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Semiclassical dynamics of strongly driven systems
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A nonperturbative analytical semiclassical approach describing the interaction of a quantum system with

strong oscillating fields is presented, including the limit where the external high-frequency field destroys the

classical trajectories of a field-free system. Applied to ionization of a Rydberg atom, our approach allows us to

describe the so-called ‘‘interference’’ and ‘‘adiabatic’’ mechanisms of laser-induced stabilization of atomic

Rydberg states in a unified way. @S1050-2947~98!50208-9#

PACS number~s!: 32.80.Rm, 31.50.1w

Approximate analytical solutions of the Schrödinger

equation for a system interacting with a strong oscillating
field are the cornerstones of our understanding of quantum
dynamics in intense laser fields. For example, the Keldysh-
type @1# solutions, reincarnated in recent recollision models
@2#, have been crucial to our understanding of intense laser-
atom physics.

The major problem in finding analytical solutions is the
difficulty in treating both the binding potential and the exter-
nal field equally and nonperturbatively. For example,
Keldysh-type theories ignore atomic potential in the final
state of a laser-driven atom. We develop a semiclassical ap-
proach that deals with this difficulty, and that can be applied
to a broad class of problems in different areas of physics.

The most interesting and general applications of our
method are to the class of problems in which a quantum
system with slow field-free dynamics faces fast oscillating
external fields. An atomic physics example would be photo-
ionization of a Rydberg atom by a strong laser field of fre-
quency vL.1/2n2 (n is the principal quantum number!. A
molecular optics example would be rotational heating of a
molecule trapped and aligned in a focus of an intense infra-
red laser beam @3#.

We have also extended our solution to include the limit at
which the high-frequency field completely destroys the tra-
jectories of the field-free system. This allows us to show that
for Rydberg atoms two different mechanisms of atomic
stabilization—the so-called ‘‘interference’’ @4# and ‘‘adia-
batic’’ @5# stabilization models—are two limits of the same
expression. As the field increases, the approximately con-
stant ionization rate g;1/n3, found in the region of interfer-
ence stabilization, gives way to a decreasing g as the ampli-
tude of electron oscillations in the external field approaches
the characteristic size n2 of the Kepler orbit.

Let a particle move in a time-independent potential U1(x)
and interact with an external time-dependent field described
by the potential U2(x ,t) ~e.g., xE cos vLt for the laser field!.
We assume that the solutions for the potentials U1(x) and
U2(x ,t) are known separately.

In the semiclassical approximation we look for the wave
function in a form C(x ,t)5exp@iS(x,t)#, with the initial con-
dition C(x ,t0)[C in(x)5exp@iSin(x)#, which describes a
field-free system at some initial moment t0 . For a standing

wave, such as an eigenstate, the initial problem is solved for
each of the two counterpropagating waves independently.

We look for S(x ,t) in a form S(x ,t)5S1(x ,t)1S2(x ,t)
1s(x ,t). Here C1(x ,t)5exp@iS1(x,t)# satisfies the Schrö-
dinger equation for the potential U1 only, and C2(x ,t)
5exp@iS2(x,t)# satisfies the Schrödinger equation for U2

only. The initial condition is satisfied by setting S1(x ,t0)
5S in(x) and S2(x ,t0)5s(x ,t0)50, where t0 is the moment
at which the external field is turned on. The condition
S2(x ,t0)50 is met automatically if the external field is ini-
tially zero.

The semiclassical equation for s(x ,t) is
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where we dropped all terms linear in \ and higher. Here we
discuss a one-dimensional problem, but for periodic motions
the method can also be used in a three-dimensional ~3D!
case.

Equation ~1! is the Hamilton-Jacobi equation for S(x ,t)
written in the form S(x ,t)5S1(x ,t)1S2(x ,t)1s(x ,t). The
terms ]S1 /]x5p1(x) and ]S2 /]x5p2(x ,t) are the mo-
menta in each of the potentials U1 and U2 separately, and
]s/]x5dp is the correction to these momenta in the exact
expression p5p11p21dp . As long as dp!p11p2 , we
can neglect ]s/]x in square brackets in Eq. ~1!. There are at
least two cases when dp is small. The first is a high-
frequency external field in which fast and slow motions are
well separated and hence p'p11p2 . Second, p2!p1 re-
sults in dp!p1 .

