i+l

NRC Publications Archive
Archives des publications du CNRC

Bohm trajectories and the tunneling time problem
Leavens, C. R; Aers, G. C.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOl ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.1007/978-3-642-80118-1_6
Scanning Tunneling Microscopy lll, pp. 105-140, 1996

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=e4761330-a83d-419e-9e02-a0d533310cb;
https://publications-cnrc.canada.ca/fra/voir/objet/?id=e4761330-a83d-419e-9e02-a0d533310cb2

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research  Conseil national de C dl*l
Council Canada recherches Canada ana, a



N. Bohm Trajectories and the Tunneling Time Problem

C.R.Leavens and G.C.Aers

Institute for Microstructural Sciences
~* National Research Council of Canada

Ottawa, Canada, K1A OR6

Although many approaches based on conventional interpretations of quantum mechanics have been
developed for caiculating the average time taken for an electron to tunnel through a potential barrier,
a satisfactory solution remains elusive. These approaches are discussed very briefly, focussing on
the question of whether the concept of '‘tunneling time' or, more generally, 'mean transmission
time’ is a meaningful one. Then it is shown that Bohm's causal or trajectory interpretation provides
a well-defined and unambiguous prescription for calculating transmission times that are
conceptually meaningful within that interpretation. Results of such calculations are presented for
single and double recténgular barriers. The time-modulated rectangular barrier is treated in detail to
emphasize the importance of considering distributions of transmission and reflection times and not
just the mean transmission time. Finally, the possibility of determining tunneling times

experimentally is discussed.

N.1 Introduction

N.1.1  Motivation

In the theoretical analysis of a complex dynamical system comparison of the various time scales
involvéd often motivates and/or justifies useful approximations. When tunneling through a
potential barrier plays a key role it is often assumed that the average time for an electron to tunnel
through the barrier, i.e. the tunneling time 77, is an important time scale. In the field of scanning
tunneling microscopy, such an assumption has been made in investigations of the dynamical image
potential [N.1,2], the generation of d.c. current by laser illumination of the tip-sampie junction

[N.3,4], the anomalously low barrier for tunneling through aqueous solutions [N.5], and the effect
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of atomic vibrations on image resolution [N.6]. The tunneling time of interest in the above context
is an intrinsic property, i.e. a property of the undisturbed system. If an external clock were
coupled to the system to ‘'measure’ T directly then the observed tunneling time might be so
strongly perturbed by interaction with the measuring apparatus as to be of little use in the
compérison of relevant time scales for the unperturbed system. Proceeding indirectly by
using the dynamics of the undisturbed system as an internal clock, one might infer the order of
magnitude of the intrinsic tunneling time by the success of approximations based on its magnitude
relative to the other time scales. This would involve comparison of the approximate results with
accurate experimental or theoretical ones. However, one should bear in mind that the most basic
quantities are the transmission and reflection time distributions not jﬁst their average values. One
should not automatically assume for any phenomenon involving tunneling that the average
transmission time is the relevant time scale nor, for that matter, that the entire width of the barrier is
the only length scale of importance in determining the temporal characteristics. With this in mind

we adopt a more general point of view in the following.

N.1.2 Defining the Problem

To define the quantities of interest in the ‘tunneling time problem’ [N.7-12] consider an ensemble
of scattering experiments in each of which an electron with the same initial wave function y(z,t=0)
| is incident normally from the Ieft on the potential barrier V(T,t) = V(z,1)0(2)0(d-z) which varies
only in the z direction.! The mean transmission time 17(z],22) is defined as the average time spent
in the region z1 < z < z; subsequent to t=0 by those electrons that are ultimately transmitted. Only a
fraction of the ensemble members, equal to the transmission probability ITI2, are involved in the
average determining tT. The corresponding mean reflection time tr(21,2z2) is defined as the
average time spent in the region z| < z < 7, by those electrons that are ultimately reflected and
involves only the remaining fraction IRI2 = 1- {T1? of the ensemble members. Finally, the mean

dwell time Tp(z1,z2) is the average time spent between zy and 73 by an electron irrespective of

1 1t should be emphasized that in thié chapter we do not consider the related and
much better understood problem of the escape time for a particle prepared in a
metastable state of a potential well.
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whether it is eventually transmitted or reflected. Clearly, since Tp involves all members of the

ensemble, the relation
In(z1,22) = IT2 71(z1,22) + IR? TR(z1,22) (N.1)

must hold. Although the positions z; and z3 are arbitrary, except for the restriction 7| < 72, the
case of usual interest is z1=0 and zp=d for the abrupt barriers considered here. The so-called
'‘tunneling time' or 'traversal time' is then the quantity ©1(0,d). Strictly speaking, the former term
should be used only when the wave-packet and barrier parameters are such that over-the-barrier
propagation makes a negligible contribution to the transmission probability. Moreover, for sloping
rather than abrupt barriers the classical turning points depend on energy and the spatial extent of the
- tunneling region is consequently blurred for a wave packet with finite energy width. Hence, the
phrase ‘tunneling time' will usually be avoided in the remainder of this chapter.

The mean transmission time t7(z),z2) was defined in words rather than by a mathematical
expression, e.g. the expectation value of a Hermitean operator %‘T(zl,zz), essentially because in
quantum mechanics time is regarded as a parameter or c-number, not as a dynamical observable
represented by such an operator. Hence, there is no automatic prescription in the basic formalism
for calculating t7 and the other characteristic times Tg and tp. One might therefore ask if these
quantities are meaningful concepts. It has been argued [N.13] that they are not because they imply
the existence of microscopically well-defined particle trajectories. The latter concept is, of course,
expressly forbidden in conventional interpretations because it is impossible, even in principle, to
observe such a trajectory due to the position-momentum uncertainty relation. Another argument
[N.13] against transmission and reflection times being meaningful is that, within conventional
interpretations, it is impossible to divide the probébility density hy(z,t)I2 inside the barrier into 'to be
transmitted’ and 'to be reflected’ components. In our opinion, as discussed in the next section, this
negative response to the above question is at least a consistent one. On the other hand, within
Bohm's causal or trajectory interpretation of quantum mechanics [N.14-16] the notion of a

precisely well-defined particle trajectory is not only a meaningful concept but a central one.
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Moreover, it is possible to divide Iy (z,t)I? inside the barrier into 'to be transmitted' and 'to be
reflected' components. Consequently, as discussed in section N.3, Bohm's interpretation leads to
a unique, well-defined prescription for calculating meaningful transmission, reflection and dwell
times. This prescription is applied to a number of simple systems in section N.4. Finally, in
section N.5, the problem of experimentally determining mean transmission and reflection times is

discussed from the Bohm trajectory and conventional points of view.

N.2 A Brief Discussion of Previous Approaches
Since all of the theoretical results for T and Tr discussed in this section can be simply related to
those obtained with Feynman path integral techniques [N.17] by Sokolovski and coworkers [N.18-

20] we focus on their approach. The starting point is the classical expression

t4 (2, 29;2(1)) = Jdt 0(z(t)—z,)8(z, —z(t)) (N.2)
0

for the time spent subsequent to t = 0 in the region z; < z £ 23 by a point particle following its
classical trajectory z(t). They generalize this expression for the dwell time to the quantum regime
by replacing z(t) in the above functional by a Feynman path z(+) and then averaging over ail such

paths according to the Feynman prescription, i.e.
tn(z1,25) = (q;*(z’,toe) td(zl,zz;z(-)) y(z,0))g / (\p*(z',tm)w_(z,O))F . (N3)

Here (- )p denotes an average with weight factor exp(iS(z(*))/h) over all paths z(*) joining the
space-time points (z,0) and (z',t..) followed by an average over all z and z'. $(z(*)) is the classical
action and the time t. must be large enhough that the scattering process is essentially complete._

Evaluation of (N.3) leads to the real, non-negative quantity

oo Zy
tn(z1,25) = jdtjdz lw(z, t)|2 : (N.4)
0z :



which many, including the present authors, regard as the only firm result in the field. For the
special case of an ‘incident' plane-wave exp(ikz) of wavenumber k it can be shown [N.21] that

(N.4) becomes

(k21,25 ) = 7 jdzhpk & , (N.5)

7
a result first postulated by Biittiker [N.22]. Here J(‘) = hk/m is the incident probability current
density and y(z) is the stationary-state wave function.
At sufficiently large times t. the wave function can be written to a very good approximation
as the sum of reflected and transmitted components, i.e. YW(z',te) = YR(Z',too) + W(z',t-0). Based

on this, Sokolovski and Connor [N.19] determine the mean transmission and reflection times Tr

and TR by replacing y*(z',t.) in (N.3) by wfr(z’,t,,_,) and yg(2',t.) respectively. The resuiting

expressions for T and TR are, in general, complex-valued quantities. For an 'incident' plane-wave

they take the simple form
Z2
SlnT(k) SB ) d1nR(k)
k;z,, —)‘i dz , TR (KiZ(, 2, ) =ik [dz———F—< |  (N.6
1 (kiz.2,) 1! V(2) R (kiZy,2y) zj V(2) (N.6)

derived by Sokolovski and Baskin [N.18]. Here T = ITlexp(i¢T) and R = [Rlexp(idR) are the
transmission and reflection probability amplitudes. The imaginary part of ITI213> + IRI2T3P s
exactly zero and the real part is exactly equal to Tp so that the sum-rule (N.1) is satisfied [N.18].
For the special case of perfect transmission (ITI2 = 1) the transmission probability is stationary with
respect to small changes in the barrier potential (i.e. SinlTV8V(z) = 0). Hence, the imaginary part of
'C%B is zero and 'rT is identical to the mean dwell time Tp. Similarly, for perfect reflection ‘c
.

