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Figure 1: Imaging Environment

Abstract

The view planning problem (VPP) arises in a num-
ber of important computer vision applications such as
3D object reconstruction and inspection. The VPP
is known to be isomorphic to a classical problem in
combinatorial mathematics, the set covering problem
(SCP). This paper characterizes the nature of the VPP
and presents a set covering method exploiting knowl-
edge of the topology of viewpoint space.

1 Introduction

The goal of object reconstruction with an optical sen-
sor is to assembly a virtual object model, for example
a 3D mesh, capturing surface geometry and possibly
appearance (reflectance properties). In the inspection
case, we start with a high definition virtual object
model, such as a CAD representation, and wish to
compare the reference model with the actual shape of
an instance of the physical object, such as a produc-
tion line sample. Both cases begin with specified qual-
ity objectives for measurement precision and sampling
density. The imaging environment (Figure 1) consists
of a range camera, positioning system, various fixtures
and the target object [12].

These computer vision tasks involve planning views,
physically altering the relative object-sensor pose, op-
timizing sensor parameters, taking scans, registering

the acquired geometric data in a common co-ordinate
frame of reference and finally integrating range im-
ages into a non-redundant model. The view planning
component of this process remains an open problem.

Stated informally, the view planning problem
(VPP) involves finding a suitably small set of sensor
poses and configurations for a specified reconstruction
or inspection task. The VPP involves reasoning about
object surface space S, viewpoint space V' and imag-
ing workspace I. The view plan N of size n = |N| is
merely an optimal subset of viewpoint space.

A measurability matrix [9] M = [m;;] is a con-
venient and powerful data structure capturing the
essence of the problem. Rows of M span discretized
surface space S while columns span discretized view-
point space V. M has sv elements, where s = |S|
is the number of rows (surface points) and v = |V|
is the number of columns (viewpoints). In the in-
spection case, the set S is derived from sub-sampling
the high resolution reference CAD model, while for
reconstruction it is developed from an initial coarsely-
sampled scene exploration stage. The set V is de-
rived from discretizing viewpoint space in some opti-
mal manner. Each measurability matrix element m;;
is a binary estimate of measurability of a single sur-
face point s; on an approximate object model from a
single viewpoint v;. Measurability determination in-
volves tests for frustum occupancy, visibility and spec-
ification compliance [9].

Thus, the solution to the VPP is simply to cover the
rows of M with a minimal subset of its columns. Con-
sequently, it is immediately apparent that the VPP is
isomorphic to the set covering problem (SCP), a well-
studied problem in combinatorial optimization. The
complexity of deriving M is O(s?v) [9]. The complex-
ity of the SCP is known to be NP-Complete [7].

It is evident then, that solving the VPP involves two
computational challenges: (1) efficient algorithms for
acquiring a rough scene model (in the reconstruction
case), discretizing S and V and computing the mea-
surability matrix M [9] and (2) solving the set covering
problem. This paper presents a solution method for
the VPP version of the SCP by exploiting knowledge
of the topology of viewpoint space.

The paper is organized as follows. In Section 2, we



characterize the VPP, in particular the phenomenon of
viewpoint correlation. Section 3 characterizes the SCP
and briefly reviews conventional set covering methods.
Section 4 describes the probe method, while Section 5
presents experimental results. Finally, Section 6 sum-
marizes the results and concludes the paper.

2 View Planning Problem

2.1 Topology of Viewpoint Space

While the VPP and SCP are isomorphic in terms of
computational complexity, there are subtle differences.
One of these concerns the covering sets. In many SCP
applications, the covering sets have no known rela-
tionship to one another. With a generate and test
formulation of the VPP, however, V is discretized by
a known algorithm and therefore the topology of the
covering sets (viewpoints) is known a priori.

The most common strategy for discretizing V is
the object-centered “view sphere” approach, of which
there are several variants [12]. The “optimal scan-
ning zone algorithm” and its modifications [9] better
matches candidate viewpoints with sensor capabilities
and object geometry. In its simplest form, the algo-
rithm creates one optimally-configured viewpoint per
vertex on the approximate object model, creating a
1:1 mapping between points in S and V.

All such viewpoint generation algorithms overlay a
complex, multi-dimensional web of neighbour relation-
ships on the 1D layout of columns (viewpoints) in the
measurability matrix M. Effectively, this viewpoint
mesh is an aspect graph.

We represent the object surface as a 3D triangu-
lar mesh based on simplification of Woo’s symmetric
boundary data schema [17]. Our mesh implementation
explicitly embeds 4 of 9 possible topological relation-
ships: E >V, E—>T, T - Eand V — T. In this
context, E,V and T refer to mesh edges, vertices and
triangles and the notation X — Y means “given X,
find Y”. The modest storage requirements for the em-
bedded connectivity allows us to rapidly and efficiently
compute other topological relationships. Given the
previously noted mapping between S and V, we can
also rapidly compute the viewpoint neighbour func-
tion v; = N(v;). Such a viewpoint neighbour func-
tion can be defined for all deterministic schemes for
discretizing viewpoint space.