Let x̃(t8) be a trajectory that arrives at point x , at the
moment t , and satisfies the characteristic equation for Eq. ~1!

dx̃/dt85@p1( x̃)1p2( x̃ ,t8)#/m . We introduce

t~x !5mE
x0

x dx8

p1~x8!
, ~2!

a classical time accumulated along the field-free trajectory
between an arbitrary point x0 and the point x . Denoting the
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inverse function as xcl(t), we can write the field-free trajec-

tory that arrives at point x at moment t as xcl@t(x)1t8

2t# .
Now, for fast-oscillating p2(x ,t) the standard procedure

of separating fast and slow motions @6# can be used to write

x̃(t8) as a superposition of slightly modified field-free trajec-
tory and oscillations xosc(t8) around this trajectory:

x̃~ t8!5xcl@t„x2xosc~ t !…1t82t#1xosc~ t8!. ~3!

Here xosc(t8) is determined by mẋosc(t8)5p2„xcl(t1t8

2t),t8…. Modification t(x)→t(x2xosc) in xcl in Eq. ~3! is

to ensure x̃(t85t)5x . The solution Eq. ~3! is valid if the
amplitude of oscillations xosc is small compared to both the
size of the field-free orbit and the scale of the inhomogeneity
of the external field: p1,2(x6xosc)'p1,2(x).

Using the trajectory x̃(t8), one can verify that the ap-
proximate solution of Eq. ~1! is

s~x ,t ,t0!52

1

m
E

t0

t

dt8p1@ x̃~ t8!#p2@ x̃~ t8!,t8# , ~4!

provided that p1,2(x)'p1,2(x6xosc), that is, both fields are
sufficiently homogeneous on the scale of xosc . Then one can

also replace x̃ in Eq. ~4! with the field-free trajectory xcl @see
Eq. ~3!#, simplifying practical calculations of s(x ,t ,t0).

Thus, s(x ,t ,t0) is determined by the product p1p2 accu-

mulated along the trajectory x̃(t8) that must arrive at a point
x at time t with p1(x)5]S1 /]x; initial momentum p2 due to
the external field ~e.g., drift momentum in the laser field!, is
equal to zero. The separation of fast and slow motions can
also be done for a 3D system, in which case p1p2 in Eq. ~4!
is replaced by a scalar product.

The solution of Eq. ~4! is valid if ~i! p1,2(x6xosc)
'p1,2(x), that is, sufficiently small oscillation amplitude;
and ~ii! dp5]s/]x!p11p2 , that is, sufficiently small
change in the zero-order momentum p11p2 due to coupling
of the two motions. None of these conditions explicitly re-
quires high-field frequencies, and both can be satisfied at
frequencies comparable to that of the system, provided p2

!p1 . In general, for short times u]s/]xu is always small. Its
increase with time determines for how long our solution is
applicable.

According to Eq. ~4!, dp5]s/]x is due to the work of
the external field along the field-free trajectory and the work
of the field U1(x) along the oscillating part xosc of the tra-

jectory x̃(t8) Eq. ~3!. Since this is less than p1
2/2m , this work

can still be large compared to the photon energy, ensuring
that multiphoton processes dominate over single-photon and
conventional perturbation theory is inapplicable.

The wave function evolution is given by C(x ,t)

5e is(x ,t)C (0)(x ,t) with C (0)(x ,t)5exp@i(S1(x,t)1S2(x,t)#,
which describes the evolution that ignores coupling of the
two fields. Note that since an eigenstate corresponds to two
counterpropagating waves, for such an initial condition one
has two s(x ,t ,t0) that differ by the direction of p1(x) on the
classical trajectory.

Since s does not have to be small compared to unity, the
deviation C(x ,t)2C in can be large—a useful property of
perturbation theory in action compared to the standard
quantum-mechanical perturbation theory.