The real and (minus) the imaginary parts of ‘C (k 0,d} are identical to the spin-precession
traversal time of Rybachenko [N.23] and the spin-rotation traversal time of Biittiker [N.22]

respectively. These are derived, following Baz' [N.24], from an analysis of the effect of an

infinitesimal uniform magnetic field, confined to the barrier, on the components of the average spin
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per transmitted electron in the plane perpendicular to the field and in the field direction respectively.
Neither of these traversal times can stand on its own: the former is essentially independent of the
width d of an opaque rectangular barrier leading to a mean transmission speed that can exceed the
speed of light ¢ even in the corresponding relativistic calculation [N.25]; the laiter can be negative
for above barrier transmission. Accordingly, Biittiker identified the actual traversal time with the
square-root of the sum of their squares, i.e. with I’:%B(R;O,d)l. This is referred to as the Larmor
clock traversal time in the rest of this paper. It is identical to the Biittiker-Landauer traversal time
derived by considering the sensitivity of T to the instantaneous height of a time-modulated barrier
[N.26,27]. For the special cases of perfect t.ransrrﬁssion and perfect reflection the spin-precession,
Larmor clock and time-modulated barrier approaches all give the correct result (N.5) for T and 1R
respectively.

When the derivation leading to T3> is repeated ignoring the interference between the
incident and reflected components of the wave function another complex quantity is obtained
[N.19] that is closely related to other traversal times in the literature: its real part is identical to the
phase time of Bohm [N.28] and Wigner [N.29] and to the spin-precession time of Huang et al.
[N.30], while its imaginary part is the spin-rotation traversal time of the latter authors; its modulus
is identical to the traversal time obtained by Biittiker and Landauer [N.31] from an analysis of the
coherent transmission of two plane-waves with slightly different energies. For the special case of
perfect reflection none of these approaches gives a mean reflection time that agrees with the result
(N.5).

It is important to note that all of the above approaches are concerned with intrinsic
transmission and reflection times beéause they are uitimately based on (N.2) which represents an
ideal clock that 'runs' only when the electron is in the region of interest and does not perturb its
motion in any way. Moreover, the fact that they do not all give the same answer to such an

apparently simple problem as the dependence of T1(k; 0,d) on the width d of an opaque rectangular



barrier? should not be swept under the rug by claiming that they are concerned with different
quantities from the outset.

It should also be emphasized that, under the right conditions, any one of the above times
might be an important parameter, For example, if a tunneling experiment involves a very small
constant change in the barrier height V(z) then there is‘no doubt that the relative sensitivity of the
transmission probability amplitude to changes in average bartier height V, i.e. 9InT (k)/aV, is a
relevant quantity. If one chooses to multiply this complex-valued quantity by i# then the resulting
'time’ is obviously also relevant (whether it is the real part, imaginary part or modulus which is
most important depends on the experimental situation), This however does not necessarily mean
that the resulting time, which is identical to t32(k;0,d) [N.8], should be identified with the actual
mean transmission time.

Of more importance than the question of which, if either, of two different approaches is
‘better' is the question of whether or not the concepts of transmission and reflection times are
meaningful. The point of view that they are not is consistent with the fact that there is no known
approach based on conventional quantum mechanics which leads to real, non-negative transmission
and reflection times that satisfy (N.1) and which does not lead to mean transmission speeds in

excess of ¢ [N.8]. Sokolovski and Connor [N.19} claim that, in general, transmission and

retlection times must be complex-valued and that it is misguided to search for a unique, well-
defined prescription for calculating real-valued transmission and reflection times, particularly by
invoking non-standard interpretations of quantum mechanics. We do not find their arguments
compelling and in the next section explore the problem within an interpretation of quantum

mechanics that leads naturally to transmission and reflection times satistying the above criteria.

N.3 Bohm's Trajectory Interpretation of Quantum Mechanics

N.3.1 A Brief Introduction

2 For example, the time-modulated barrier and spin-precession results for t7(k;0,d)
are linear in d and independent of d, respectively.




In Bohm's interpretation of non-relativistic quantum mechanics [N.14-16], an electron is a particle

the motion of which is causally determined by an objectively real complex-valued field y(z,t) so
that it has a well-defined position and velocity at each instant of time. This is diametricaily opposed
to the fundamental tenets of conventional interpretations. Nevertheless, it is claimed that with three
additional postulates Bohm’s interpretation leads to precisely the same results as the conventional

ones for all experimentally observable quantities. These three postulates are: (1) the guiding field
W(z,t) = R(z,t) exp(iS(z,1)/h) (R and S real) (N.7)

satisfies the time-dependent Schrodinger equation (TDSE) [i#d/dt + (A%/2m)0?/0z? - V(z,\)ly(z,1) =
0; (2) the velocity of an electron located at the position z at time t is given by

v(z,t) = m-1 9S(z,t) / 9z ; (N.8)

(3) hr(z,t)l2dz is the probability of the electron being between z and z+dz at time t even in the
absence of a position measurement. In conventional interpretations this quantity is the probability
of the electron being found between z and z+dz at time t by a precise position measurement.

Substitution of (N.7) into the TDSE and separation of the resulting real and imaginary parts

gives the modified Hamilton-Jacobi equation

aS(z,1) / ot + 2m)-1 [aS(z,t) / 02]2 + V(z,t) + Qz,t) = 0 (N.9)
with

Q(z,t) = - (h%2m) R1(z,1) 82R(z,i) / dz? ) (N.10)
and the continuity equation | 7

dP(z,t) / 9t + dj(z,t) /dz =0 _ (N.11)

relating the probability and probability current densities
P(z,t) = R¥(z,t) = Iy (z,1)12 , (N.12)

i(z.) = P(z,t) v(z,t)



= (A / 2im) [y*(z,t) dy(z,t) / 0z ~ W(z,t) dy*(z,1) / 0z] , (N.13)

respectively. Bohm attributes the differences between quantum and classical mechanics mainly to
the 'quantum potential' Q and regards the classical limit as the limit in which Q is completely
negligible compared with all other relevant energies. Since the differences between quantum and
classical physics can be dramatic it should not come as a surprise that the quantum potential can
have correspondingly remarkable properties, For example, since R(z,t) occurs in both the
numerator and denominator of (N.10) it is possible for the quantum potential to have an important
effect even in a region where hy(z,1)I2 is apparently negligible. The quantum potential has even
more remarkable properties for many-elec;tron systems: it can be non-local, the quantum potential
acting on one electron being determined instantaneously at-a-distance by others in the system and
- not just through some unvarying function of particle positions but through the quantum state ¥ of
the entire system. Non-locality is a necessary feature, according to Bell's theorem [N.32], of any
realistic interpretation of quantum mechanics, such as Bohm's, which reproduces all the
experimental consequences of the conventional interpretations,

Bohm's quantum potential approach has provided fresh insight into measurement theory
including the notorious collapse of the wave function which is not required in his interpretation
[N.33,34], the Einstein-Podolsky-Rosen thought experiment [N.35] and, returning to one-particle
systems for a few more examples, the two-slit interference experiment [N.36], the Aharonov-
Bohm effect [N.37], delayed-choice experiments [N.38], and quantum mechanical tunneling
[N.39]. The following discussion of transmission, reflection and dwell times within Bohm's

interpretation is a natural and long overdue extension of the work of Dewdney and Hiley [N.39].

N.3.2 Transmission and Reflection Times within Bohm's Interpretation

Given the initial position z(® = z(t=0) of an electron with initial wave function W (z,t=0), its
subsequent trajectory z(z(,t) is uniquely determined by simultaneous integration of the TDSE and
the guidance equation dz(t)/dt = v(z,t) given by (N.8). Alternatively, such trajectories can be
obtained by simultaneous integration of the TDSE and Newton's equation of motion with the usual

9




potential energy V(z,t) augmented in the latter by the quantum potential Q(z,t).> Now, suppose
that two Bohm trajectories with the same guiding field y(z,t) intersect at the space-time point (z;,ty).
It follows immediately from v(z,t) = m-1dS(z,t)/dz that both trajectories have the same velocity as
well as the same position at time tj. Since the time evolution of the trajectories is given by a
second-order differential equation the two trajectories must then coincide at all times t > t; in the
future and, using time reversal invariance, at all times t < t; in the past. Hence, Bohm trajectories
do not intersect. This fact will be very useful in what follows.

The interpretation of a Bohm trajectory as an actual particle trajectory [N.14-16], rather than
an abstract mathematical construct, immediately leads to a unique and well-defined prescription
[N.40,41] for calculating transmission and reflection times. For an electron thatisatz=2z@® att=
() the time spent thereafter in the region z| < z < zp is unambiguously given by replacing the

classical trajectory in the right-hand-side of (N.2) by a Bohm trajectory, i.e.

t(z(o);zl,zz) = ]:dt e(z(z(o),t) - 21)0(22 - z(z(o),t)) . (N.14)
0

In practice, the initial location z(®) of an electron is not known exactly and uncertainty enters
Bohm's deterministic theory through the postulated probability distribution P(z(9,0) = hy(z(9,0)12

for (). Proceeding as in classical statistical mechanics, the mean dwell time is then given by
(2z1,22) =Mz 21,22)) (N.15)

where for any function f of 20

((z) = sz(o) ‘w(z((’),o)r £(29) . (N.16)

—o

3Although this method of calculation presumably could be more efficient, trajectories
being calculated to order (At)2 rather than just At, it has not been attempted in our
work because of possible complications resulting from the classical force —-oV{(z,t) / 9z
being singular at the edges of rectangular barriers.
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Insertion of an integral over all z of the delta function 3(z-z(z®,1)) into (N.15) immediately gives

the equivalent, and perhaps intuitively obvious, result [N.40]

co Iy
t(z20) = [d [ dz]y(z, 0 (N.17)
0 gz
with
y(z,)2 = (8(z — 2(z(9,1))) : (N.18)

Equation (N.17) is precisely the result (N.4) derived using standard quantum mechanics by
Sokolovski and Bagskin [N.18].

