
https://doi.org/10.4224/8914084

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Preliminary Guidelines for Empirical Research in Software Engineering
Kitchenham, B.A.; Pfleeger, S.L.; Pickard, L.M.; Jones, P.W.; Hoaglin, D.C.;
El-Emam, Khaled; Rosenberg, J.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=0c0d4174-6677-4d7f-8ff6-86927aa3aabc

https://publications-cnrc.canada.ca/fra/voir/objet/?id=0c0d4174-6677-4d7f-8ff6-86927aa3aabc

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Preliminary Guidelines for Empirical Research in

Software Engineering *

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W.,
Hoaglin, D.C., El-Emam, K., Rosenberg, J.
January 2001

* published as NRC/ERB-1082. January 2001. 27 pages. NRC 44158.

Copyright 2001 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Preliminary Guidelines for
Empirical Research in
Software Engineering

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M.,

Jones, P.W., Hoaglin, D.C., El-Emam, K., and Rosenberg, J.

January 2001

ERB-1082

NRC 44158

* Keele University, Keele, Staffordshire, UK

** Systems/Software, Inc., Washington, DC, USA

*** Abt Associates Inc., Cambridge, MA, USA

**** National Reserch Council of Canada, Ottawa, Ontario, Canada

*****Sun Microsystems, Palo Alto, CA, USA

Preliminary guidelines for empirical research in software

engineering

Barbara A. Kitchenham*, Shari Lawrence Pfleeger**, Lesley M. Pickard*,

Peter W. Jones*, David C. Hoaglin***, Khaled El-Emam****,

and Jarrett Rosenberg****

Abstract

Empirical software engineering research needs research guidelines to improve the

research and reporting processes. We propose a preliminary set of research guidelines

aimed at stimulating discussion among software researchers. They are based on a review

of research guidelines developed for medical researchers and on our own experience in

doing and reviewing software engineering research. The guidelines are intended to assist

researchers, reviewers and meta-analysts in designing, conducting and evaluating

empirical studies. Editorial boards of software engineering journals may wish to use our

recommendations as a basis for developing guidelines for reviewers and for framing

policies for dealing with the design, data collection and analysis and reporting of

empirical studies.

Keywords: empirical software research; research guidelines; statistical mistakes.

1. Introduction

We have spent many years both undertaking empirical studies in software engineering

ourselves, and reviewing reports of empirical studies submitted to journals or presented

as postgraduate theses or dissertations. In our view, the standard of empirical software

engineering research is poor. This includes case studies, surveys and formal experiments,

whether observed in the field or in a laboratory or classroom. This statement is not a

criticism of software researchers in particular; many applied disciplines have problems

performing empirical studies. For example, Yancey [50] found many articles in the

American Journal of Surgery (1987 and 1988) with “methodologic errors so serious as to

render invalid the conclusions of the authors.” McGuigan [31] reviewed 164 papers that

included numerical results that were published in the British Journal of Psychiatry in

1993 and found that 40% of them had statistical errors. When Welch and Gabbe [48]

reviewed clinical articles in six issues of the American Journal of Obstetrics, they found

more than half the studies impossible to assess because the statistical techniques used

were not reported in sufficient detail. Furthermore, nearly one third of the articles

contained inappropriate uses of statistics. If researchers have difficulty in a discipline

such as medicine, which has a rich history of empirical research, it is hardly surprising

that software engineering researchers have problems.

In a previous investigation of the use of meta-analysis in software engineering [34], three

of us identified the need to assess the quality of the individual studies included in a meta-

analysis. In this paper, we extend those ideas to discuss several guidelines that can be

used both to improve the quality of on-going and proposed empirical studies and to

2

encourage critical assessment of existing studies. We believe that adoption of such

guidelines will not only improve the quality of individual studies but will also increase

the likelihood that we can use meta-analysis to combine the results of related studies. The

guidelines presented in this paper are a first attempt to formulate a set of guidelines.

There needs to be a wider debate before the software engineering research community

can develop and agree on definitive guidelines.

Before we describe our guidelines, it may be helpful to you to understand who we are and

how we developed these guidelines. Kitchenham, Pickard, Pfleeger and El-Emam are

software engineering researchers with backgrounds in statistics as well as computer

science. We regularly review papers and dissertations, and we often participate in

empirical research. Rosenberg is a statistician who applies statistical methods to software

engineering problems. Jones is a medical statistician with experience in developing

standards for improving medical research studies. Hoaglin is a statistician who has long

been interested in software and computing. He reviewed eight papers published in

Transactions on Software Engineering in the last few years. These papers were not

chosen at random. Rather, they were selected (by those of us whose primary focus is

software engineering) because their authors are well-known for their empirical software

engineering work, and because their techniques are typical of papers submitted to this

journal. Hoaglin’s independent comments on these papers confirmed our suspicions that

the current state of empirical studies as published in Transactions on Software

Engineering is similar to that found in medical studies. He found examples of poor

experimental design, inappropriate use of statistical techniques and conclusions that did

not follow from the reported results. We omit the titles of these papers. We want the

focus of our guidelines to be overall improvement of our discipline, not finger-pointing at

previous work. We do, however, cite papers that include specific statistical mistakes

when they help illustrate the reason that a particular guideline should be followed.

The main sources for this paper, apart from our own experience, are:

• The Yancey paper already mentioned. Yancey identifies ten rules for reading clinical

research results. Many of the rules can also serve as guidelines for authors.

• A paper by Sacks et al. [43] that considers quality criteria for meta-analyses of

randomized controlled trials. Sacks et al. point out that the quality of papers included

in a meta-analysis is important. In particular, they suggest considering the quality of

features such as the randomization process, the statistical analysis, and the handling

of withdrawals.

• A paper on guidelines for contributors to journals by Altman [1].

• The guidelines for statistical review of general papers and clinical trials prepared by

the British Medical Journal. (These guidelines are listed in Altman et al. [3], chapter

10 of Gardner and Altman [14], and on the journal’s web page:

http://www.bmj.com/advice)

• A book by Lang and Secic [28] with guidelines for reporting medical statistics.

• The CONSORT statement on reporting the results of randomized trials in medicine

[4]. This statement has been adopted by seventy medical journals.

3

• A paper defining guidelines for reporting results of statistical analysis in the Japanese

Journal of Clinical Oncology [12]. This paper also discusses common statistical

errors.

• A paper defining guidelines for the American Psychological Society [49].

• Three papers discussing the types of statistical errors found in medical papers

[31],[2], [38].

 We have concentrated on medical guidelines because medical statisticians have been

particularly active in pointing out the poor standards of statistical analysis in their

journals. In addition, we also reviewed the guidelines of the American Psychological

Association. We have adapted advice from the above sources to the problems of

empirical studies of software engineering phenomena. Some problems with statistics

arise because there are methodological difficulties applying standard statistical

procedures to software experiments. Nonetheless, the majority of problems result from

lack of statistical expertise in the empirical research community. Altman suggests the

same is true in medicine [2]. He says “The main reason for the plethora of statistical

errors is that the majority of statistical analyses are performed by people with an

inadequate understanding of statistical methods. They are then peer reviewed by people

who are generally no more knowledgeable.” Our guidelines consider both types of

problem, but some methodological problems are, as yet, unsolved. In these cases we

point out the problems, but we have no ready solutions.

 In principle, empirical guidelines can represent the concerns of many different parties

• The reader of a published paper.

• The reviewer of a paper prior to its publication.

• The authors of a paper.

• Researchers planning an empirical study.

• A meta-analyst wanting to combine information from different studies of the same

phenomenon.

• A journal editorial board.

 In addition, empirical guidelines are often specialised to consider particular types of

study e.g. randomised trials, surveys, exploratory studies. Clearly, the particular

requirements for a set of guidelines influence their content and format. In the long term,

if the software community accepts the need for experimental guidelines, we would expect

to find specialised guidelines for different purposes. In this paper, however, we are

concerned with developing guidelines to assist researchers to avoid major pitfalls in their

research activities and to report their research correctly. Some guidelines pertain to

particular types of studies but most are fairly general. We believe that our guidelines will

cover most of the issues of relevance to the researchers. We cannot claim that the

guidelines are necessarily compatible with all the requirements of other interested parties.