2.2 Viewpoint Correlation

In our usage, a generalized viewpoint [14] (v, \s) de-
fines a discrete sensor pose v with a defined frustum

in 3D space plus a given setting of configurable sensor
parameters As. There is a direct correspondence be-
tween viewpoints and range images and we will use the
terms interchangeably. Topologically-adjacent view-
points will be correlated and have overlapping images.

A degree of image overlap is both inevitable and
desired. It is inevitable due to (1) the irregular shape
of the intersection of the sensor frustum cross-section
with complex object surface geometry and (2) sensing
physics which are sensitive to standoff range, grazing
angle and surface reflectance properties. The VPP
also requires a degree of image overlap for range image
registration and integration [12], the former a conse-
quence of system pose error and the later a necessity
to seamlessly stitch adjacent range images together.

Viewpoint correlation also influences the scheme for
discretization of viewpoint space. There is a push-pull
dynamic involved. We desire candidate viewpoints
sufficiently nearby for registration and integration re-
quirements and to ensure a high probability of imaging
difficult-to-image surface regions, yet far enough apart
for efficient sampling of viewpoint space and accept-
able computational burden in constructing M.

Image overlap, and consequently image registration,
can be determined from the degree of viewpoint cor-
relation. For the purposes of view planning, we de-
fine the cross-correlation oy; of two viewpoints vy, and
v; as the dot product of the respective column vec-
tors Mg, and Mg ; of the measurability matrix, nor-
malized by the maximum viewpoint coverage of any
viewpoint in the candidate viewpoint set - that is,
mg = maz|Mg | Yk € V, so

Mk Ms,g‘ (1)
ms
Graphical depictions of viewpoint correlation for
simple shapes are shown at [10, 11]. Whereas view-
point correlation is easily computed, visualization of
the function for complex surface geometry is best done
with a 3D viewing tool and is not readily displayed
with the limitations of a 2D paper medium. Corre-
lation data shows that neighbouring viewpoints are
highly correlated and that correlation falls off with dis-
placement (not strictly monotonically) and is modified
by surface shape. Viewpoints which are geodesically
well separated are uncorrelated.

Ukj =

3 Set Covering Problem

3.1 IP Formulation

We can formally express the VPP as the following
integer programming (IP) problem, where we use IP



notation conventions'. This simplified formulation is
equivalent to the unicost SCP.

v
Minimize Z = ij , subject to (2)
j=1
v
Zm,-j;chI;izl,...,s, (3)
i=1
zj €{0,1};j=1,...,v. (4)

Equation 2 is the objective function. Equation 3
ensures each row of M (each surface point) is covered
by at least one viewpoint. Equation 4 applies an inte-
ger constraint on the viewpoint variable z;. X = [z;]
spans viewpoint space V as sampled by the viewpoint
generation stage. The optimal view plan X is the min-
imal set of viewpoints covering surface space S.

Two measures of a solution’s merit are cost (which
is the value of the objective function in Equation 2 and
in our case equals view plan length) and measurabil-
ity. The measurability of a view plan N is the ratio
of the joint coverage of its viewpoints to the size of
discretized surface space S [9]. That is,

icN
m(y) = LU Msdl

3.2 VPP Solution Space

The size of view plan solution space is 2Y, where v is
the number of columns (viewpoints) in M. Similarly,
the number of view plans of length n is yCp, which
we can approximate by Sterling’s Formula

1 BLag:
V27 (v — )Ytz phts

Some quantitative examples will put these numbers
in context. Consider a typical case where v = 400.
Then, the size of view plan solution space is

vCn =~

(6)

2V = 2100 ~ 10", (7)

This is a rather large number, even for the modest
number of viewpoints. Now, consider a slice through
VPP solution space limited to view plans of length n =
10. From Equation 6, the number is approximately

1Here, we have used unitary viewpoint movement costs and
removed the registration constraint as it is frequently rendered
moot due to inherent view plan redundancy for complex objects.
For a complete IP formulation, refer to [9].

100C10 ~ 10%. (8)

The number of potential solutions is still huge.
Given a processor capable for examining a poten-
tial solution every nanosecond, it would take approxi-
mately 825 years to exhaustively search just this por-
tion of VPP solution space! Fortunately, it is a char-
acteristic of the VPP that, while the search space may
be large, solutions are typically small.

For any given view plan length n, VPP solution
space has a large number of local maxima. We can
visualize this as an n-dimensional sea urchin with
spines in the range [0,1]. “Feasible” solutions have
m(N) = 1.0, whereas the measurability of “infeasi-
ble” solutions falls short of that objective. Above
some minimum view plan length, there will exist mul-
tiple feasible solutions of any given view plan length.
The density of feasible solutions decreases as view plan
length approaches the optimum.

From the binomial theorem, we know VPP solution
space has the topology of a hypercube. Unfortunately,
we do not know the topology of feasible solutions.
That is, there is no known algorithm permitting us to
move directly from one feasible solution to its nearest
feasible neighbour.