Consider the laser field Ef (t)cos vLt, with envelope
f (t) sufficiently long to include many oscillations. Substitut-
ing p252Ef (t)sin vLt/vL into Eq. ~4! neglecting xosc in the
argument of p1 , and integrating by parts, we find that s

5Ex f (t)sin vLt/vL1s̃, where

s̃~x ,t ,t0!52E
t0

t

dt8 Excl~t2t1t8! f ~ t8!cos vLt8. ~5!

The term Ex f (t)sin vLt/vL is gauge related and is cancelled
by the identical term with a negative sign that appears in the
Volkov propagator exp(iS2) for the external field in the
length gauge. Real absorption and/or emission of energy is

described by exp@is̃(x,t,t0)#, which can be used to obtain
simple expressions for multiphoton transitions.

To make the discussion more specific ~yet keep the deri-
vation general!, consider a Rydberg atom in a state with
principal quantum number n@1 and an orbit with the eccen-
tricity e'1. Such a one-dimensional system can be realized
experimentally @7#. Let the orbit be aligned with the electric
field of the laser, and let the laser frequency be high: 1/2n2

,vL!1 a.u.
The pulse duration TL can be either long or short com-

pared to the classical ~Kepler! period of the system Tn

52pn3. For TL@Tn we assume that complete ionization
requires many Kepler periods and calculate the ionization
probability P ion(Tn) over one Kepler period Tn . Obviously,
for long pulses TL@Tn, P ion(Tn) should be less than unity.
In the opposite case of fast ionization short pulses TL!Tn

have to be considered.
For TL@Tn the pulse envelope does not change signifi-

cantly during one Kepler period. We set f (t)51 and calcu-

late exp(is̃) over one Kepler period for the state un&, finding
its depletion after one Kepler period. ~In general, the wave
function coincides with un& only at t0 and becomes a super-
position of many un& states once the pulse is on. However,
the Shrödinger equation is linear and the propagator can be
applied to each state in the superposition independently.!
Changing the integration variable in Eq. ~5! to t95t2t

1t8, we obtain

s̃~x ,t ,t2Tn!52 R
Tn

dt9 Excl~ t9!cos@vLt91w~x ,t !# ,

~6!

where w(x ,t)5vL@ t2t(x)# and the integral is calculated
along the closed orbit arriving at point x at time t .

Equation ~6! can be written as s̃52a cos w1b sin w.

Since exp(2ia cos w1ib sin w)5(kJk(Aa2
1b2)exp(1ikw

2iku), where tan u[a/b, we see that up to a common phase

C~x ,t !5(
m

Jm~Z !e2imue1imvL@ t2t~x !#C in~x !, ~7!

where
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Z5U R
Tn

dt9 Excl~ t9!exp~2ivLt9!U5TnEuxcl~vL!u. ~8!

By projecting C(x ,t) onto the field-free wave functions and
using a standard semiclassical substitution of variables x

→t(x) in the overlap integrals ~that are accumulated at x

!2n2) one can check what is already clear from the time
dependence in Eq. ~7!: Am5e2imuJ2m(Z) are the ampli-
tudes of m-photon absorption after one round-trip along the
Kepler orbit. The survival amplitude of the initial state un&,
i.e., the amplitude of the initial wave function exactly repro-
ducing itself after one Kepler period is A05J0(Z). The
probabilities of m-photon absorption after one Kepler period

are Pm(Tn)5uAmu2
5Jm

2 (Z) and the total ionization prob-

ability is

P ion~Tn!5 (
m>1

Pm~Tn!5

12J0
2~Z !

2
5

12uA0u2

2
. ~9!

We note that similar expressions for Pm were obtained for
the case of laser-assisted bremsstrahlung in the pioneering
paper @8# of Bersons, using a completely different approach.

An analytical estimate for Z is @9# Z'2.58E/vL
5/3 . For E

!vL
5/3 ionization requires many Kepler periods, and one can

introduce the average ionization rate as G ion5P ion(Tn)/Tn

5@12J0
2(Z)#/2Tn .

Equation ~8! is generalized for a 3D case by replacing
Excl with the scalar product. The ionization probability @Eq.
~9!# should then be averaged over the orientation of the Ke-
pler trajectory with respect to the laser field axis, smearing

out oscillations of J0
2(Z).