 We consider guidelines for what do to and what not to do under six basic topic areas:

• Experimental context

• Experimental design

4

• Conduct of the experiment and Data collection

• Analysis

• Presentation of results

• Interpretation of results.

The experimental guidelines and advice we reviewed were at varying levels of

abstraction. Some appeared to be meta-guidelines identifying the goal of a set of

guidelines. For example the BMJ General Guidelines say “Select a study design that is

appropriate to achieve the study objective” which can be considered a meta-goal for all

the design level guidelines. Alternatively, some guidelines are very detailed. For

example, Lang and Secic [28] say “When reporting percentages, always give the

numerators and denominators of the calculations” which is more like a checklist item for

a more general guideline “Provide appropriate descriptive statistics”. We have tried to

ensure that our guidelines are at a level below meta-guidelines, which are incorporated

into the introduction to each set of guidelines, and above the very detailed level

guidelines, which are incorporated as checklists associated with the relevant guideline.

2. Experimental context

2.1 Introduction

Most medical guidelines have little to say about experimental context. However, we

regard experimental context as extremely important for software engineering research.

Experimental context has three elements:

1. Background information about the industrial circumstances in which an empirical

study takes place or in which a new software engineering technique is developed.

2. Discussion of the research hypotheses and how they were derived.

3. Information about related research.

The main goals of context guidelines are:

1. To ensure that the objectives of the research are properly defined

2. To ensure that the description of the research provides enough detail for other

researchers and for practitioners.

2.2. Context Guidelines

C1: Be sure to specify as much of the industrial context as possible. In particular, clearly

define the entities, attributes and measures that are capturing the contextual information.

Industrial context information is important in two types of empirical software engineering

studies: observational studies (i.e. in situ studies of industrial practice) and formal

experiments evaluating techniques developed in industry (e.g. inspections, or design

patterns). We discuss these situations below.

Observational studies

There is an immense variety to be found in development procedures, organizational

culture, and products. This breadth implies that empirical studies based on observing or

measuring some aspect of software development in a particular company must report a

great deal of contextual information if any results and their implications are to be

5

properly understood. Researchers need to identify the particular factors that might affect

the generality and utility of the conclusions. For example they may need to identify

factors such as:

1. The industry in which products are used (e.g. banking, consumer goods,

telecommunications, travel)

2. The nature of the software development organization (e.g. in-house information

systems department, independent software supplier)

3. The skills and experience of software staff (e.g. with a language, a method, a tool, an

application domain)

4. The type of software products used (e.g. a design tool, a compiler)

5. The software processes being used (e.g. a company-standard process, the quality

assurance procedures, the configuration management process)

Such information is essential if the same or other researchers want to replicate a study or

include it in a meta-analysis. Further, if practitioners want to use experimental results,

they need to be sure that the results are applicable in their specific circumstances

Unlike other disciplines, software engineering has no well-defined standards for

determining what contextual information should be included in the study design,

collected during the study, and reported with the results. Standard contextual information

allows us to compare and contrast similar studies, and to build a fabric of understanding

from individual threads of evidence about a tool, technique or practice. Research

guidelines are incomplete, because identification of standards for reporting research

context requires further research in two areas:

1. Identification of general confounding factors for specific types of empirical studies.

For example, El-Emam et al. [10] have demonstrated that size is a confounding factor

when using object-oriented coupling measures to predict fault-proneness, but more

research is needed to identify other confounding factors for other standard types of

experiments and analyses.

2. Specification of a taxonomy or an ontology of context. Kitchenham et al. [23] have

suggested an ontology of software maintenance aimed at defining factors that need to

be reported in empirical studies. This work identifies a very large number of factors

but does not offer any advice as to which factors are most important, nor what

minimum reporting requirements should be.

It is important not only to identify appropriate contextual variables but also to measure

them consistently. Again software engineering studies suffer from specific problems

because software measurements are not standardised. Fenton and Pfleeger [11] provide

many examples of product, process and resource characteristics that are measured

inconsistently across different development and maintenance organizations. For

example, there are multiple standards for counting function-points, and confusion exists

about what is meant by counting a line of code. Similarly, several measures purport to

measure “complexity,” but it is not clear what aspect of complexity is being measured;

neither is it clear whether that aspect is being measured appropriately or consistently.

Kitchenham et al. [24] suggest several ways to help researchers and practitioners focus on

what they mean by entities and attributes, and how to define and measure them more

6

consistently. Still, much work remains in making sure we mean the same things when we

discuss and measure variables in empirical studies.

Formal experiments

For formal experiments evaluating techniques developed in industry (e.g. inspections, or

design patterns), we need to be sure that the versions of the techniques that we evaluate

and the outcome measures we use for testing are not oversimplified. Unlike techniques

developed in academia, industrial techniques have usually been developed in a rich

complex setting. We need to understand how the technique works in an industrial setting

before we develop an abstract version for formal experimentation.

Research on inspections illustrates some of the problems of over-simplification. Many

inspection experiments have concentrated on assessing easily quantifiable benefits and

ignored other types of benefit. In the context of experiments aimed at optimization, this is

a particular problem, since optimization in one dimension can sub-optimize overall

performance. For example, some studies have suggested that inspection meetings are not

necessary to maximize defect detection, the hypothesized synergy of inspection meetings

does not exist [20], [27], [47]. This lack of effect may be true, but it does not imply that

inspection meetings can be abandoned. We can omit the inspection meetings only when

all other benefits are shown to be illusionary or unaffected by the meeting process.

Observational studies give a better overview of the full range of benefits accruing from

inspections. For example, a study by Doolan [9] identified a number of benefits of

inspections other than simple fault detection:

1. Inspections promote teamwork and are a good means of developing team spirit in a

large group.

2. Inspections are an excellent means for transferring technology, especially if key

people leave the project.

3. Inspections provide on-the-job training on standards, technical material,

organizational culture, and the inspection process itself.

4. Inspectors can identify root causes of defects.

Siy and Votta [44] conclude that inspections improve the maintainability of code by

identifying “soft issues” such as making code conform to standards, minimizing

redundancies, improving safety and portability, and raising the quality of the

documentation. Each of these benefits makes the code easier to understand and change.

However, absence of these characteristics would not necessarily be classified as a defect,

because each one does not always lead to a visible, particular failure. Thus, formal

experiments based only on defect counts provide an incomplete picture of the true costs

and benefits.

C2: If a specific hypothesis is being tested, state it clearly prior to performing the study,

and discuss the theory from which it is derived, so that its implications are apparent.

7

Confirmatory experiments are the foundation of experimental science. They are designed

to test formal hypotheses as rigorously as possible. In particular, hypotheses are

formulated during experimental design prior to the collection or analysis of any data.

Software engineering researchers are becoming more familiar with the concept of stating

their scientific hypotheses. However, all too often the so-called hypothesis is simply a

statement of the tests to be performed. For example, if researchers want to know whether

there is a relationship between the cyclomatic number and the number of faults found in a

module, they may state the null hypothesis as “there is no correlation between cyclomatic

number and faults found.” We call this statement a shallow hypothesis, because it does

not reflect an underlying, explanatory theory. That is, whatever the result of the

experiment, we will not be increasing our software engineering knowledge in any

significant way. Furthermore, this approach is ultimately sterile, since it leads to

experimental results that are not of great interest.

Unfortunately, the inspection and reading literature offers many examples of shallow

hypotheses and unexciting research. Often, the hypothesis under test is artificial, in the

sense that it is aimed at optimization within a specific context, rather than testing an

aspect of a theory. That is, there is no well-defined theory about how software engineers

introduce defects into software artifacts, nor any theory about how they recognize those

defects. Even more important, there is no real theory about why inspections work, even

though there is evidence that they do. Useful research may flow solely from empirical

observations. For example the development of the smallpox vaccination by Edward

Jenner was based solely on the observation that women who had had cowpox did not

catch smallpox [15]. However, Jenner succeeded because there was an underlying cause-

effect relationship, even though current medical research had not yet discovered it.