In the following discussion of mean transmission and reflection times for finite wave
packets it is always assumed that the initial wave packet y(z,t=0) is normalized to unity and is

sufficiently far to the left of the barrier region 0 < z < d that the initial probability density hy(z,t=0)2

is completely negligible for z > 0, In the calculations presented here the centroid of the initial wave
packet is usually chosen so that hy(z,t=0)I2 integrated over the region 0 < z < oo is equal to 104 T2,

Now, since Bohm trajectories do not intersect each other there is a special starting point zﬁo) given
by

T (0 0) )% 2

[ az )lw(z( ,0)‘ || (N.19)

20
such that only those trajectories z(z(,t) with 20 > ZE,O) are ultimately transmitted contributing to

ITIZ and only those with z(®) < zgo) are ultimately reflected contributing to iRI2. Hence the mean

transmission and reflection times are uniquely given by

Tr(z1,22) = (10 21,22) 82 - 72L7)) 1 (9 ® ~ £y (N.20)
R(z1,22) = ((2O; 21,22) 6217 — 20y 1 (92 — 20y (N.21)

where ITI? = (8(z(®) - zgo))) and IR)? = (8(2&0) —z\0)). Obviously TT and TR are real-valued non-
negative quantities and the sum-rule (N.1) is satisfied exactly.
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The above prescription should be contrasted with the usual approaches based on the time
evolution of the wave function {N.28,29,42-46] which assume that the centroid {or peak) of the
incident probability density iy (z,0)I? evolves into the centroid (or peak) ot the transmitted
component 1(z,t)|2. This assumption-has no justification in conventional quantum mechanics as
has been pointed out by Biittiker and Landaver [N.31]. Within Bohm's interpretation the
assumption is simply incorrect because it is only that part of the initial wave packet to the right of
zgo) that evolves into the transmitted component. It should be noted that for any wave packet of
finite spatial extent the usual TDSE approaches lead to negative traversal times whenever the initial
centroid is too far from the barrer [N.21}.

Of more general interest than their mean values are the transmission and reflection time

distributions [N.40,41}

P1(t(z1,22)) = (82 — 27) 8(t(21,22) - tz®; 21,22))) 1 (8@ — 2Oy, (N.22)
PR(t(z1,22)) = (0(z(”) — 2 8(t(z1,20) — 1z 20,22))) / (B2 - z®)) (N.23)

respectively, Often, a very significant contribution to the reflection probability comes from
trajectories that do not enter the region z1 < z < zp of interest and it is convenient to split off their

contribution to Pr(t(z],22)) by writing
PR(t(Zl’Zz)) = Pi{lo) 5(t(zl,zz))+PR>(t(zl,12)) . (N.24)
The mean transmission and reflection times are obviously given by

TT(ZI,22)=IdttPT(t) , TR(ZI,22)= J-dttPR([)z.[d[tP;(t) . | (N.ZS)
0 —o0 0

N.4.  Application to Simple Systems
N.4.1 Some Numerical Details

For static barriers the transmission probability for a finite wave packet is given by

12



)

T = [ locof [ (N.26)

0
where IT (k)2 is the stationary-state transmission probability for the 'incident’ plane-wave exp(ikz)
of wave number k and ¢(k) is the Fourier transform of the initial wave function y(z,0)). Hence IT12
and z( ) can be calculated prior to solving the TDSE.

In the following subsections, thé numerical method used to solve the TDSE is the fourth
order (in time step At) symmetrized product formula method developed by De Raedt [N.47]. For

reasonable wave packet and barrier parameters, the resulting transmission probability

[T = [ dz w(zt..)f (N.27)

converges very satisfactorily with decreasing At to the exact value, given by (N.26) for static
barriers. Although the accuracy of the calculated trajectories is only of order At, that of the
averaged quantities (N.20-23) is much better due to significant cancellation of errors between the
numerators and denominators of the defining equations. Moreover, if one is interested in only T
- and 1R, the fact that Bohm trajectories do not intersect enables one to bypass the calculation of

trajectories entirely. The alternative expressions, obtained from (N.17), are

To(zy,25) = il J’ dtjdz 28(z - z,(1)) , (N.28)
’ Z

T (21,2,) = R Izjdt j dz (2,0 8(z,(t)~2) : (N.29)

where z.(t), the transmission-reflection bifurcation curve, is given by

Jaaltz.of =[P . (N.30)
zc(t)

In most of the following applications of the Bohm trajectory approach to scattering

problems the initial wave function is taken to be a gaussian, i.e.
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[ z-125 Y
w(z,t=0)=——-—exp(~( 0) +ik ZJ . (N.31)

The width Az of this minimum-uncertainty-product wave function is related to the width Ak of its
Fouriér transform ¢(k) by AzAk = 1/2; zo is the centroid of Iy(z,0)12 and kg is the centroid of
ld(k)I2 = [8x (Az)2]1/2 exp(—(k-ko)?/2(Ak)?). The average energy of the initial wave packet is E =
[1+ (Ak / kg)?] Eg where Eg = A2ko? / 2m is the energy associated with wavenumber kg. The
prescription discussed above for selecting zg takes the explicit form zg = — N-1(1 - 10~4TR) Az
and the special starting position is given by z(co) =zo + N-}(1 = ITI2) Az where N-1(x) is the inverse

of the normal distribution function.

‘N.4.2 Reflection Times for an Infinite Barrier
As a simple application [N.40] of the Bohm trajectory approach the mean reflection time is
calculated for a region in front of the perfectly reflecting barrier V(z) = Vo8(z) with Vo—ee. For
this special case reflection and dwell times are, of course, equivalent.
It is a straightforward exercise to show that the solution of the TDSE is
w(z,t) = o exp(Bo + P222 + iy + v222)) [exp(dz + iez) — exp(—dz — iez)]6(-2) {N.32)
where
o =[2(Az)%n/ T exp(—(Az)2 k3 - (i/2) arctan(nt / 2m(Az)2)) ’
Bo=1(AZ)2[4(A2)* k2 — 23 - 2kgzohit / m] ,
B, =-n(4z)’ :
Yo =-1[4(A2)* Koz + 2(A2) kAt /m — 25K /2m] , (N.33)
Yo =Nt/ 2m) ' ,
8=21(Az)” (zq +kohit/ m) ,
e=n[4(Az)* ko - 2o fit/ m] :
n=[4(Az)* + (At / m)?]™!
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It should be noted that y(z,t) has a string of nodes at the points z, = nn/kg , (n = 1,2,...) at the
instant t =ty = |zgl/(h ko/m).
After casting y(z,t) into the form R(zt) exp(iS(z,l)/h) it is easy to obtain the following

expressions for the quantum potential and particle velocity:

. ,
Q(z, t)=2£—{—2B2[1 +2B,2° + 2(

osinh238z + esin2ez JZ}
m

cosh2dz — cos2ez

2 2 i i 2
i [8” cosh28z + £” cos2ez] +[Bsmh25z+esm2€z] } ’ (N.34)

cosh2dz —cos2ez [cosh28z — cos2ez]*

(N.35)

7 — & si 2
V(Z,t)=i{2722 +[6 tanhdz — J sinez cosez sech Sz:|}
m

sin® ez +tanh? 8z cos? ez

Numerical integration of v(z,.t) = dz(t)/dt subject to the initial condition z(t = 0) = z(®
yields the particle trajectory z(z(0(). A selection of such trajectories is shown in Fig. 1. The
bending of the trajectories away from the nodes that appear at the instant t = t, at the points z, is
quite striking as is the bunching of trajectories just in front of the infinite barrier. Since v(z,tp) <0
all the trajectories must turn around before t = . For each particle trajectory z(zO,t) it is easy to
calculate numerically the time t(z(9;a,0) spent by the particle in the region a<z <0. The
corresponding mean reflection time tr(a,0) = (4(z(?;a,0)) for the ensemble of particles described
initially by w(z(®),0) is obtained by integrating hy(z(®,0)12t(z(®; a,0) over all z(®. Results for

Tr(a,0) are compared in Fig, 2 with the plane-wave (Ak = 0) dwell time [N.21]

2lal sin 2kna
Ty (kqg;a,0) =T (Kpqia,0)= 1- 0 ) N.36)
p{ko r(ko:a.0) (ﬁkolm)( 2kqa J (

While Tr(a,0) for Ak =0.08 A-! shows significant departures from (N.36) for a <-2 A the
result for Ak = 0.02 A-! is barely distinguishable from (N.36) over the entire 10 A range shown
in the figure. In this simple case the Ak = 0 limit is numerically accessible via the Bohm trajectory

technique.
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N.4.3. Transmission and Reflection Times for Rectangular Barriers
As an application of the trajectory approach involving tunneling [N.41], consider an electron with
the initial gaussian wave function (N.31) incident on the rectangular barrier V(z) = Vo 6(z) 6(d-z)
of height Vo = 10 eV and width d.

" Figure 3 shows a selection of trajectories for Ak = 0.04 and 0.08 A-1 with starting points

z(0) in the vicinity of the transmission-reflection bifurcation point zgo). The energy Eg of the

incident wave packet is half of the barrier height V. The most striking difference between the two.

sets of trajectories is the factor of ~ 2 difference in time scales for motion within the barrier.