There is a well-known correspondence between semiclas-
sical matrix elements xnm and the Fourier components
xcl(vnm) on the classical trajectory xcl(t). For a bound-free
transition from the state un& to the continuum state uE&,

xcl(vnE)5A2p/TnxnE @9#. Using this relationship, in the
limit Z!1 one can easily see the equivalence of G ion and the
Fermi golden rule.

At Z;1 (E;vL
5/3) complete depletion of the initial state

occurs in one or fewer Kepler periods. Then it is logical to

consider short pulses TL<Tn . The correction exp(is̃) is then
calculated over the complete pulse duration. For TL!Tn we
find that the ionization probability depends linearly on pulse
duration @10# and the ionization rate can still be introduced.
The rate is still given by the same formula G ion5@1

2J0
2(Z)#/2Tn , stabilizing around G ion;1/2Tn at Z@1 ~the

so-called ‘‘death valley’’!.
The physical reason for a linear time dependence of the

ionization probability in short pulses TL!Tn is simple: ion-
ization of a Rydberg state occurs near the origin, while the
wave function is delocalized over the whole orbit. Thus, ini-
tial conditions are evenly ~in time! distributed along the Ke-
pler orbit, and the number of trajectories that pass the origin
during TL!Tn depends linearly on TL .

In the field-free system classical actions for the states un&
and un11& differ by unity, and hence s̃ ,Z>1 means a
strong mixing of adjacent Rydberg states, which forms the
physical basis of the ‘‘interference’’ stabilization model @4#.

The critical field for the onset of stabilization E;vL
5/3 agrees

with the predicition of @4#, as well as the minimum ionization
lifetime tmin;Tn . The ‘‘death valley’’ of field strengths
where t i;Tn is also predicted by the interference stabiliza-
tion model when l mixing is taken into account @11#. Our
calculation assumes an aligned orbit, which requires mixing
of many l .

The applicability of the above results is limited by requir-

ing small oscillation amplitude a5E/vL
2 and small ]s̃/]x .

To quantify these conditions we note that absorption and/or
emission of photons by a Rydberg atom occurs at distances

x int;vL
22/3 @4#, where p1;vL

1/3 . Using Eq. ~6! and an esti-

mate Z;E/vL
5/3 , one finds that both dp and a are small as

long as E!vL
4/3 . We also note that our approximate semi-

classical solution does not correctly describe the long-term
(t.Tn) dynamics of outgoing above-threshold wave packets
at x@x int , since for them the correction to the field-free
propagator is no longer small at x;n2. However, this does
not affect the ionization rates, which are determined at x

;x int .
Let us now address the problem of generalizing the results

to the case of large oscillation amplitude a@x int and relating
‘‘interference’’ and ‘‘adiabatic’’ stabilization pictures for
Rydberg atomic states. Adiabatic, or Kramers-Henneberger,
stabilization is associated with the Kramers-Henneberger
~KH! transformation to the reference frame oscillating with
the electron. In this frame the exact potential for the electron
motion is V(x2a cos vLt), where V(x) is the field-free
~e.g., Coulombic! potential. Using the Fourier expansion,
one can write

V~x2a cos vLt !5V0~x !1 (
k>1

Vk~x !cos kvLt . ~10!

In high-frequency fields the second term on the right-hand
side is argued to be a weak perturbation @5#. Eigenstates of
the potential V0(x), which can be interpreted as an effective
potential of a field-dressed system, are expected to be long-
lived. This constitutes the main idea of ‘‘adiabatic’’ stabili-
zation. For Rydberg states of an atom these effects are ex-
pected around a;n2 @13#. Adiabatic ~or Kramers-
Henneberger! stabilization is not identical to interference
stabilization since the former can also occur in ground states
of short-range potentials, even before the distortion of the
short-range potential induces new bound states in the poten-
tial well V0(x) @12#. However, for Rydberg states we find
that two stabilization pictures appear as two limits of the
same general expression.

The key idea in generalizing our approach to the case of
a;n2 is to treat V0(x) as U1(x) and the remaining part of
Eq. ~10! as the fast oscillating potential U2(x ,t), directly
including the major aspect of orbit distortion into the
‘‘slow’’ part of the trajectory. Separation of fast and slow
motions in the KH frame requires that local oscillation am-

plitudes ak(x)5udVk /dxu/k2vL
2 are small compared to the

characteristic length scale of V0 and Vk , which in the limit
a@n2 is given by a. With increasing E ak decreases and a
increases and, hence, the condition ak!a is better satisfied.