Unfortunately, empirical studies of software engineering phenomena are often

contradictory. Without any underlying theories, we cannot understand the reason why

empirical studies are inconsistent. When we do have consistent results, as in the case of

inspections, we cannot be sure how to improve or optimize the result if we do not

understand why the phenomenon occurs.

Other scientific disciplines search for a deep hypothesis that arises from an underlying

theory, so that testing the hypothesis tests the validity of the theory. For example, rather

than merely documenting a relationship between cyclomatic number and faults found, we

can use theories of cognition and problem-solving to help us understand the effects of

complexity on software. Vinter et al. [46] provide a good example of deriving hypothesis

from theory in their work, concerned with assessing the effectiveness of formal methods.

Vinter et al. investigated the logical errors made by experienced software engineers (who

knew their performance was being tested) and compared their results with cognitive

psychology studies of reasoning errors found in the general population. They found many

similarities in the errors made by software engineers and the general population. The

importance of their research is that it considered the claims made for formalisms in terms

of the psychological assumptions underpinning those claims. Without the link from

theory to hypothesis, empirical results cannot contribute to a wider body of knowledge.

8

C3: If the research is exploratory, state clearly and, prior to data analysis, what

questions the investigation is intended to address, and how it will address them.

There is always a tension between gaining the maximum value from an experiment by

performing many subsidiary analyses to look for areas for future research, and having the

most convincing experimental results by concentrating on a single purpose confirmatory

study. Many researchers will perform a complex study to investigate multiple hypotheses,

but they emphasize only the results that bear on the primary hypothesis. The other

analyses act as pre-studies that allow them to formulate further hypotheses to be tested in

subsequent experiments. Such pre-studies can also ensure that the researchers have

sufficient information to plan future experiments better, by predicting the number of

experimental subjects needed and the expected power of the test.

Thus, exploratory studies are an important mechanism for generating hypotheses and

guiding further research activities. However, they often suffer from methodological

problems:

1. Too many tests. Researchers perform so many tests that a large number of statistically

significant results may occur by chance.

2. Fishing for results. Researchers trawl all possible combinations and subsets of the

data, however unlikely, in order to find statistically significant results.

We present analysis guidelines later that help to avoid these problems, but the starting

point is to define the research questions in advance.

Defining research questions in advance addresses another major problem with

exploratory analysis, which is the temptation to undertake too many research activities in

a single study. For example, Ropponen and Lyytinen [40] surveyed project managers

about their experiences of various risk factors. They performed principal component

analysis on the results and interpreted the six largest principal components as identifying

components of project risk. In effect, they had generated hypotheses about the nature of

risk component from their analysis. They did not report that it was now necessary to

perform a second independent survey to test their hypotheses. In fact, they used the

principal components in further exploratory correlation studies to identify strategies for

managing those components. Furthermore, they attempted to validate the survey

instrument using the same data set. They derived Cronbach alpha statistics, which

measure the agreement among respondents to questions that address the same topic [7],

using the risk components identified by the principal component analysis. They found

high values and concluded that they had validated their survey instrument. However, one

would expect the Cronbach alpha values to be high because they measure structure

known to be present in the data.

C4: Describe research that is similar to, or has a bearing on, the current research and

how current work relates to it.

The relationship between the current research activity and other research should be

defined, so that researchers can combine to build an integrated body of knowledge about

software engineering phenomena.

9

3 Experimental Design

3.1 Introduction

The study design describes the products, resources and processes involved in the study,

including:

• the population being studied;

• the rationale and technique for sampling from that population;

• the process for allocating and administering the treatments (the term “intervention” is

often used as an alternative to treatment);

• the methods used to reduce bias and determine sample size.

The overall goal of experimental design is to ensure that the design is appropriate for the

objectives of the study. The following design guidelines are intended to indicate what you

need to consider when selecting an experimental design.

3.2 Design Guidelines

D1: Identify the population from which the subjects and objects are drawn.

If you cannot define the population from which your subject/objects are drawn, it is not

possible to draw any inferences from the results of your experiment. This seems to be a

particular problem for software engineering surveys. For example, Lethbridge [29]

reports a survey where participants were recruited “by directly approaching companies

and by advertising on the internet”. He states that “The sample appears to be a balanced

coverage of a wide spectrum of software professionals, with a bias towards North

America - and possibly towards those who were interested enough to take the time to

participate”. However, the absence of a scientific sampling method means that the results

cannot be generalized to any defined population.

Lethbridge’s survey can be contrasted with a much more rigorous definition of the

population and sampling method given by Ropponen and Lyytinen [40]. They stated “We

collected a representative data set using a survey instrument by mailing the developed

questionnaire to a selected sample of the members of the Finnish Information Processing

Association (1991) whose job title was project manager or equivalent. In order to avoid

bias, we sent the questionnaire to at most two persons in one company.”

D2: Define the process by which the subjects and objects were selected.

The subjects and objects must be representative of the population or you cannot draw any

conclusions from the results of your experiment. The most convincing way of obtaining

subjects is by random sampling. If a random sample has been obtained the method of

selection should be specified. If the method of selection was not random, it should be

explained and you must justify that the sampling method still permits the results of the

experiment to generalize to the population of interest.

It is often necessary to define inclusion criteria and exclusion criteria. These are used to

identify subjects who will or will not be candidates for participation in the experiment.

For example, in software experiments, researchers often use student subjects. In such

10

circumstances, they might choose to exclude any mature students with previous

computing experience in order to make sure the participants in the study all have

comparable experience.

D3: Define the process by which subjects and objects are assigned to treatments.

Subject/objects should be allocated to treatments in an unbiased manner or the

experiment will be compromised. It is customary to allocate subjects/objects to

treatments by randomization. However, researchers often have small samples in software

experiments, and simple randomization does not always lead to unbiased allocation nor to

equal sample sizes. For example, you might find, by chance, that the two most able

subjects are assigned to one treatment and the two least able to another treatment. In such

circumstances, a more complex randomization process may be necessary (see for

example [35], chapter 5), a non-randomized study may be appropriate [16], or some post-

trial adjustment may be necessary to deal with biased groups.

If you decide to use more complex designs or non-randomized designs, you need to be

aware that complex or non-standard designs may be more difficult to analyze and

interpret (see D4).

Wilkinson et al. [49] point out that random assignment is sometimes not feasible. In such

cases, you need to be particularly careful to identify and control or measure confounding

factors and other sources of bias. You must also prepare plans to minimize drop-outs and

noncompliance with the study protocol, and to cope with missing data.

If you intend to perform some post-trial adjustment, you should:

1. Specify how you intend to detect the presence of bias. Such specification usually

involves confirming whether the subjects in each of the treatment groups are similar

with respect to various characteristics of importance. For example, report whether

subjects have similar educational background, or the treatment groups have a similar

ratio of male and female subjects.

2. Specify how any bias will be handled during the analysis. For example, to avoid

possible bias due to missing values, you may decide to use imputation methods (i.e.

methods of replacing missing values with estimated values, see for example [30]).

D4: Restrict yourself to simple study designs or, at least, to designs that are fully

analyzed in the literature. If you are not replicating the design and analysis of a previous

study, you should consult a statistician to see whether yours is the most effective design

for what you want to accomplish.

If you attempt to address the problem of small sample sizes by using more complex

designs, you must be sure that you understand all the implications of the selected design.

Before developing a new type of experimental design, you should consult an expert.

Researchers can easily make mistakes if they attempt to create new designs on their own.

In particular:

1. They can produce nested designs where the experimental unit is a group of subjects

rather than the individual subject and not realize that this radically changes the nature

of the experiment and how it should be analyzed. For example, suppose a researcher

11

in a university wanted to investigate two different methods of testing. Suppose (s)he

has four separate tutorial groups each of 10 students. If (s)he assigned each student at

random to one of the testing methods, (s)he would have 38 degrees of freedom to test

differences between the testing methods. If (s)he assigned each tutorial group as a

whole to one of the testing methods, (s)he would have only two degrees of freedom to

test any differences between the methods. (In general, the more degrees of freedom,

the better the experiment.)