Figure 4 shows the dependence of t7(0,d), calculated using the Bohm trajectory and
Larmor clock# approaches, on the the width d of the barrier for wave packets with Eg = V¢/2 and
Ak = 0.04, 0.08 and 0.16 A-l. As d approaches zero both sets of calculations merge with the free-
particle (Vo=0) result T5%(k,;0,d) = d / (Ako / m). The Larmor clock results for Ak = 0.08 A-l
are influenced by significant above-barrier transmission for d 2 6 A and tr departs significantly
from the Ak = 0.04 A-! results. For Ak = 0.16 A-l this effect is much more dramatic, setting in at
d ~ 3 A. The behaviour of the mean Bohm trajectory transmission time begins to change
qualitatively when d becomes comparable to the characteristic tunneling length Kal = h/[2m(Vo-
Eo)]/2 ~ 0.9 A, becoming strongly dependent on Ak. For Ak = 0.16 A-l the calculated
transmission probability ford>6 A has a relatively large above-barrier resonant (IT(k)I2 ~ 1)
contribution and is virtually independent of d; in this region the Larmor clock and Bohm trajectory
results are, not surprisingly, in good agreement.

The prescription discussed above for guaranteeing a well-defined transmission probability
ITI2 requires that the centroid zg of the initial gaussian wave packet moves further from the barrier
as Az increases. Ford =3,5,7 and 9 A the Ak = 0.08 A-! trajectory results recalculated with zp
values appropriate to Ak = 0.04 A1 are also shown in Fig. 4. Clearly only a small fraction of the

large difference between the Ak = 0.04 and (.08 A-l curves arises from the dependence on zg.

4 For finite wavepackets, the Larmor clock results are obtained by averaging

|fc§FB(k;0,d)| over k with weight factor 16(K)2IT(k)I2/(27ITI2).
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However, the calculated small changes in t1 with zg are numerically significant and the mean
transmission time does depend on zg even though ITI? does not. Since lo(k)I2 is independent of zg
for the initial gaussian wave packet this means that, within the Bohm trajectory approach, t(0,d)
cannot be obtained by integrating tr(k; 0,d)ld(k)2IT(k)2/(2xITI2) over k because the latter quantity
is independent of zy.

In Fig. 5 the dependence of T1(0,d) on Eg and Ak is shown for a relatively narrow (d = 3
A) barrier in order to suppress possible above-barrier resonance effects. The Larmor clock and
Bohm trajectory results are qualitatively different in both their dependence on Eg and Ak until Eg is
well above the barrier height V. In Fig. 6 the same comparison is made for a wider (d = 54)
barrier and an incident wave packet with a relatively small energy width (Ak = 0.02 A1y in order to
highlight any resonance effects. The Larmor clock resuit for t1{(0,d) shows considerable structure,
peaking fairly close to the above-barrier resonances at Egl) and E(rz). The trajectory result, on the
other hand, decreases monotonically exhibiting no apparent resonant structure; however, the
contribution to the mean dwell time from transmitted particles, i.e. [T2tT(0,d), does have well-
defined resonance peaks. As expected, the agreement between the Bohm trajectory and Larmor
cibck results is best very close to the resonances where {TI2 ~ 1. |

Bohm trajectory transmission time distributions Pr(1(0,d)) are shown in histogram form in
Fig. 7 for barrier widths close to (d = 2.0 A) and well above (d = 5.0 A) the transparent to opaque
barrier 'crossover' evident in Fig, 4. For each case there is a well-defined minimum and most
probable transmission time, However, each distribution has a long tail on the high side of the peak
arising from transmitted trajectories very close to the transmission-reflection bifurcation where the
time spent inside the barrier diverges. That transmission times very much in excess of the average, |
although rare, are possible could have implications for submicron single-electron devices based on
tunneling. |

 Figure 8 shows the reflection time distributions Pg (t(0,d)) = PR8(t(0,d)) + B3 (t(0,d))

corresponding to the (d = 5 A) transmission time distributions P(t(0,d)) in the bottom panel of
Fig. 7. The component Pﬁ(t(O,d)) for electrons which actually enter the barrier region before

being reflected is normalized to (1 - P}?) which is shown in the inset along with Tr(0,d) as a
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function of Ak. Over the range 0.01 A1 < Ak < 0.08 Al at least, as Ak decreases towards the
plane-wave limit {Ak = 0) a smaller and smaller fraction (I-P{{) of the reflected electrons spends
longer and longer in the barrier region in such a way that the mean reflection time tr(0,d) has
relatively little dependence on Ak. It is tempting to extrapolate the calculated results for Tr(0,d) to
Ak =0 in order to obtain Tr(kg; 0,d) which, at least for this particular case, would be very close to
the plane-wave dwell time tp(kg; 0,d) given by (N.5), as shown in the figure.  However, if the
stationary-state Bohm-trajectory result, TT(ko; 0,d) = IT(ko)I"2 Tptko; 0,d), of Spiller et al, [N.48] is
correct then triko; 0,d) must be zero (for [R(kg)[? = 0) because {T(kp)i2 t1(ko; 0,d) = tp(kp; 0,d)
exhausts the sum rule (N.1). Unfortunately, it would be necessary to extend the time-dependent
wave packet calculations of tr(0,d) to much smaller values of Ak in order to decide whether it
remains finite or eventually plummets to zero in the plane-wave limit. We believe that the former
alternative is more likely to be correct because it is not obvious that one can determine the temporal
characteristics of a scattering process with 0 < IT|2 < 1 by studying only the stationary-state (Ak =
0) case. For example, Spiller et al. use the time-independent particle velocity v(z) = (1/m)aS(z)/0z
which is positive for all z and apparently assume that it is a property of transmitted electrons only
- rather than an average over transmitted and reflected electrons. Hence all their calculated
trajectories are transmitted ones, even if IT(ko)? « 1. We believe that for [TI2 < 1 the plane-wave
limit should be approached using time-dependent calculations with initial wave packets of greater
and greater spatial extent, as in subsection N.4.2. Unfortunately, it is clear that calculations for
initial wave packets with much smaller Ak than those considered in Figs. 4 and 8 will be required
to obtain the plane-wave limit of T(0,d) aﬁd tr(0,d) for finite opaque barriers. This is expected to
be computationally demanding.

An interesting question [N.7,25] is "What is the average time Tr(z1,z2) spent in a region 71
<z <73 on the far side (z3 > d) of a rectangular barrier by electrons that are ultimately reflected?”
Although the potential V(z) is zero for z > d and there is apparently nothing to scatter an electron
back through the barrier the Larmor clock approach leads to a non-zero result for Tr(z1>d,z2). On

the other hand, although the quantum potential Q(z,t) for z > d could conceivably launch an electron
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back through the barrier this has never happened in any of our calculations using the trajectory

approach and hence Tr(z1>d,z3) appears to be zero.

N.4.4. Coherent Two-Component Incident Wave Packet
The non-intersecting property of Bohm trajectories is graphically illustrated by the scattering of an
initial incident wave packet which is the coherent sum of two widely separated but otherwise

identical gaussians, i.e.

~(2-20)’ ~(z— 79 +yA2)° .
{CXP[W] + exp( 4(AZ)2 J}exp(lkoz)
2 1/2 "
2! 2{1 + exp(— %J} [ZN(AZ)Z]

with y very much greater than 1 (the centroid of the second gaussian is located yAz further from the

vy (z,1=0) = . (N.37)

barrier than the centroid zg of the first). It readily follows from equation (N.26) that the

transmission probability is given by

+oo

- 1+exp( v* /8] ,[ gi[lmw(k ko Jaafor-o ) Trrote)  N3)
0

where ¢7#O(k) is the Fourier transform of a single (normalized) gauséian wave function of width

Az and |Ty=0(k)I? is the corresponding plane-wave transmission probability. Using the fact that
ITy=col? = IT-=0I? we restrict our attention to the case ¥ » 1 and for definiteness consider an opaque

barrier so that the transmission-reflection bifurcation point z(o) is to the right of zp. Now, forz =

zp and t sufficiently small that there is still negligible overlap of the two components of the wave
packet, lyy(z,1)I? is equal to (1/2)yy=0(z,11? and Qy(z,1} is equal to Qy=0(z,t) to a very good
approximation (recall that the quantum potential Q depends only on the form of [yI2 so that the

factor of 1/2 is irrelevant). This means that, for sufficiently large v, electrons with starting points
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z(9) to the right of but not too close to the bifurcation point ZE,?,?:O of the single gaussian wave

packet are transmitted following trajectories very similar to those for the single gaussian case, as

(0)

o,y Must be

can be seen in Fig. 9. However, it is clear from the defining equation, (N.19), that z

further from the barrier than Z(f%:o because Iy(z,0)12 is smaller than lyy=0(z,0)I? by a factor of 2

for z > zy. Hence, some of the trajectories that were initially reflected by the barrier, namely those

with 'zg,oq)( < z9) £ z(c(‘),,),zo, must ultimately be transmitted, What happens, of course, is that

eventually the (initially) reflected part of the first component of the wave packet significantly

overlaps and interferes with the incoming second component. The resulting strong fluctuations in
-

the quantum potential launch the initially 'unsuccessful' trajectories back towards the barrier for

another 'attempt’, Those with z(® > Zg?;

are transmitted this time (see the bottom panel of Fig. 9).
The Bohm trajectories of Fig. 9 are for the initial wave packet yy(z,t=0) with Eg =5eV, 79
=-35.6 A, Az=6.25 A (Ak = 0.08 A-1) and y = 13 incident on the rectangular barrier V(z) =
V0(2)0(d-z) with Vo= 10 eV and d = 5 A. The prominent feature in the middle of the top panel
arises when the two trajectories originating at the centroids of the two gaussian components of the
initial wave packet come within about 10A of each other during the collision of the reflected
component with the incoming component of (z,t), sandwiching all of the trajectories with zg-yAz
< 70 < 7z between them. It is clear from the bottom panel of the figure that, on average, those
trajectories that are transmitted without being initially reflected involve considerably shorter
transmission times than those which are initially reflected. This is apparent in the calculated
transrﬁission time distribution shown in Fig. 10. Clearly, using the fact that Bohm trajectories do

not intersect can allow one to predict important qualitative features of both trajectory maps and

transmission time distributions.