Following the same procedure as described above, we
find that the semiclassical propagator describing absorption

and/or emission of energy is exp@is̃(x,t,t0)#, where
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s̃52 (
k>1

E
t0

t

dt8 Vk„xKH@ t81tKH~x !2t#…cos~kvLt8!,

~11!

where xKH ,tKH(x) refer to the trajectory in the potential
V0(x). We change the integration variable to t95t81t2t

and introduce s̃(x ,t ,t2Tn
(KH)), where Tn

(KH) is the round-

trip period in the KH potential V0(x). Since s̃(x ,t ,t

2Tn
(KH)) is a periodic function of w(x ,t)5vL@ t2tKH(x)# ,

one can expand exp(is̃) in the Fourier series in w. The zero-
order component of the expansion gives the amplitude of the

initial state un (KH)& exactly reproducing itself after one clas-

sical period Tn
(KH) ~the survival amplitude!:

A05

1

2p
E

0

2p

dw expS i (
k>1

s̃k~w ! D ,

s̃k~w !52 R dt9 Vk~ t9!cos~kvLt91kw !. ~12!

Using the equivalence of the norm in w and the Fourier
domain, we find that uA0u2

12(m>1uAmu2
51 and, similar

to the previous result, the ionization probability is

P ion
(KH)(Tn

(KH))5(12uA0u2)/2.

Intereference stabilization is easily obtained as the limit of

P ion
(KH)(Tn

(KH)) at a!x int . Using the Taylor expansion we

write V(x2a cos vLt)'V(x)2Vx8a cos vLt. Then Eq. ~12!

gives A05J0(Z*) with Z*5TnauVx8(vL)u. The Fourier

component Vx8(vL) is calculated on the field-free trajectory

described by the Newton equation ẍ52Vx8(x). Hence,

uVx8(vL)u5vL
2 ux(vL)u, yielding Z*5TnEux(vL)u, identical

to that given by Eq. ~8!. This establishes the connection be-
tween interference stabilization and the KH picture.

Adiabatic stabilization should appear as the limit of Eq.
~12! at a;n2. For estimates we used a model potential
V(x)521/Ax2

11. We found that for a;n2 ionization of a
Rydberg state n (KH)

@1 between the wells of V0(x) ~i.e.,
uxu!a) is negligible. Indeed, for a;n2

@1 the Rydberg
electron motion between the wells of V0(x) is very slow and
the Fourier integrals of this motion at frequencies kvL

@vn
(KH) are very small. @For kuxu!a , Vk;cos(kx/a

2pk/2)V0(x) with very flat V0(x);22 ln a/(pAa2
2x2)

@14#. For n2;a , all s̃k remain very small compared to unity

as long as xKH(t8)!a; s̃k!1 indicates low ionization.#
Since ionization can only occur from the wells of V0(x),

the ionization lifetime is determined by ~i! the modification

of Tn
(KH) with increasing a and ~ii! the efficiency of ioniza-

tion during one pass of the well. Ionization cannot occur

faster than in t;Tn
(KH) , which increases as the potential

V0(x) is stretched with increasing a.
In the vicinity of the wells where Dx[a2x!a we have

Vk(x)'V0(x) @14# as long as k2uDxu!a . An estimate using
this approximation shows that when the trajectory enters the

well, exp(is̃) becomes fast oscillating and A0 quickly devi-

ates from unity. Hence, for a Rydberg state n (KH)
@1, ioniza-

tion during one pass through the well is efficient and the

wave function is depleted in t;Tn
(KH) . The change in Tn

(KH)

with increasing a determines the partial stabilization of the
system.

In conclusion, the physical situation of having two differ-
ent time scales for coupled ~fast and slow! motions is quite
typical in many areas of physics. Although the survival am-
plitude of the initial state was calculated here for a Rydberg
atom, the derivation is general and valid for periodic trajec-
tories in other systems, as long as the region of efficient
photon absorption is small compared to the size of the field-
free orbit.
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