2. They can devise a very complex design that they do not know how to analyze

properly. For example, researchers often use cross-over designs to reduce the problem

of small sample sizes. In cross-over designs, one experimental unit (team or person)

is subjected to several different treatments. However, the cross-over design may have

learning or maturation effects (referred to as carryover effects), that is participation

with the first treatment may influence the outcome of the second treatment. For

example, a second attempt at debugging or inspection might be easier than the first,

regardless of the technique being used. To avoid learning bias, the order in which

subjects perform tasks must be randomized or balanced by blocking. Cross-over

designs with blocking are more difficult to analyze correctly than researchers may

expect (see [33], chapter 32). For instance, when Porter and Johnson [36] reported on

two cross-over experiments, the analysis of the first experiment used the Wilcoxon

signed rank test. However, this analysis technique cannot be used to analyze a cross-

over design of the complexity used in the experiment.

D5: Define the experimental unit.

In order to reduce the chance of mistaking the size of experimental unit, identify the

experimental unit explicitly when defining your randomization procedure.

Surveys often make mistakes with the experimental unit when questionnaires are sent to

multiple respondents in an organization but the questions concern the organization as a

whole. In this case the, the unit of observation is the individual but the experimental unit

is the organization. If this problem is not recognized, the total sample size will be

incorrectly inflated and the chance of a significant result unfairly increased.

D6: For formal experiments, perform a pre-experiment or pre-calculation to identify or

estimate the minimum required sample size.

The sample size determines the probability of finding a difference (by rejecting the null

hypothesis) when one exists. For a well-conducted confirmatory experiment, researchers

are expected to have information about the expected size of the difference between

treatment effects, and the variance of the experimental units. From such information, you

can calculate the number of subjects (or more correctly, experimental units) required to

have a given probability of failing to reject the null hypothesis when it is false. This

probability is called the power of the test, and it is customary to design for a power of at

least 0.8. (For more information on sample sizes and appropriate tests, see [5].)

D7: Use appropriate levels of blinding

Medical researchers use double-blind experiments to prevent the participants’

expectations (both researchers and subjects) from influencing the study’s results.

12

However it is impossible for participants in a software engineering study not to be aware

of the technology they are using. So it is clear that any expectations about that

technology, positive or negative, will influence the study’s outcome. For example, the

extensive media coverage of the claimed superiority of object-oriented methods suggests

that a comparison of object-oriented and structured methods is likely to be biased.

However, several types of blinding are possible in software engineering experiments:

1. Blind allocation of materials. This simply means that the procedure for assigning

subjects to treatment groups is separate from the process by which subjects are given

any of the materials they will use during the experiment. In software engineering

experiments, allocation of subjects and materials can be computerized, thus

minimizing the interaction between subjects and researchers during the experiment.

2. Blind marking. Some experimental outcomes are answers to questions that need to be

assessed for correctness. If the format of the experimental outcomes is not influenced

by the treatment, it is sensible for the scripts to be coded prior to being marked, so the

markers cannot tell to which subject or to which treatment group a particular outcome

script belongs. For example, if the experiment is concerned with comparing testing

methods, and subjects are asked to identify defects in a program, the result of the

experiment would be a list of identified defects. The format of the answer would not

indicate which testing method had been used, so blind marking would be appropriate.

3. Blind analysis (see A2). For blind analysis, the treatments are coded, and the analyst

does not know which treatment group is which. Some statisticians believe blind

analysis is an effective counter to the problem of fishing for results.

D8: If you cannot avoid evaluating your own work, then make explicit any vested

interests (including your sources of support), and report what you have done to minimize

bias.

Since it is impossible to use double-blinding in software engineering experiments, it is

extremely difficult to evaluate any research in which you have a vested interest. For

example, if the researchers have themselves created or implemented one of the

technologies under evaluation, or if they are champions of a competing technology, there

is a strong possibility that their enthusiasm for their own work will bias the trial. The only

direct (but partial) solution to this problem is to employ independent, impartial assessors,

taking care to monitor their biases, too. Rosenthal [41] addresses these problems at

length and describes several approaches to mitigate experimenter effects.

D9: Avoid the use of controls unless you are sure the control situation can be

unambiguously defined

For software experiments, controls are difficult to define because software engineering

tasks depend on human skills. Usually, there is no common default technology (i.e.

method or procedure or tool) for performing a task against which a new method,

procedure or tool can be compared. That is, we cannot ask one group to use a new design

technique and the other to use no design technique. At best, our empirical studies within

a particular company can use its standard or current practice as the basis for evaluating a

new technology. However, this situation allows us to compare the new technology only

with a baseline (i.e. the current industrial practice), not with a defined control. Thus,

13

studies of a new technology in different companies or organizations are difficult to

compare, because it is highly unlikely that the baselines are the same. For laboratory

studies, we can compare two defined technologies, one against the other; but, it is usually

not valid to compare using a technology with not using it.

D10: Fully define all treatments (interventions).

Treatments must be properly defined if experiments are to be replicated and/or their

results are to be taken up by industry.

In addition, if we define treatments properly, we can study the same treatment or

technique in different organizations. For example, several organizations could

collaborate to agree on a common protocol. Such an approach might make it possible to

get a better handle on the organization effects as well as the comparison of variables of

interest.

D11: Justify the choice of outcome measures in terms of their relevance to the objectives

of the empirical study.

You must justify that outcome measures are relevant to the objectives of the study to

confirm that the design is appropriate to meet the study objectives. The choice of

outcome measures is particularly important when they are surrogate measures. For

example, researchers wanting to investigate the amount of maintenance effort directed to

individual components sometimes count the number of lines of code changed instead of

measuring the time software maintainers spend on their maintenance tasks. However, the

number of line of code changed is a poor surrogate for maintenance effort, and its use in

place of task effort should be justified. Inability to measure task effort is not a

justification; it is an excuse.

4 Conducting the Experiment and Data Collection

4.1 Introduction

The process of conducting an experiment involves collecting the experimental outcome

measures. This is a particular problem for software experiments because our measures are

not standardized. Thus, one goal of the data collection guidelines is to ensure that we

have defined our data collection process well enough for our experiment to be replicated.

In addition, we need to monitor and record any deviations from our experimental plans.

This includes monitoring all drop-outs in experiments and non-response in surveys.

4.2 Data Collection Guidelines

DC1: Define all software measures fully, including the entity, attribute, unit and counting

rules.

For empirical software studies, data collection is problematic, in part because, as noted

above, software measures are not well-defined. Kitchenham et al. [22] discuss many of

the problems with data collection; they suggest several standards for defining and using

software measures. From the perspectives of design and data collection, the non-standard

nature of software measures makes it difficult for researchers to replicate studies or to

14

perform meta-analysis of studies of the same phenomenon. That is, without clear

standards, we can never be sure that we are measuring the same things or measuring them

in the same way. This lack of standards does not mean that everyone should always

define and use the same measures. Rather, it means that we need to define measures

carefully enough so that we can understand the differences in measurement, and can thus

determine whether we can translate from one measurement scheme to another. For

example, it is fine for some researchers or practitioners to measure effort in hours, while

others measure it in days; we know how to convert from the one to the other.

DC2: For subjective measures, present a measure of inter-rater agreement, such as the

kappa statistic or the intra-class correlation coefficient for continuous measures.

If measures are subjective, the skill and bias of the person determining the measure can

affect the results. Empirical studies should discuss the methods used to ensure that

measurement is correct and consistent. For data collected by questionnaires, it is

necessary to report measures of validity and reliability and other qualities affecting

conclusions [49]. For example, researchers have performed studies to investigate the

inter-rater agreement among SPICE model assessors [13].

DC3: Describe any quality control method used to ensure completeness and accuracy of

data collection.

In order to provide evidence that data collection has been undertaken in an appropriate

manner, it is useful to define and report quality control procedures to support the data

collection process.

DC4: For surveys, monitor and report the response rate, and discuss the

representativeness of the responses and the impact of non-response.

For surveys, it is important to determine the response rate, but it is even more critical to

ensure that the non-responders have not biased the results. It is sometimes possible to

sample the non-responders in order to determine reasons for non-response. For example,

Ropponen and Lyytinen [40] phoned a random sample of non-respondents to investigate

the reasons why they had not responded. Otherwise, demographic information can be

used to justify the representativeness of the responses.