N.4.5, Transmission Times for Time-modulated Barriers

The time-modulated barrier approach of Biittiker and Landauer [N.26,27] was motivated by the
belief that adding a small oscillatory component Vicoswt to a static barrier leads to distinct low {® «
) and high (w » ©7}) frequency regimes in the resulting tunneling behaviour (tr is the mean
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transmission time for the unperturbed static barrier). In particular, it is argued that for @ « 7" the
tunneling electron 'sees’ a static barrier to a very good approximation while for @ » 1:%l it 'sees' the
time-averaged barrier but, in addition, now has a significant probability of absorbing or emitting
modulation quanta leading to transmission and reflection side-bands. In their analysis of this
appealing physical picture Biittiker and Landauer considered a plane-wave exp(ikz) of energy E =
72k%/2m 'incident' on the time-modulated rectangular barrier V(z,t) = [Vg + Vicoswt]6(z)6(d-z)
with V| « iw « E, Vgp—E. In the low frequency limit they showed that the probability of

transmission at the first-order side-band energies E + A is given by
2 2 2 .
ITef” = [Vielt (k)7 28] [T(k) (@ - 0) (N.39)

where

(k)= (m / AP In T(k) / x| (k= [2m(Vy-EVr2]12) (N.40)

is the well-known Biittiker-Landauer traversal time for a rectangular barrier. Stgvneng and Hauge
[IN.49] and also Jauho and Jonson [N.50] showed that (N.39) holds for an arbitrary barrier when
(N.40) is replaced by

- (k) = AP In T(k)/ 3V (N.41)

where V is the average height of the barrier. However, both groups expressed reservations about

the identification of - (k) with the actual traversal time. It should be recalled that (N.41) is

identical to the modulus of the mean transmission time of Sokolovski and Baskin, |”c%B (k)l

Recently De Raedt et al, (N.51] numerically studied the scaittering of gaussian wave packets
by time-modulated rectangular barriers but were unable 1o extract tT from the frequency
dependence of the calculated transmission probability. Qur calculations for a significantly different
range of parameters [N.52] support this conclusion. Figure 11 shows the dependence of ITI? on
modulation frequency o for an opaque rectangular barrier. The modulation amplitude V) is
sufficiently smali that only the first-order side-bands are important. The transmission probability is

strongly enhanced when the upper side-band at Eq + Aw coincides with the first {n = 1) and second
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{n = 2) above-barrier resonances of the unmodulated barrier at Eﬁ”’ = Vo + (h2/2m)(nrn/d)2. The

oscillatory structure at low frequencies is due to the finite spatial width Az of the wave packet. The
frequency range over which such oscillations are of non-negligible amplitude decreases with
increasing Az and is ex “:cted to shrink to zero in the plane-wave limit (Az — <o) leaving a

smoothly varying featureless curve in the vicinity of 1:%’“(1(0)“1 (=0.26x1016g-1), This trend is
confirmed by c.alculations with larger Az than those shown. The figure shows ITI2 for both
Visinwt and Vicoswt modulations. We prefer the former because in the static limit o — Ojthe
(total) barrier height is then the original unmodulated barrier height Vg rather than Vg + V. Only
results for the Vsinwt modulations are shown in the remaining figures of this subsection.

We now consider the time-modulated barrier from the Bohm trajectory point of view which
clearly shows that there is no reason to expect a signature of T in the frequency dependence of IT22.
In the limit t — o= when the scattering of the wave packet is complete each trajectory z(z(%,t), with
the exception of the one with z(®) = zf:o), can be labelled as either transmitted or reflected:

(N.42)

\ 1 transmitted trajecto
eT(z(O’) _ B(Z(O) B ZE:O)) _ ( i ry)
0 (reflected trajectory)

Now, for the trajectory starting at a particular z(®, transmission is 'all or nothing’, i.e. 67(z@®) =1
or (), Hence, if the original barrier is perturbed in some way there are four distinct possibilities for
the effect of the perturbation on 8T, only three of which can occur for a given perturbation because
Bohm trajectories do not intersect, If the transmission probability ITI2 = <61(z(®)> increases then
one possibility, denoted by the shorthand 0 — 1, is that the perturbation causes 81(z(9) to change
from O to 1; for the two other possibilities, 0 — 0 and 1 — 1, 07(z(®) is unaffected by the
perturbation, The important 0 — 1 possibility occurs for and only for zgo) <zO g zg)()) where Zf:?f),
denotes zio) for the unperturbed system. If ITIZ decreases because of the perturbation the three
possibilities are 1 — 0, 0 — O and | — 1, the first occurring only for zg?g <zO < z&O} . Any
change in the transmission probability arises solely from those particle trajectories for which the

perturbation changes 81(z(®)), namely from 0 to 1 if ITI2 increases or from 1 to 0 if IT/? decreases.

For example, if the relative change in ITI2 due to the perturbation is a very small decrease then the
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crucial 1 — 0 trajectories have z{9) very close to and to the right of Z(CCB. The corresponding

trajectories of the unperturbed system are characterized by anomalously long transmission times far
out in the tail of the transmission time distribution (see the @ = 0 distribution in Fig. 14 below).
Similarly, if the relative change in ITI? is a very small increase then the trajectories of the
unperturbed system that are most dramatically changed by the perturbation (i.e. 0 — 1) are
characterized by anomalously large reflection times. These can be especially atypical in this case
particularly for an opaque barrier for which the typical reflected trajectory does not even reach the
barrier and has a reflection time t(z®; 0,d) of zero. Clearly, at least within the Bohm interpretatidn,
there is no reason whatsoever to expect anything special to happen to IT12 when the modulation
frequency @ passes through 't}l.

Figure 12 compares a selection of Bohm trajectories for an unmodulated rectangular barrier
with the corresponding trajectories when a small modulation Vsinwt is applied to the barrier with
V1 and Ao satisfying the conditions Vi « hw « Eg, Vo-Eg of the Biittiker-Landauer papers.
Although in this case the perturbation leads to a decrease in TI2, none of the pairs of trajectories
shown here have z(® close enough to Z(c(,)()) to be of the 1 — 0 type associated with the decrease but
the trend is clear. Increasing the density of trajectories would, of course, eventually reveal such
trajectories.

Figure 13 shows a selection of trajectories for the special case in which the modulation
frequency satisfies the resonance condition Eg + A = Ef,l) {we are ignoring the very small
difference between Eg and E). Those trajectories that spend a significant length of time inside the
barrier show well-defined oscillations of period 2rt/w. Since the classical force —9V(z,t)/9z is zero .
for 0 < z < d these oscillations arise indirectly from the V (sinot modulation through the quantum
force -0Q(z,t)/dz. Although most of the transmitted trajectories enter the barrier at fairly regular
intervals they leave in bunches. This combined with the general increase in t(z(®; 0,d) as z(®

approaches zﬁ‘” leads to the multi-peaked transmission time distribution shown in Fig. 14 where it

is compared with the distribution for a far-from-resonance modulation frequency and for the static

case,
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Figure 15 shows the dependence of the mean transmission time t1(0,d) on modulation
frequency o for one of the cases considered in Fig. 11. Although t1(0,d) is significantly enhanced
at the n = 1 resonance it is considerably less sensitive to @ than is ITI2,

The distribution of energy for a wave packet is usually considered in terms of the free-
particle energy E®) = A2K2/2m, ie. |

P(E,t) = (21)"" f dk {6(k, t)> 8(E - E(k)) (N.43)

-y

where ¢(k,t) is the Fourier transform of y(z,t). Now, in Bohm’s interpretation an electron with
position z at time t has a well-defined energy
E(z,t) = (m/2) v(z,t)2 + V(Z1) + Q(z,t) . (N.44)

Hence, an alternative way of distributing the energy of a wave packet is in terms of E(z,t}, i.e.

PB(E, 1) fdz izt 8(E - E(z.t)) | (N.45)

T arl” "”(Z(O)’O)r S(E - E(Z(Z(O) ,t),tD . (N.46)

Both distributions (N.43) and (N.46) lead to the same expectation value, —E(t), for the energy
[N.14].

In the standard interpretations of quantum mechanics one has no way of knowing where,
on average, a transmitted electron associated with the upper sideband absorbed a modulation

quantum of energy #w. Despite this, it has been suggested [N.26] that for an opaque rectangular

barrier the absorption occurs at the leading edge of the barrier because the tunneling electron then

‘sees’ an effective barrier that is lower by Aw for all of its journey through the classically forbidden

region. This sounds very plausible. However, it seems inconsistent with the idea that it is only

when the time spent by an electron inside the barrier is much greater than w-! that there is
significant probability for the absorption of a modulation quantum [N.26]. This inconsistency

arises at least partly from attempting to picture an electron in a state extending over all space as a
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localized particle during the tunneling process within an interpretation which does not allow such
pictures.

