were tested: base group comprising 
only IBM2 and  MissingWord, and an extended group that 
includes all listed features. 
 
Feature Description 
IBM1 IBM model 1 probability. 
IBM2 IBM model 2 probability. 

MissingWord Sum over words t in target hypothesis of 
p(t|sbest)/p(tbest|sbest), where sbest is 
the best IBM1 translation for t in current 
source sentence, and tbest is the best 
known translation for sbest. 

Consensus Average Levenshtein distance to all 
other hypotheses in nbest list. 

charlen Length in characters of hypothesis. 

 
Table 7: Additional features used for rescoring. 
 

The results of the rescoring tests are shown in Table 8, 
for different sizes of nbest list. We had planned to decide 
on the basis of experiments on the test corpus which type 
of rescoring to carry out on “eval” in the results submitted 
for the evaluation. On the basis of partial results on “test”, 
we decided to submit Nbest=1 (no rescoring) results. 
From the results on “eval” carried out after the evaluation, 
it looks as though we made a wise choice! (Note to 
reviewers: as can be seen from the table, we have not yet 
finished this set of experiments. The complete results 
will, of course, be included in the final version of this 
paper if it is accepted).  
 
Nbest size Feature set Test Eval 

1 --- 16.34 13.37 
200 Base 16.65 13.25 
200 Extended 17.12 13.25 
500 Base 15.92 12.91 
500 Extended 17.16 (ongoing)  

1000 Base 16.40 13.18 
1000 Extended (ongoing) (ongoing) 

 
Table 8: BLEU Rescoring results for primary system. 
 

Our final experiments are aimed at determining the 
effect of the named-entity translation rules on the 
operation of the primary system. Results are shown in 
Table 9 and Table 10. Table 9 shows that the named-
entity rules increase BLEU by about 0.5 on “eval” data. 
We had speculated that it was the presence of these rules 
that gave us high weighted N-gram (WNM) scores on the 
evaluation, but the result doesn’t seem to be clearcut: the 
rules apparently lower WNM/Recall (WNM/R), while 
raising WNM/F-measure (WMN/F). Note that we were 
not able to reproduce exactly the official WNM results, 
presumably owing to minor features of the tokenization 
used for evaluation. 



Table 10 is related to the results shown in Table 8 – it 
shows how much higher the BLEU scores shown in that 
table are compared to what they would have been without 
the named-entity rules. For instance, one can deduce from  
Table 8 and Table 10 that the score of  the baseline 
system with no rescoring and no named-entity rules on 
“eval” is 13.37-1.23 = 12.14 BLEU. Note that the 
presence of the named-entity rules always leads to an 
improvement on “eval”, ranging from an improvement of 
+2.05 BLEU to +0.49 BLEU. These rules were developed 
on the “test” corpus, so the improvements there are 
expected.  
 
System BLEU WNM/R WNM/F 
Baseline 12.43 0.644 0.620 
NE 
rules 

12.91 0.621 0.633 

 
Table 9: Effect of using Named-Entity translation rules 
according to different metrics on “Eval” (primary system)  
 
Nbest size Feature set Test Eval 

1 --- +1.41 +1.23 
200 Base +0.57 +0.74 
200 Extended +2.05 +0.69 
500 Base +0.77 +0.49 
500 Extended +1.52 (ongoing)  

1000 Base +1.30 +0.96 
1000 Extended (ongoing) (ongoing) 

 
Table 10: BLEU improvements due to inclusion of 
Named-Entity rules for primary system 

5 Discussion 
From the point of view of the NRC group, one of the 

most interesting aspects of the TC-STAR results was the 
high scores obtained by PORTAGE (especially the 
primary submission) on the “weighted Ngram / Recall” 
and “weighted Ngram / F-measure” (WNM/RECALL and 
WNM/F-measure) metrics. This was certainly not due to 
tuning the system to these metrics, with which the NRC 
group was completely unfamiliar prior to the evaluation; 
all PORTAGE tuning used BLEU.  

According to the program documentation and a paper 
describing these WNM metrics (Babych and Hartley, 
2004), they are extensions of BLEU that weight N-grams 
with statistical salience scores (S-scores). These S-scores 
are very similar to the tf.idf scores used in information 
retrieval to assess information content. Thus, the WNM 
metrics assign greater importance to words that bear the 
most information than BLEU does; (Babych and Hartley, 
2004) show that they correlate better with human 
judgments of adequacy and fluency, particularly the 
former, than BLEU does. We had speculated that the good 
performance of our system according to these metrics was 
due to our including a kind of named-entity translation 
module in our system (even if it was of the most primitive 
possible kind, consisting merely of a small list of name 
translations) since names are presumably a highly salient 
type of word. This hypothesis does not seem to be 
confirmed by Table 9. We are grateful that the TC-STAR 
evaluation exposed us to these WNM metrics, which seem 
interesting and valuable; we will continue to study them.  
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