DC5: For observational studies and experiments, record data about subjects who drop

out from the studies.

Often, subjects who begin a study drop out before the study is complete. For example, a

subject may be reassigned to another project, may leave the company, or may refuse to

continue to participate. Such situations must be reported carefully in any paper describing

the study. It is important to be sure that the drop-outs have not biased your results. For

example, if all those who dropped out were the most familiar with the baseline

technology, then you cannot truly understand the effects of any new technology being

evaluated. One means of determining whether or not drop-outs have caused systematic

bias is to compare drop outs with other subjects on the basis of characteristics such as

experience, age and any preliminary measures available.

15

Another common example, found when undertaking observational studies in industry, is

that some projects are abandoned before completion. It is important to consider whether

incomplete projects will bias any subsequent analysis. This is a particular problem for

cost estimation studies, where data about completed projects is used to construct cost

models. If a cost model is conditional upon project completion, it has some problems

when used to predict costs for a new project. An estimate from a statistically-based cost

model is usually assumed to have an implied probability of being achieved (often 0.5 if

the model predicts the most likely value). However, if the model has ignored the chance

of a project being abandoned before completion, the implied probability will be an

overestimate.

DC6: For observational studies and experiments, record data about other performance

measures that may be adversely affected by the treatment, even if they are not the main

focus of the study.

In medical pharmaceutical studies, it is important to record all adverse effects of drugs

under test. In software engineering many of our outcome measures (defect rates,

productivity, lead time) are related to each other. Thus, if our main interest is in whether

a development method decreases lead time, it may still be important to investigate

whether it has adverse effects on productivity or defect rates.

5 Analysis

5.1 Introduction

There are two main approaches to analyzing experimental results:

1. Classical analysis (often referred to as the “frequentist” approach). This approach is

adopted by most statistical packages

2. Bayesian analysis. This approach provides a systematic means of making use of

“prior information”. Prior information may be obtained from previous studies of the

phenomenon of interest or from expert opinion.

Our guidelines are independent of the choice of statistical approach. However, Bayesian

methods are not usually used in software engineering studies, so if you decide to adopt a

Bayesian approach, you should consult a statistician.

Another fairly general issue is the choice between parametric and non-parametric

analysis. If the distribution of variables can be identified, appropriate parametric tests will

be more powerful than non-parametric tests. However, if the distribution of variables is

unknown, non-parametric methods are usually more appropriate; most are very efficient

relative to their parametric counterparts, and they are effective with small sample sizes.

Analysis guidelines aim to ensure that the experimental results are analysed correctly.

Basically, the data should be analysed in accordance with the study design. Thus, the

advantage of doing a careful, well-defined study design is that the subsequent analysis is

usually straightforward and clear. That is, the design usually suggests the type and extent

of analysis needed. However, in many software engineering examples the selected design

is complex, and the analysis method is inappropriate to cope with it. For example, Porter

16

et al. [37] used a cross-over design for subjects but used within subject variance to test

the difference between treatments. This is invalid because the resulting F test was based

on a variance that was smaller and had more degrees of freedom than it should have had.

Thus, the researchers were likely to find “statistically significant” results that did not

really exist.

5.2 Analysis Guidelines

A1: Specify any procedures used to control for multiple testing.

Most software data sets are relatively small and new data are difficult to obtain.

Therefore we have a tendency to overuse our data sets by performing a large number of

statistical tests. Multiplicity can be a problem regardless of the size of the data set.

Courtney and Gustafson [6] illustrate how performing many statistical tests or making

many comparisons on the same dataset can produce a proportionally large number of

statistically significant results by chance. (For more information, see [32].) Although

their paper comments on correlation studies, the problem is the same for any type of

statistical test.

One method for dealing with multiple tests on the same dataset is to adjust the

significance level for individual tests to achieve a required overall level of significance as

described by Rosenberger [39] or Keppel [21]. For example, if you perform ten

independent tests and require an overall significance level of 0.05, the Bonferroni

adjustment requires a significance level of 0.005 for each individual test. Rosenberger

describes other, less severe approaches, but each still requires much higher levels of

significance for individual tests than the customary 0.05 in order to achieve an overall

significance level of 0.05.

The situation regarding multiple tests is made more complicated by the degree to which

the comparisons are planned. For example, in many experiments, the researchers have a

number of planned comparisons (not too many!), which most statisticians would be

willing to test at an individual .05 level (that is, with no Bonferroni adjustment). But

software engineering data are often “messy,” in the sense that the relationships among

variables are not always clear or strong. If the comparisons are unplanned – the result of

a “fishing expedition” to find something to report – then some statisticians insist on using

a technique like Bonferroni. Unfortunately, there is no unified view in the statistics

community on when a Bonferroni adjustment is necessary.

An alternative to adjusting significance levels is to report the number of results that are

likely to have occurred by chance given the number of tests performed. What should be

avoided is reporting only positive results with no indication of the number of tests

performed. For example, Ropponen and Lyytinen [40] reported 38 significant

correlations but did not report how many correlations they tested.

A2: Consider using blind analysis.

The problems related to “fishing for results” can be reduced by blind analysis. In a blind

analysis, the analysts are given the treatment information in coded format. Since the

17

analysts do not know which treatment is which, they are less likely to over-analyze the

dataset in search of a desired result.

A3: Perform sensitivity analyses.

Analysts often plunge directly into using a statistical technique without first considering

the nature of the data themselves. It is important to look first at the organization of the

data, to determine whether any results might be due to outliers or data points that have an

unreasonable influence. For example, if all data points save one are clustered around a

low value and the one outlier is a very high value, then measures of central tendency may

be misleading. It is important to perform a sensitivity analysis to understand how

individual data points or clusters of data relate to the behavior of the whole collection.

Lang and Secic [28] identify the following types of sensitivity analysis to consider:

1. Identify and treat outliers.

2. Identify and treat influential observations (which are not necessarily the same as

outliers).

3. For regression, assess the independent variables for collinearity.

A4: Ensure that the data do not violate the assumptions of the tests used on them.

It is usually necessary to justify the validity of certain assumptions in preparation for

analysis. If a particular statistical test relies heavily on a particular distribution, it may be

necessary to confirm that the data conform to the required distribution. For instance, the

commonly-used Student t test may be inappropriate if the data are heavily skewed, or if

the within-group variances are grossly unequal. In cases such as these, it may be

appropriate to transform the data (using logarithms, for example) to make them more

nearly normal, and then check whether the transformation has worked; most statistical

software packages can easily apply these transformations and tests.

A5: Apply appropriate quality control procedures to verify your results

No matter what analysis method is used, your first step should be to look at your data.

Wilkinson et al. [49] say “Data screening is not data snooping. It is not an opportunity to

discard data or change values to favor your hypothesis. However, if you assess

hypotheses without examining your data, you risk publishing nonsense.” Data screening

allows you to check that there are no obviously incorrect values or inappropriate data

points in your data set. For example, DePanfilis et al. [8] report analyzing a project data

set including function points as a measure of size and effort of completed projects.

Investigation of productivity suggested that one project was particularly productive.

However, a more detailed review of the project revealed that it had been abandoned

before implementation, and was, therefore, unsuitable for inclusion in any investigation

of productivity. In general, we recommend the use of graphical examination of data and

exploratory data analysis [18] before undertaking more detailed analysis.

In addition, most analysis is performed by statistical software. However, you should not

assume that statistical software always gives the correct results. If you cannot verify the

results using “guesstimates”, you should check them against another program [49].

18

6 Presentation of results

6.1 Introduction

Presentation of results is as important as the analysis itself. The reader of a study must be

able to understand the reason for the study, the study design, the analysis, the results, and

the significance of the results. Not only do readers want to learn what happened in a

study, but they also want to be able to reproduce the analysis or even replicate the study

in the same or a similar context. Thus, design procedures and data collection procedures

need to be reported at a level detail that allows the study to be replicated. Analysis

procedures need to be described in enough detail that a knowledgeable reader with access

to the original data would be able to verify the reported results and test the stated

hypotheses

We will not repeat all the preceding context, design, analysis and data collection

guidelines restating them as presentation guidelines, rather we restrict ourselves to issues

that are directly related to presentation and have not been covered previously.