In the Bohm interpretation, on the other hand, one can follow the energy distribution for the
‘to be transmitted part’ of the wave packet as a function of time right from t = 0 simply by replacing
the lower limit on the integral over z® in (N.46) by ZE:O). Figure 16 shows the evolution of the
particle energy E(z,t), with t implicit, for a selection of Bohm trajectories z(z{,t) calculated for the
wave packet and barrier parameters of Fig. 13 where ko = E(rl) — Ep. For this resonant situation
the reflected trajectories shown all have E(z,t) ~ Eq and the transmitted ones E(z,t) ~ Eop + A at
sufficiently large t. It should be noted that the transmitted electrons associated with the upper

sideband experience large fluctuations in energy that continue well beyond the barrier region before

their energy finally settles down to Eq + k.

N.4.6. Transmission Times for Symmetric Double Rectan;gular Barriers
Larmor clock results [N.25] for Tr(k; 0,z) with 0 € z < d have been calculated for a plane-wave
electron of wave number k 'incident’ on the symmetric double rectangular barrier Vol6(z)8(a-z) +
8(z-d+a)8(d-z)]. The detailed results for the special case of resonant transmission with IT(k=k)i2
= 1 are directly relevant to this chapter because the Larmor clock and Bohm trajectory approaches
give identical resuits for the limiting cases of perfect transmission and perfect reflection.® Rather
than simply reproduce these IT(k)I? = 1 results we instead discuss how the Bohm trajectory
approach illuminates an interesting puzzle connected with the Larmor clock approach.

For the special case IT(k)I2 = 1 the average 'transmission speed' defined in [N.25] as

Vr(k;z) =[dtr(k;0,2)/ 3z] (N.47)
is given by

Vr(ky;z) = ji (2)/ P (z) = (hk, /m)/ ’\ukr (z)l2 (N.48)

5 The authors were not familiar with Bohm's trajectory interpretation when ref. N.25
was written,
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where the plane-wave probability current density ji(z) = Ak/m is independent of z. Now, a glance
at equation (N.13) reveals that an alternative expression for the Bohm particle velocity is v(z,t) =
j(z,t) / P(z,t). This definition is preferable to the familiar v(z,t) = m-19S(z,1)/0z because it is readily
generalized [N.53] to particles described by the Pauli or Dirac equations simply by inserting the
appropriate expressions for j and P. Clearly, VT(kr;z) is identical to the plane-wave limit of v(z,t)
for the special case IT(k=k;)I? = 1 considered here. This is not true in general, not even for
resonant transmission with IT(k=k;)I2 < 1 as is the case when the transmission probabilities for the

individual barriers are unequal for k = k.

Fork = k(r“) with n > 1 it is possible to have quasinodes 6f the probability density in the
well region a < z < d-a where hyy(z)12 is so small that (N.48) leads to Vr(z) » ¢, the speed of light.
However, if the Schridinger expressions for the plane-wave probability and probability current
densities Py(z) and ji are replaced in (N.48) by the corresponding expressions [N.54] for positive
energy spin-up (or down) Dirac electrons then one can readily prove [N.25] that vp(k,;z) < c.6
This is a very satisfactory resuit because it would be difficult to regard VT(kr;z) as a meaningful
quantity if it could exceed the speed of light, However, an electron trapped at resonance in the
potential well between identical single barriers, each having transmission probability |T(k,)|:ingle
1 when acting alone, is often pictured as oscillating back and forth in the well very rﬁany (of order
|T(k)|s_.;gle) times before finally escaping through the second barrier. If this picture bears any
relation to reality then we cannot use the fact that Vp(k,;z) < ¢ to argue that vr(k,;z) is a
meaningful quantity because the mean transmission time tr(k; 0,d) from which it is derived via
(N.47) is a cumulative quantity. Hence, if Vp(k.:z) ~ ¢ and the trapped electron passes the
position z more than once before escaping then on at least one of these occasions its speed must
have exceeded c.. Within the Larmor clock approach an obvious, but perhaps not consistent, way

out of this dilemma is simply to enforce a basic tenet of the Copenhagen interpretation and abandon

® We are not concerned here with barriers of enormous height, > mc?, for which

spontaneous electron-positron creation must be taken into account.  Strictly
speaking, the barrier height Vg of subsections N.4.2 and N.5.1 should not be allowed to

become infinite: Vg->= should be interpreted as E << Vp << mc?,
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the picture of an electron oscillating back and forth in the well as completely meaningless. Within
Bohm's interpretation this escape route is not availaple. Instead one must show explicitly that such
oscillations do not occur.

Bohm {N.14] showed that an electron in an éigenstate Yn(z) of a potential well with
perfectly reflecting walls has zero velocity, the kinetic energy of the usual picture having been

completely converted into quantum potential energy Q. Hence, it is at least plausible that for

2
steady-state resonant tunneling (tT(kgn)) = 1) enough of the kinetic energy Ef”) = hzkgn)z /2m of

an ‘incident' electron is converted into quantum potential energy within the well region that the
above deleterious oscillations do not occur, Figure 17 shows the stationary-state (non-relativistic)

kinetic energy [38(z)/0z]%/2m = E; - V(z} - Q(z) of Bohm's interpretation as a function of position
2
for a double rectangular barrier system with five quasinodes of the probability density l\pkr (z)l in

the well region. Except in the immediate vicinity of the quasinodes the kinetic energy in the well
region is reduced, as requifed, to a very tiny fraction of its incident value. Since IT(k,)iZ2 =1 an
incident electron cannot avoid altogether the regions where the probability density is very small but
must propagate through them very quickly, much faster than the initial speed #ky/m for the case
shown. In fact, for quite ordinary parameters, using the Schrodinger equation can lead to
calculated speeds very much in excess of ¢, as mentioned above. Within a relativistic extension of
the Bohm interpretation, as shown unwittingly in [N.25], this unphysical result is eliminated in a
consistent way.

The stationary-state results of Fig. 17 which were generated analytically are now
supplemented by numerical results for the time-dependent resonant scattering (ITI2 ~ 1) of an initial
gaussian wave packet. For obvious reasons of numerical accuracy the parameters of the wave
packet and the symmetric double rectangular barrier have been chosen so that the time taken for the
scattering process to be essentially completed is not too large. None of the Bohm trajectories of
Fig. 18 which were calculated with E = E, shows an electron oscillating back and forth in the well
region even though the time spent in the well for most of the trajectories is sufficiently long for

several oscillations to occur for a particle having a speed of ~ iky/m.
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Our calculations indicate that although the mean dwell time Tp(0,d) peaks at E = E, when
the average energy E of the wave packet is increased through the resonance, the mean transmission
time ©r(0,d) shows only a monotonic decrease. However, the transmission component [Ti2tr(0,d)
of Tp(0,d) does peak at resonance. Figure 19 shows the transmission time distributions
Pr(t(z1,z2)) for the individual barriers, the well and the entire structure calculated for E=E,. The
distributions for the two barrier regions both show well-defined minimum and maximum
transmission times while that for the well region has a very long tail. Although the two barriers are
identical there is no left-right symmetry in the problem because the wave packet is incident from the
left. Hence, it should not be a complete surprise that the mean transmission time for the second

barrier is considerably larger than that for the first.

N.5 Discussion

N.5.1 'Measurement’ of Particle Momentum

Before discussing the possibility of determining Tt and Tg experimentally we consider the much
simpler problem of 'measuring' the instantaneous momentum of a particle.

Heisenberg [N.55] considered a thought experiment in which the instantaneous value of the
momentum of an electron in a hydrogen atom could be precisely determined, in principle, by
instantaneously switching off the interaction between the electron and proton at the time of interest
and doing a time-of-flight experiment on the liberated electron. This assumes, of course, that the
momentum of the electron does not change, until it triggers the detector, from the value it had the
instant before the potential was turned off and that the initial uncertainty in its position is negligible
compared to the distance to the detector. Bohm discussed the same problem for an electron trapped
in the potential well formed by the confining potential V(z) = Vo[6(-z) + 8(z-a)] with Vo—o. The
stationary-state wave function yy(z) is equal to (2/a}2sinkyz withkp=nw/a(n=12,.)for0 <z
< a and to zero elsewhere, This standing-wave is conventionally interpreted in terms of an electron
with kinetic energy E, = n*k2 / 2m bouncing back and forth between the perfectly reflecting walls
atz =0 and z = a. In Bohm’s interpretation, because the stationary-state wave function Wn(z) is

real, the electron momentum p(z) = dS(z)/dz is zero for all z and the electron is at rest at some
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unknown position z, with probability density lyn(z)12, inside the well. Bohm claims that these very
different pictures of an electron trapped in a potential well lead to the same result for a time-of-flight
determination of the momentum ‘observable’ [N.14]. In the first picture, the experimentally
‘determined momentum distribution is identified with the momentum distribution immediately prior
to the instantaneous collapse of the confining potential. In the second picture, the quantum
potential evolves in time following this collapse and guides an ensembie of electrons, all initially at
rest in positions distributed according to hy(z,0)12 = hyy(2)12, in such a way that the resulting large-
time velocity distribution is identical to the experimental one. According to this latter point of view,
what is actually ‘measured’ in the time-of-flight experiment has no simple relation to the actual
property of interest, the instantaneous momentum of an electron while it is confined in a potential
well. The following analysis illustrates this important point. Evaluating the Fourier transform o(k)

of Wn(z) = (2/2)/26(z)0(a-z)sinkyz gives the time-independent velocity distribution

4mk[1- (-1)" coskal -
( ) (N.49)