We should also keep in mind that a particular study may be combined with others in a

meta-analysis. Consequently, authors should include information that would support

such analysis in the future.

6.2 Presentation Guidelines

P1: Describe or cite a reference for all statistical procedures used.

Following from the analysis guidelines it is important to document all statistical

procedures. Reference to a statistical package is not sufficient. However, there are some

exceptions to that rule. For example Fukuda and Ohashi [12] suggest that the following

statistics do not require explicit references: t test, simple chi-squared test, Wilcoxon or

Mann-Whitney U-test, correlation and linear regression.

P2: Report the statistical package used

Statistical packages often give slightly different results. So, it is important to specify

which statistical package has been used.

P3: Present quantitative results as well as significance levels. Quantitative results should

show the magnitude of effects and the confidence limits.

McGuigan [31] and Altman [2] both identified many common statistical errors in medical

papers, related to failing to report results at an appropriate level of detail. Combining

their lists of errors with the Lang and Secic [28] guidelines for reporting inferential

statistics, we have compiled the following checklist:

1. Report information about within person difference when using paired data.

2. Report the magnitude of an effect size.

3. Report confidence limits for inferential statistics including means, mean differences,

correlation coefficients and regression coefficients.

4. Report the alpha level used for statistical testing

5. Report whether the tests were two-tailed or one-tailed.

6. Report the value of the t statistics.

19

7. For regression, report the regression equation.

8. For regression, report the coefficient of determination.

9. For regression, if the model is to be used for prediction, report the validation

procedure and results.

10. To support the requirements of meta analysis, always report the standard error of the

mean change in outcome measures when measures change from the baseline to a later

time.

P4: Present the raw data whenever possible. Otherwise, confirm that they are available

for confidential review by the reviewers and independent auditors.

It is essential to present the raw data as well as the analysis and results. Yancey [50]

criticizes papers painting only a partial picture, pointing out that “the reader’s only

consult with nature is via the data reported in the article. Everything else is consult with

authority. That is not science.” Unfortunately, many empirical software-related studies

are based on real project data that cannot be published because of its commercial

sensitivity. Although it is unrealistic to reject any paper that does not publish its data, it is

important to remember that software engineering must be founded on science, not

anecdote. Thus, we recommend that, when the data cannot be published outright, the

authors make raw data available to reviewers on a confidential basis, or that raw data be

made available to independent auditors on the same confidential basis.

P5: Provide appropriate descriptive statistics

Lang and Secic [28], McGuigan [31] and Altman [2] identified a number of problems

with simple descriptive statistics. In particular, they were concerned that the measures of

central tendency and dispersion were often inappropriate. For example means and

standard deviations were reported for ordinal variables and heavily skewed interval/ratio

variables. They were also concerned about spurious precision. Combining their advice we

have compiled the following checklist defining which descriptive statistics should be

reported and how they should be reported:

1. Report the number of observations.

2. Report all numbers with the appropriate degree of precision e.g. means no more than

one decimal place more than the raw data.

3. Present numerator and denominator for percentages.

4. With small numbers, present values not percentages.

5. Present appropriate measures of central tendency and dispersion when summarizing

continuous data.

6. Do not use the standard error in place of the standard deviation as a measure of

dispersion.

7. If continuous data have been separated by “cutpoints” into ordinal categories, give the

rationale for choosing them.

8. If data have been transformed, convert the units of measurement back to the original

units for reporting.

P6: Make appropriate use of graphics

20

Graphical representations of results are often easier for readers to understand than

complicated tables. However, graphical presentations have to be undertaken carefully,

they can also be misleading. Common graphical errors are:

1. Representing one-dimensional data in two or more dimensions.

2. Using Pie charts (which are inherently less accurate than alternative displays).

3. Inappropriate choice of scale to emphasize things that support the conclusions or de-

emphasize things that do not support the conclusions.

4. Omitting outlying points from scatter plots.

5. Omitting jittering on scatter plots when many data points overlap.

7 Interpretation of results

7.1 Introduction

The main aim for the interpretation or conclusions section of a paper is that any

conclusions should follow directly from the results. Thus, researchers should not

introduce new material in the conclusions section.

It is important that researchers do not misrepresent their conclusions. For example, it is

easy to play down the significance of findings that conflict with previous research. It is

also important that researchers qualify their results appropriately.

7.2 Interpretation guidelines

I1: Define the population to which inferential statistics and predictive models apply.

This follows directly from design guideline D1. If the population is not well-defined, we

cannot interpret any inferential statistics used in the analysis, nor can we be sure how any

predictive models could be used in practice. Thus, the results of the experiment are

unlikely to be of practical value.

I2: Differentiate between statistical significance and practical importance.

The study design suggests the types of analysis appropriate for the situation, the problem

and the data. However, the researchers must interpret the results in the context of these

elements plus the findings of others doing related work. It is important to differentiate

statistical significance from practical importance. That is, research may show a statistical

significance in some result, but there may be no practical importance. Confidence

intervals can help us in making this determination, particularly when statistical

significance is small. That is, first see whether the result is real (statistically significant);

then see whether it matters (practical significance). For example, with a large enough

dataset, it is possible to confirm that a correlation as low as 0.1 is significantly different

from 0. However such a low correlation is unlikely to be of any practical importance.

In some cases, even if the results are not statistically significant, they may have some

practical importance. Confidence limits can support assertions regarding the importance

of non-significant results. Power analyses can also be used to suggest a reason for lack of

significance. However, you should not use the excuse of low power to increase the alpha

level post-hoc. Hypothesis-testing involves three interdependent variables, power,

significance level and sample size, which determine the test. Either significance level

21

and sample size are fixed and the power is to be determined, or significance level and

power are fixed, and the sample size is calculated.

I3: Define the type of study.

Several guidelines identify the need to specify the type of study [4], [12], [49]. This is for

two reasons:

1. To establish the reliance that readers should put on the conclusions of the study.

Wilkinson et al. say “Do not cloak a study in one guise to give it the assumed

reputation of another” [49].

2. To suggest the suitability of the study for meta-analysis.

Zelkowitz and Wallace [51] listed 12 experimental methods used in software engineering

studies identifying their relative strengths and weaknesses. The 12 methods were

classified into three categories: observational, historical and controlled. Fukuda and

Ohashi [12] present a more detailed taxonomy of experimental types as follows:

1. Observational studies which can be of three main types: Case series study, Cross-

sectional study or Longitudinal study. Longitudinal studies are of three types: a)

Case-control study b) Cohort study (prospective, retrospective, historical) c) Nested

case-control study.

2. Intervention study (trial) which can be of two main types: Controlled or Uncontrolled.

Controlled studies are three main types: a) Parallel (randomized, non-randomized) b)

Sequential (self-controlled, cross-over) c) Historical control.

It is important to distinguish between confirmatory studies, from which strong

conclusions can be drawn, and exploratory studies, from which only weak conclusions

can be drawn. For example, Yancey [50] states that “Only truly randomized tightly

controlled prospective studies provide even an opportunity for cause-and-effect

statements.” He suggests that authors of less rigorous studies need to point out that only

weak conclusions can be drawn from their results.

It is particularly dangerous to rely heavily on regression and correlation studies because

they are usually exploratory in nature and do not identify causal relationships. Without

causal relationships the value of regression models is reduced. For example, Hitz and

Montazari [17] point out that “While a prediction model can be based on the more

general statistical relationship, a model used to control the development process should

be based on causal relationships.”

I4: Specify any limitations of the study.

Researchers have a responsibility to discuss any limitations of their study. They usually

need to discuss at least internal and external validity. Internal validity relates to the extent

to which the design and analysis may have been compromised by the existence of

confounding variables and other unexpected sources of bias. External validity relates to

the extent to which the hypotheses capture the objectives of the research and the extent to

which any conclusions can be generalized.

22

It is encouraging that recent software research papers have included discussion of threats

to validity (see for example,[19], [26]). However, studies still report that some projects

were omitted from the analysis because “they did not collect all the required data”, but do

not consider the implication of those projects on their conclusions. If the authors were

looking for quality differences among projects, it would be reasonable to assume that

there are more quality problems with projects that were unable to collect data than those

that were. So they may have difficulty finding the evidence for which they were

searching.

Other general validity problems that affect formal experiments are the use of students as

subjects and the choice of software engineering materials. Some practitioners may feel

the use of student subjects in formal experiments reduces the practical value of

experiments. In our view this is not a major issue as long as you are interested in the

evaluating the use of a technique by novice or non-expert software engineers. Students

are the next generation of software professionals and so are relatively close to the

population of interest. This can be contrasted with the use of students in psychology

studies as representatives of the human population as a whole. The problem of the choice

of materials is more problematic. Formal experiments inevitably try out techniques on

restricted problems with known solutions, it is impossible to be sure that techniques

evaluated under such circumstances will scale up to industrial size systems or very novel

programming problems.

8 Conclusions and Discussion

We have presented several guidelines that we hope will improve the quality of

performing and evaluating empirical research in software engineering. The guidelines are

based on our own experience as researchers and reviewers, and on recommendations

from other disciplines whose advancement requires careful empirical study. We believe

that guidelines are important because:

• In our experience, supported by the examples in this paper, software researchers often

make statistical mistakes.

• At they same time, senior researchers are pressing for more empirical research to

underpin software engineering [51], [45].

We do not pretend to be immune to the practices we criticize. In fact, our search for

guidelines outside of software engineering was prompted not only by our discomfort with

studies reported in the papers we read but also by problems with our own research. For

example, we often fail to define explicitly the population to which our inferential and

statistics and predictive models apply. And many of us are guilty of failing to adjust

statistical significance levels when performing many statistical tests. (See, for example,

[42].)

We present these guidelines for use by all of us. Researchers can improve their research

planning, implementation and reporting. Reviewers and readers can use the guidelines to

judge the quality of the research. And the guidelines are essential for those planning to

assess studies that are to be combined in a meta-analysis. Some of our guidelines have

ethical as well as methodological implications. We have not emphasized this issue.

23

However, serious ethical issues arise in evaluating your own work, ignoring the dangers

both of dropping observations and of multiple testing, and misrepresenting findings, for

example failing to report data that are not in line with expectation. Rosenthal (1994)

presents a more detailed discussion of the relation between scientific quality and ethics in

research.

Our guidelines represent a starting point for discussion. We do not suggest that these

guidelines are complete, nor that they will solve all the problems associated with

empirical software engineering research. In particular, these guidelines alone will not

improve the relevance and usefulness of empirical software engineering research. They

must be combined with careful consideration of the implication of the outcomes of

research. That is we do not want to do research for the sake of research. We share this

problem with medicine and many other disciplines. Altman [2] says “Sadly, much

research may benefit researchers rather more than patients, especially when it is carried

out primarily as a ridiculous career necessity.”

In addition, we do not believe the guidelines to be sufficient by themselves. It is

important for editorial boards of software engineering journals and conferences to take a

lead in this issue. For example, we believe that editorial boards should:

1. Publish guidelines or checklists for reviewing papers containing study designs,

implementation descriptions, and statistical analysis.

2. Ensure that empirical studies are reviewed by experienced statisticians.

3. Commission periodic systematic reviews of the quality of statistics in papers

appearing in their journals.

Furthermore, we believe that journals and conferences should adopt a clear policy

concerning the need for presenting raw data; they should also identify the conditions

under which papers will be published without raw data.

Finally, if you are interested in learning more about experimental design and analysis you

should refer to the bibliography.

9. References

[1] D. Altman. “Guidelines for contributors,” in Statistics in Practice, S.M.Gore and D.

Altman, British Medical Association, 1991.

[2] D. Altman. “Statistical reviewing for medical journals,” Statistics in Medicine, 17,

1998 pp 2661-2674.

[3] D. Altman, S. Gore, M. Gardner, and S. Pocock. “Statistical guidelines for

contributors to medical journals,” British Medical Journal, 286, 1983, pp. 1489-

1493.

[4] Colin Begg, Mildred Cho, Susan Eastwood, Richard Horton, David Moher, Ingram

Olkin, Roy Pitkin, Drummond Rennie, Kenneth F. Schultz, David Simel and Donna

F. Stroup, “Improving the quality of reporting of randomized trials (the CONSORT

statement),” Journal of the American Medical Association, 276(8), August 28,

1996, pp. 637-639.

24

[5] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, Lawrence Erlbaum

Associates, Hillsdale, NJ, 1988.

[6] R.E. Courtney and D.A. Gustafson. “Shotgun correlations in software measures,”

Software Engineering Journal, 8(1), 1992, pp.5-13.

[7] L.J. Cronbach, “Coefficient Alpha and the Internal Structure of Tests,”

Pscychometrika, 16(2), 1951, pp297-334.

[8] S. DePanfilis, B. Kitchenham and N. Morfuni. “Experiences introducing a

measurement program,” Information and Software Technology. Vol 39 No 11,

1997, pp 745-754

[9] E. Doolan, “Experience with Fagan’s inspection method,” Software — Practice and

Experience, 22(2), February 1992, pp.173-182.

[10] K. El-Emam, Benlarbi, S, Goel, N, Rai, S, “The confounding effect of class size on

the validity of Object-Oriented metrics,” IEEE Transactions on Software

Engineering, 2000 accepted for publication

[11] N.E. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Practical

Approach, second edition, Brooks-Cole, 1997.

[12] H. Fukuda and Ohashi, Y, “A guideline for reporting results of statistical analysis

in Japanese Journal of Clinical Oncology,” Japanese Journal of Oncology, 27,

1997 pp121-127. [Also available in English at http://wwwinfo.ncc/go/jp/jjco/]

[13] P. Fusaro, K. El-Emam, and B. Smith, “Evaluating the interrater agreement of

process capability ratings,” Proceedings of the Fourth International Software

Metrics Symposium, IEEE Computer Society Press, 1997, pp. 2-11.

[14] M. J. Gardner and D. G. Altman, Statistics with Confidence, BMJ, London, 1989.

[15] L. Gordis. Epidemiology. W.B. Sunders Company, 1996.

[16] D. Heinsman and W. Shadish, “Assignment methods in experimentation: When do

nonrandomized experiments approximate answers from randomized experiments?”

Psychological Methods, 1(2), pp. 154-169, 1996.

[17] M. Hitz and B. Montazeri. Measuring Product Attributes of Object-Oriented

Systems. In Wilhelm Schafer, Pere Botella (Eds.), 5th European Software

Engineering Conference, Sitges, Spain, September 25-28, 1995, Proceedings.

Lecture Notes in Computer Science, Vol. 989, pp. 124-136, Springer, 1995, ISBN

3-540-60406-5.

[18] Hoaglin, D.C., Mosteller, F. and Tukey, J.W. Understanding robust and

exploratory data analysis, John Wiley, 1983

[19] M. Host and C. Wohlin. “A subjective effort estimation experiment,” Information

and Software Technology, 39, 1997, pp.755-762.

[20] P. Johnson and D. Tjahjono, “Does every inspection really need a meeting?”

Empirical Software Engineering, vol. 3, 1998, pp. 9-35.

[21] G. Keppel. Design and Analysis: A Researcher's Handbook, third edition, Prentice

Hall, 1991.

[22] B.A. Kitchenham, R.T. Hughes and S.G. Linkman. “Modeling software

measurement data,” IEEE Transactions on Software Engineering, Accepted for

publication. 2001.

[23] B.A. Kitchenham, Travassos, G.H., Von Mayrhauser, A., Niessink, F.,

Schniedewind, N.F., Singer, J., Takado, S., Vehvilainen, R., and Yang, H. Towards

25

an Ontology of Software Maintenance. Journal of Software Maintenance: Research

and Practice.11, 1999 pp365-389

[24] B.A. Kitchenham, S.L. Pfleeger and N. Fenton. “Towards a framework for software

measurement validation,” IEEE Transactions on Software Engineering, 21(12),

December 1995.

[25] B.A. Kitchenham and K. Kansala. “Inter-item correlations among function points,”

Proceedings of the First International Software Metrics Symposium, IEEE

Computer Society Press, 1993, pp.11-14.