= W = T T

m

according to the first version of the time-of-flight experiment’. In the second version, based on
Bohm’s interpretation, the particle velocity is given by (N.8). Hence, the velocity distribution
depends on time: at t = 0 it is given by P(v; t=0) = 8(v) and if the two pictures are to make identical
predictions for the time-of-flight experiment it must evolve into the time-independent distribution
P(v) of the other picture for t » ty = a/ v, with v, = Akg/m. That this is indeed the case is clearly

indicated in Fig. 20 by the snapshots of the velocity distribution

7 It readily follows from (N.49) that the mean speed, mean-square velocity, and

relative width of either half of the symmetrical distribution P{v) are M = (2/®8) vpu

{Si(am) - {1 - (-1)P} / nn}, v? =V§, and Av /vy =[ v2 _ MZ]IIZ /vp= Q2 /x)nl/2
respectively, The latter is close to 1/2 for n = 2 and decreases slowly with n. Hence,
the relative deviation of Ivl from vy is very small only for large n. For n = 1 the
distribution, far from being concentrated very close to tvp-=1, is actually largest at v =

0.
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P(v;t) = T dz(® ‘w(z(o),t = O)‘ZB(V - v(z(z(o),t), t))

—_—

wu(z(o) )‘25(v - v(z(z(o) ) t), t)) (N.50)

=ﬂd (0)
.([z

for v > 0 calculated at t / ty = 1/3, L and 3 forn =2 andt/ty = 1/4, 1 and 4 for n = 4. The large
number of Bohm trajectories z(z(®,t) needed for the evaluation of (N.50) were generated by
simultaneously integrating the TDSE and v(z,t) = dz/ dt numerically starting from the initial wave
function y(z,t = 0) = yp(z).8

The evolution of the time-dependent velocity distribution of the Bohm interpretation
towards the time-independent distribution of the usual one following the instamaneous collapse of
a confining potential is most clearly illustrated with the ground state of the harmonic oscillator

potential. The wave function at the instant of collapse is
y(z,0) = 27 Az) 14 exp(—z2 / 4(Az)?) . (N.51)

Casting the text-book expression {N.56] for the resulting time-dependenlf wave function into the

form w(z,1) = R(z,t) exp(iS(z,t) / ) and using (N.8) immediately gives
vizty=(z/t)/[1 + (to/ 1)?] (to=2Az/vp; vo= h { mAz) (N.52)

for the Bohm velocity of the electron. Since a precise time-of-flight determination of the velocity
distribution at the detector requires that z(t) be proportional to t over most of the flight path it is
clear that the detection times must be much greater than the characteristic time tp associated with the

harmonic oscillator potential. In the conventional picture where the electron’s velocity does not

8 The finite-difference approximation to aqu(z,t) / 9z2 fails att =0 forz=0and z = a
because it cannot reproduce the necessary singular behaviour of 32¢q(z) / 322 at
these points. The resulting spurious oscillations in P(v,t) have been reduced to an
acceptable level in the above examples primarily by shifting the mesh so that z = 0
and z = a are both located halfway between adjacent mesh points.



change from the value it had at t = 0 the requirement for an accurate experimental resuit is that the
detector distance be much greater than Az, the uncertainty in the initial position of the electron.
Clearly, since to = 2Az/ vo the two pictures involve essentially the same experimental
requirements.

 Integrating dz / dt = v(z,t) over time from 0 to t and over position from z(© to z gives
2(zO) = 2O [1 + (t/ tp)?] 12 (N.53)
for the Bohm trajectory starting from z© at t = 0. It follows from (N.52) and (N.53) that
v(z(ZO0),t) = 2O/ to} / [1 + (tg / £)2]1/2 . (N.54)
Substituting this into (N.50) and integrating gives

1/2 2
P(v;t) = (ZIVL)M[I + (%Q-)Z] ex;{—Z{l + (tTO)z](VLJ J . (N.55)
0 \ Yo

This is 8(v) at t = 0 and for t » {g converges to

1/2 2
P(vied = @] Egﬁexp(—z( m‘:“") J =Zlo(k)f =p() (N.56)

where ¢(k) = {8r(Az)2]14 exp(-k2 / (Az)?) is the well-known Fourier transform of the gaussian
wave function (N.51). Figure 21 shows voP(v,t), a universal function of v/vp and t/ty, for t/ty =
1/3, 1,3 and e, Clearly, in'both pictures the hypothetical time-of-flight experiment performed on a
suitably large ensemble will yield precisely the same velocity distribution. However, only in the
conventional picture would this distribution be identified with the electron velocity distribution

immediately prior to the collapse of the confining harmonic potential,

N.5.2 'Measurement' of Mean Transmission and Reflection Times
It is obviously pointless to discuss the possibility of experimentally determining the average
transmission and reflection times if they are meaningless concepts. This is definitely not the case
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within Bohm's interpretation and one can envisage measuring these quantities, at least in principle.
However, an experimentally derived quantity that is identified as the mean transmission time within
this interpretation may not be accepted as such by adherents of other interpretations, not even by
those who believe that the concept is a meaningful one. To tllustrate this important point we
consfder an indirect method for determining mean transmission and reflection times based on
Lamb's operational approach to state preparation and measurement [IN.57].

Lamb's admittedly idealized experiments are based on the assumption that 'all
classically describable potentials U(z,t) are available experimentally'. For example, any desired
initial one-electron state y(z,0) = R(z,0) exp(iS(z,0)/#) is prepared as follows: With the potential
V(z.t) of interest switched off, the potential Uj(z) given by [-(A%/2m)d?%/dz2 + U1(z) - E]R(z,0) =0
is applied to prepare a state which has the real-valued wavefunction y(z,0) = R(z,0) when the
energy of an electron captured by the potential has the correct eigenenergy E. Then, at t = 0-, Uy(z)
is switched off instantaneously, the pulse potential U(z,t) = -S(z,0)8(t) is applied to generate the
dg:sired initial wavefunction y(z,0) from R(z,0), and at t = 0+ the potential V(z,t) is switched on
instantaneously to complete the preparation. It should be noted that the quantity E - Uy(z) is
identical to the quantum potential Q(z,0) and that integrating the 'acceleration’ (1/m)[-0U2(z,t)/dz]
over all t gives (1/m)dS(z,0)/dz which is precisely the particle velocity v(z,0) of Bohm's approach.
This helps to elucidate the dual role of y(z,t) as a field guiding the motion of an individual electron
and as the position probability amplitude for an ensemble of identically prepared one-electron
systems. Lamb has also shown how the probability density hy(z,t)i2 could be precisely measured,
in principle at least, by switching on a sufficiently short-ranged potential trap at the time and
position of interest and simultaneously switching off the poientia.l V(i,t). Given sufficiently
accurate measured values of hy(z,t)2 for the scattering problem of interest, the mean Bohm
trajectory transmission and reflection times t1(z1,22) and tr(z},z3) are readily obtained by carrying
out the integrations appearing in (N.28-30). However, the physical meaning attached to Equations
{N.28) and (N.29) is based on a set of postulates unique to the Bohm interpretation of quantum
mechanics. Hence, to a proponent of any conventional interpretation, there is no reason to identify

the experimental 'times' based on these equations with actual mean transmission and reflection
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times. The analogy with the time-of-flight thought experiment is clear. However, in that case it is
the proponent ot the Bohm interpretation who cannot accept the measured momentum distribution
as the one of actual interest, i.e. the distribution immediately prior to the collapse of the confining
potential.

~ There is no consensus among proponents of conventional interpretations on whether or not
transmission and reflection times are meaningful concepts. The point of view that they are not
meaningful appears to be a consistent one within conventional intgmrgg’gtigns. Despite this, several
physical phenomena involving tunneling have been analyzed assuming that the mean transmission
time 77(0,d) is an important parameter [N.1-6]. This has led to suggestions for practical
experiments to measure Tt some of which have been attempted [N.1-4]. These suggestions are
based on the assumption that there will be a qualitative change in behaviour of some measured
property when some experimentally controlled 'time' parameter texp, usually the reciprocal of a

characteristic frequency, is swept through a value equal to 1 [N.26,27]. Again the problem is one

0

of interpretation: Does a qualitative change in behaviour at texp = thp necessarily correspond to tey,

~ TT Of i$ some other time scale involved? In this connection, it should be emphasized that one
‘ sﬁould think about such experiments in terms of distributions of transmission and reflection times
P1(t(z1,22)) and PRr(t(z1,z2)) rather than just the mean transmission time t1(0,d). It is quite
possible that t7(0,d) is not a relevant time scale. This is certainly the case for the frequency

dependence of the transmission probability for the time-modulated barrier considered above.

N.5.3 Concluding Remarks

In this chapter a long standing problem which has not been satisfactorily resolved within standard
interpretations of quantum mechanics has been explored within Bohm's trajectory interpretation.
The criteria that had previously led us to have serious reservations about all approaches to the
‘tunneling time problem' then known to us [N.8] are satisfied by the Bohm trajectory approach. It
thus appears to us that there are currently two consistent answers to this problem: (1) within
Bohm's interpretation the basic postulates provide a unique, well-defined prescription for

calculating meaningful transmission times with physically reasonable properties; (2) within
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conventional interpretations the concept of transmission time is not a meaningful one and forcing it
~upon the basic formalism ultimately leads to unphysical results. Unfortunately, as illustrated
above, an experimentally determined quantity identified with a mean transmission time within
Bohm's interpretation might not be accepted as such within conventional ones (or vice versa).
Hence, it may not be possible to obtain universal agreement as to what would constitute a definitive
experiment to resolve the issue.