[26] O. Laitenberger and J-M DeBaud. “Perspective-based reading of code documents at

Robert Bosch GmbH,” Information and Software Technology, 39, 1997, pp.781-

791.

[27] L. Land, C. Sauer and R. Jeffery, “Validating the defect detection performance

advantage of group designs for software reviews: Report of a laboratory experiment

using program code,” Proceedings of the Sixth European Software Engineering

Conference, published as Lecture Notes in Computer Science No. 1301, eds. Mehdi

Jazayeri, Helmut Schauer, 1997, pp. 294-309.

[28] T. Lang and M. Secic, How to Report Statistics in Medicine: Annotated Guidelines

for Authors, Editors and Reviewers, American College of Physicians, 1997.

[29] T.C. Lethbridge What knowledge is important to a software professional?

Computer, 33 (5), May 2000 pp44-50.

[30] Little, R., and Rubin, D. Statistical Analysis With Missing Data. John Wiley &

Sons, 1987.

[31] S.M. McGuigan. “The use of statistics in the British Journal of Psychiatry,” British

Journal of Psychiatry, 167(5), 1995, pp.683-688.

[32] Rupert G. Miller, Jr., Simultaneous Statistical Inference, second edition, Springer-

Verlag, New York, 1981.

[33] G.A. Milliken and D.A. Johnson. Analysis of Messy Data, Volume 1: Designed

Experiments. Chapman & Hall, London, 1992.

[34] L.M. Pickard, B.A. Kitchenham and P. Jones. “Combining empirical results in

software engineering,” Information and Software Technology, 40(14), 1998,

pp.811-821.

[35] S. J. Pocock, Clinical Trials: A Practical Approach, John Wiley and Sons,

Chichester, UK, 1984.

[36] A.A. Porter and P.M. Johnson. “Assessing software review meetings: results of a

comparative analysis of two experimental studies,” IEEE Transactions on Software

Engineering, 23(3), March 1997, pp.129-145.

[37] A.A. Porter, L.G. Votta and V.R. Basili. “Comparing detection methods for

software requirements inspections: a replicated experiment,” IEEE Transactions on

Software Engineering, 21(6), June 1995, pp.563-575.

[38] A.M. Porter. “Misuse of correlation and regression in three medical journals,”

Journal of the Royal Society of Medicine, 92(3), 1999, pp.123-128.

[39] W.F. Rosenberger. “Dealing with multiplicities in pharmacoepidemiologic studies,”

Pharmacoepidemiology and Drug Safety, 5, 1996, pp.95-100.

[40] J. Ropponen and K. Lyytinen, “Components of Software Development Risk: How

to address them? A project manager survey,” IEEE Transactions on Software

Engineering 26(2), 2000, pp98-111.

26

[41] R. Rosenthal, Experimenter Effects in Behavioral Research, John Wiley and Sons,

New York, 1976.

[42] R. Rosenthal. “Science and ethics in conducting, analyzing, and reporting

psychological research,” Psychological Science, 5, 1994, p127-134.

[43] H.S. Sacks, J. Berrier, D. Reitman, V.A. Ancona-Berk, and T.C. Chalmers. “Meta-

analyses of randomized controlled trials,” The New England Journal of Medicine,

316(8), February 1987, pp.312-455.

[44] H. Siy and L. Votta, “Does the modern code inspection have value?” Submitted for

publication, 1999.

[45] W. F. Tichy. “Should computer scientists experiment more?,” Computer 31(5) May

1998, pp 32-40.

[46] R. Vinter, M. Loomes and D. Kornbrot. “Applying software metrics to formal

specifications: a cognitive approach,” Proceedings of 5
th

 International Software

Metrics Symposium, IEEE Computer Society Press, Los Alamitos, California,

1998, pp.216-223.

[47] L. Votta, “Does every inspection need a meeting?” ACM Software Engineering

Notes, 18(5), 1993, pp.107-114.

[48] G.E. Welch and S.G. Gabbe. “Review of statistics usage in the American Journal of

Obstetrics and Gynecology,” American Journal of Obstetrics and Gynecology,

175(5), 1996, pp.1138-1141.

[49] L. Wilkinson and Task Force on Statistical Inference. Statistical Methods in

Psychology Journals: Guidelines and Explanations. American Psychologist. 54(8),

1999, pp594-604 (http://www.apa.org/journals/amp/amp548594.html).

[50] J.M. Yancey. “Ten rules for reading clinical research reports,” American Journal of

Orthodontics and Dentofacial Orthopedics, 109(5), May 1996, pp.558-564.

[51] M.V. Zelkowitz and D.R. Wallace. Experimental models for validating technology.

Computer, 31(5), May 1998, pp23-31.

10. Bibliography

[1] J. Bailar and F. Mosteller, “Guidelines for statistical reporting in articles in medical

journals,” Annals of Internal Medicine, 108, pp.266-273, 1988.

[2] G. A. Colditz and J. D. Emerson, “The statistical content of published medical

research: Some implications for biomedical education,” Medical Education, 19(3),

pp. 248-255, May 1985.

[3] J. D. Emerson and G. A. Colditz, “Use of statistical analysis in the New England

Journal of Medicine,” New England Journal of Medicine, 309, pp. 709-713, 1983.

[4] S. George, “Statistics in medical journals: A survey of current policies and proposals

for editors,” Medical and Pediatric Oncology, 13, pp.109-112, 1985.

[5] M. S. Juzych, D. H. Shin, M. Syedsadr, S. W. Siegner and L. A. Juzych, “Statistical

techniques in ophthalmic journals,” Archives of Ophthamology, 110(9), pp. 1225-9,

September 1992.

[6] M. J. Marsh and B. S. Hawkins, “Publications from multicentre clinical trials:

statistical techniques and accessibility to the reader,” Statistics in Medicine, 13(23-

24), pp. 2393-2406, December 1994.

27

[7] J. O'Fallon, S. Dubey, D. Salsburg, J. Edmonson, A. Soffer, and T. Colton, “Should

there be statistical guidelines for medical research papers?” Biometrics, 34, pp.687-

695, 1978.

[8] E. Pedhazur and L. Schmelkin, Measurement, Design, and Analysis: An Integrated

Approach, Lawrence Erlbaum Associates, 1991.

[9] B. Squires, “Statistics in biomedical manuscripts: What editors want from authors and

peer reviewers,” Canadian Medical Association Journal, 142(3), pp.213-214, 1990.

[10] A. Wallgren, B. Wallgren, R. Persson, U. Jorner, and J. Haalan, Graphing

Statistics and Data, Sage, 1996.

[11] J. Meltzoff, Critical Thinking About Research, APA, 1998.

[12] G. E. P. Box, W. G. Hunter and J. S. Hunter, Statistics for Experimenters, John

Wiley and Sons, New York, 1978.

[13] D. Cox, Planning of Experiments, John Wiley and Sons, New York, 1992.

[14] D. Campbell and J. Stanley, Experimental and Quasi-Experimental Designs for

Research, Houghton-Mifflin, 1990.

[15] P. Rosenbaum, Observational Studies, Springer-Verlag, 1995.

[16] N. Draper and H. Smith, Applied Regression Analysis, John Wiley and Sons,

1998.

[17] D. Campbell and D. Kenny, A Primer on Regression Artifacts, Guilford, 1999.

[18] L. Grimm and P. Yarnold, eds., Reading and Understanding Multivariate

Statistics, APA, 1995.

[19] M. Hollander and D. Wolfe, Nonparametric Statistical Methods, John Wiley and

Sons, 1999.

[20] A. Agresti, Introduction to Categorical Data Analysis, John Wiley and Sons,

1996.

[21] Wu and Hamada, Experiments: Planning, Analysis and Parameter Design

Optimization, John Wiley and Sons, New York, 1999.

Acknowledgments

This paper arose from the project “Methods for Valid Analysis of Software Datasets”

funded by the United Kingdom Engineering and Physical Sciences Research Council

(GR/L 28371). The authors also thank Richard Kemmerer, editor-in-chief of IEEE

Transactions on Software Engineering, for his encouragement.