The following statements by Feynman et al. [N.58] shouid be borne in mind in connection
with the tunneling time problem: "Just becanse we cannot measurg position and momentum
precisely does not a priori mean that we cannot talk about them. Tt only means that we peed not talk
about them. A concept or an idea which cannot be measured or cannot be referred directly to an
experiment may or may not be useful." The beauty of the Bohm interpretation, in this context, is
that the concepts of transmission and reflection times follow directly from the basic postulates and
consequently one can talk about them in an internally consistent way. Furthermore, due to the
nature of these postulates, one can use the language of classical mechanics without apology (e.g.
the above discussion of thé time-modulated barrier is not peppered with the phrase "crudely
speaking"). Moreover the averages discussed in the Bohm trajectory parts of this chapter are
averages in the classical sense and the transmission times are real quantities. In standard
interpretations on the other hand, to quote from Feynman and Hibbs [N.17], "... the weighting
function in quantum mechanics is a complex function. Thus the result is not an 'average' in the
ordinary sense." This leads, for example, to the result that even the simple correlation function
<z(t)z(t")>F is complex-valued [N.17]. For reasons such as these, which are largely ones of taste,

we prefer the Bohm trajectory solution to the tunneling time problem.
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Figure Captions

Fig. 1

Fig, 2

Fig. 3

Fig. 4

Fig. 5

Bohm trajectories z(z(,t) for au initial gaussian wave - cket incident on the infinite
potential barrier V(z) = Vgb(z) with Vg—eo. The wave acket parameters are Eg = 4
eV, Ak = 0.04 A-l (ie. Az = 12,50 A), and zp = -63 A. The space-time points (zq, to)
at which w(z,t) is zero are indicated forn=1,2,3 and 4

The average reflection time Tr(a,0) for the region a <z < 0 in front of the infinite barrier
V(z) = Vgb(z) with Vg—<o, The initial gaussian wave packets have Eg = 4 eV and Ak
= (0,08 (dashed line) and 0.02 A-1 (dotted line). The plane-wave dwell time tp(ko; a,0)
is included for comparison (solid line)

Bohm trajectories for an initial gaussian wave packet incident on a rectangular barrier of
height Vg = 10 eV and width d = 5§ A. The location of the barrier is indicated by
horizontal lines. The wave packet parameters are: Eg = 5 eV, Ak = 0.04 A1, zg=—
71.80 A (dashed lines); Ak = 0.08 AL, zp = —35.58 A (solid lines)

Dependence of tr(0,d) on d for a rectangular barrier of height Vo =10 eV and incident
energy Eg = 5 eV. The Bohm trajectory results are shown by circles for Ak = 0,04 A-1,
squares for Ak = 0.08 Al and triangles for Ak = 0.16 A-! and the corresponding k-
averaged Larmor clock resuits by the lower, middle and upper solid curves respectively.
For Ak = 0.08 Al and d =3, 5,7 and 9 A the trajectory results recalculated using the
value of zg apﬁropriate to Ak = 0.04 A-1 are shown (filled squares). The free particle
result d/(fikp/m) is indicated by the dashed line

Dependence of TT(0,d) on the energy Eg of a gaussian wave packet incident on a
rectangular barrier of height Vo = 10 eV and widthd =3 A. The Bohm trajectory
results are shown by circles for Ak = 0.04 A-! and triangles for Ak = 0.08 A-l and the

corresponding Larmor clock results by the solid and dashed lines respectively. The first

above barrier resonance 59) at 14,175 eV is the only one below 20 eV

38



Fig.6

Fig. 7

Fig. 8

Fig. 9

Fig.10

Fig. 11

Dependence of T1(0,d) on the energy Eg of an initial gaussian wave packet with Ak =
0.02 A-lincident on a rectangular barrier of height Vo = 10 eV and widthd =5 A. The

Larmor clock resuits are shown by the solid curve and the trajectory results by circles

(those for the above-barrier resonances at Eg) = 11.503 eV and E?) = 16.012 eV by
filled circles)

Transmission time distributions P7(t(0,d)) calculated using the Bohm trajectory
approach for a barrier of height Vo = 10 eV and width d of 2.0 A (top) and 5.0 A
(bottom). In all cases the incident energy Eg=5¢eV

Reflection time distributions Pz (t(0,d)) for a rectangular barrier of height Vo = 10 eV
and width d = 5 A. The wave packet parameters are Eg =5 eV and Ak = 0.02 (solid
line), 0.04 (dotted line), 0.06 (chained line) and 0.08 A-! (dashed line). P(1(0,d)) is
normalized to (1-P§) ) which is shown in the inset along with the mean reflection time
TR(0,d) as open and filled circles respectively. The plane-wave dwell time Tp(kq: 0,d)
is indicated by X. The solid and dotted lines in the inset are guides to the eye

Two selections of Bohm trajectories z(z(0,t) for an initial wave packet which is the
coherent sum of two widely separated but otherwise identical gaussians incident on a
rectangular barrier (Vo= 10eV,d =5 A, Eg = 5 ¢V and Ak = 0.08 A-1). There are two
distinct types of transmitted trajectories: those that are transmitted directly (long-dashed
lines) and those that are transmitted after first being reflected by the barrier (short-
dashed lines)

The distribution P1(t{0,d)) of transmission times t(0,d) for a double-gaussian wave
packet incident on a rectangular barrier. The wave packet and barrier parameters are
those of Fig. 9

The frequency dependence of the transmission probability ITI2 for a gaussian wave
packet incident on a time-modulated rectangular barrier of unmoduiated height Vo =10
eV and width d = 5 A. The results for the modulation V16(z)0(d-z)sinwt are shown by
the solid curves and for V10(z)8(d-z)cosmt by the dashed curves with V{ = V¢/50 = 0.2

eV. The incident energy Egp = 5eV, zp = -71.8 A and Ak = 0.08 A-! for the upper
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Fig.

Fig.

Fig.

Fig.

12

13

14

.15

. 16

17

curves (near @ = 0) and Ak = 0.04 A-! for the lower curves. The resonance condition
hoy = ES.“) — Eg for the first order sideband is indicated by an arrow forn = 1 and 2.
The inset shows the low frequency behaviour for Ak = 0.04 Al

Bohm trajectories for a gaussian wave packet with Eg=5eV, Ak =0.04 A} and zp = -
71.8 A incident on the static barrier V8(z)8(d-z) and on the time-modulated barrier [Vo
+ Visinwt}9(z)0(d-z) are shown by the solid and dashed curves respectively. The
barrier parameters are Vo =10eV,d=5A, V1 =0.2¢eV and iw=1.0eV

Bohm trajectories for a gaussian wave packet with Eg =5 eV, Ak =0.04 Alandzy=-
71.8 A incident on the time-modulated barrier [Vo + V1sinwt]6(z)6(d-z) with Vo = 10
eV,d =5 A, Vi =02 eV and hw = EY — Eq. The vertical lines along the time axis
indicate integral multiples of the modulation period 2/

Transmission time distributions Pr(t(0,d)) for Aiw = 0 (solid line), iw = 1 eV (chained
line) and hw = Ef.l) — Eg (dashed line) for a gaussian wave packet with Bp=5¢eV, Ak =
0.04 A-! and zp = -71.8 A incident on the time-modulated barrier [Vp +
V1sinwt]8(z)8(d-z) with Vo = 10eV,d=5A and Vi =02 eV

The frequency dependence of the mean transmission time for the wave packet and
barrier parameters of Fig. 14. The solid line is a guide to the eye

The particle energy E(z.t) along a selection of Bohm trajectories z(z"),t) with t implicit
and -39.0 A <z(® <-21,0 A in steps of 1 A for the wave packet and barrier parameters
of Fig. 13 (Zgo) =-28.54 A). The resonance energy Egl) of the static rectanguiar barrier
is indicated by the horizontal dashed line and the position of the barrier by the vertical
dashed lines

Variation of the stationary-state kinetic energy Er - V(z) - Q(z) (solid line) and
2
probability density 'q}kr(z)‘ (dashed line) across the symmetric double rectangular

barrier V(z) = Vo[6(2)8(a-z) + 8(z-d+a)8(d-z)] with Vg =10eV,a = 10 A and d =30
A. The resonance energy E; = Egé) =9.768 eV
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Fig. 18

Fig. 19

Fig. 20

Fig. 21

Bohm trajectories for an initial gaussian wave packet with E = Egl) = 1.020 eV, Ak =
0.02 A-L and zp = -96.6 A incident on the symmetric double rectangular barrier V(z) =
Vol6(z)6(a-z) + 6(z-d+a)6(d-z)] with Vo=2eV,a=3 Aandd =9 A. The time taken
for a completely free (Vo =0) elecfron to cross the well region is indicated. ITI2 for the
wave packet is 0.556

Transmission time distributions for a gaussian wave packet incident on a symmetric
double rectangular barrier. The parameters are the same as those of Fig, 18

Evolution of the time-dependent electron velocity distribution P(v;t) (solid line) in the
Bohm picture towards the time-independent distribution of the usual picture (dashed
line) following the instantaneous collapse at t = 0 of the confining potential V(z) =
Vo[8(—z) + 6(z—a)] with a= 10 A and Vg—eo. The initial velocity distribution is P(v;
t=0) = 8(v). The characteristic velocities and times are vy, = fiky/m with kg = nn/a and
tn = a/vy. For the top panel n =2 and for the bottorn panel n = 4. Since P(-v; t) = P(v;
t) results are shown only for v > 0

Evolution of the time-dependent electron velocity distribution P¢v:t) for v > 0 of the

‘Bohm picture towards the time-independent distribution of the usual picture (solid line)

following the instantaneous collapse at t = 0 of the harmonic oscillator confining
potential. The initial wave function is the ground state of the harmonic oscillator
potential and the corresponding initial velocity distribution is P(v; t=0) = 3(v). The

characteristic velocity and time are vo = #/mAz and tp = 2Az/vg
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