3.3 SCP Solution Methods

Expressing the VPP as an integer programming prob-
lem provides a compact mathematical formulation of
the problem, opening up the rich research base in dis-
crete combinatorial optimization, in particular tech-
niques developed for the SCP. We have seen from the
previous section that the solution space is huge, even
for modest problems and we know that the search for
an optimal solution is NP-Complete. While guaran-
teeing optimal results, exact methods such as branch-
and-bound and cutting-plane techniques can be com-
putationally prohibitive for even modestly sized IPs.
For most medium-to-large IPs, this leaves a choice
of approximate and heuristic algorithms [8], includ-
ing greedy search [6], simulated annealing [13], genetic
algorithms [2], Lagrangian relaxation [1, 5] and neu-
ral network [7] methods. Recent surveys of SCP so-
lution techniques [3, 4] have shown that substantial
progress has been made with Lagrangian techniques.
Most published performance results [1, 7] deal with
random, low density data sets. The VPP falls into the
category of a medium-to-large IP with non-random
data and moderate density [10].

We have found that greedy search works well for
many object reconstruction problems. It is fast, es-
sentially instantaneous, and the modest degree of view



INITIALIZE
Ny = Ngs
= f%T
NBest = @
count =1

PROBE VPP SOLUTION SPACE

while (1)

{
N = createRandomViewPlan(size n,)
N = optimize(N)

count+-+

TERMINATION CRITERIA
If (m(N) > m(Npest))
Npest = N
If (m(NBest) = 1.0)
Ny = Ny — 1
If ((ny = )| (count > limit))
break

Table 1: Pseudo Code - Probe VPP Solution Space

plan inefficiency improves robustness to system errors,
in particular pose error. For applications requiring
greater view plan efficiency, such as inspection and
some reconstruction problems, the developer has a
range of solution techniques available, including those
noted above and the probe method to be described in
the next section.

4 Probe Method

4.1 Probe Algorithm

Bounds on view plan length can be quickly com-
puted, limiting the region of VPP solution space to
be searched. For the unicost SCP, greedy search pro-
vides a reasonably tight upper bound n,. The ratio
[A/F] of rough model surface area to the frustum
cross-sectional area at the sensor’s optimal scanning
range provides a valid, if rather loose, lower bound n;.

The probe algorithm (Table 1) uses a step-down
search, starting from the computed upper bound and
terminating after a user-specified number of probes.
At each step, VPP solution space is randomly probed
at the given view plan length. Most probes initially
find infeasible solutions i.e. a view plan N such that

INITTALIZE
mp = m(N)

while (improvement)
{
CYCLE THROUGH THE VIEW PLAN
For (each v;,j € N)
{
GET THE NEIGHBOURING VIEWPOINTS
v — N(Vj)

CYCLE THROUGH THE NEIGHBOURS
For (each v;,i € N(v;))
{

my =m(N —v; +v;)

REPLACE IF AN IMPROVEMENT

If (mt > mb)

{
mp = My
N=N - Vit v;

}

}
}
}

Table 2: Pseudo Code - Optimize View Plan

m(N) < 1.0. The result of each probe is optimized
(i.e. view plan measurability is maximized) by a lo-
cal hill climbing operation (Table 2) using knowledge
of the topology of viewpoint space V. Hill climbing
quickly finds the nearest local optimum but not nec-
essarily the global optimum. When a feasible solution
is found, target view plan size is decremented. The
best feasible solution is retained.

We have examined two variants of the probe al-
gorithm: uniform random probe and viewability-
weighted random probe. Uniform probing selects
new candidate view plans of a given length by sam-
pling viewpoints with equal probability. Viewability-
weighted random probing favours viewpoints imag-
ing difficult-to-view surface regions. The rationale is
to assign higher weights to those viewpoints cover-
ing the largest number of sparsely measured surface
points. Both benefit from local view plan optimiza-
tion. Presently, neither exploits the cumulative knowl-
edge gained from prior probing.



Figure 2: Tsimshian Stone Mask

4.2 Viewability-Weighted Random

Probing

The measurability m(v;) of a viewpoint v; is the rela-
tive portion of the surface measured by that viewpoint
[9]. m(v;) is defined as

1S
m(v;) = " Zmij- 9)

The viewability v(s;) of a surface point s; is the rel-
ative portion of viewpoint space which measures that
surface point. v(s;) is defined as

1l
v(s;) = v Zmu (10)

It seems reasonable to focus view planning on the
difficult-to-measure surface regions i.e. those surface
points with low viewability. Thus, we define weighted
measurability m,,(v;) as

S

% [rora)

=1

my(vj) =

» | =

w | <

i Mij (11)

. v
=1y my
=1

~

The range of both m(v;) and v(s;) is [0,1]. The
range of weighted measurability? m.,(v;) is [1,v].

Figure 3: Bunny

4.3 The Literature

In writing this paper, we discovered an aspect of Tar-
box’s [15] work which is somewhat similar to our probe
technique. Tarbox used simulated annealing (SA) in
his algorithm “C”, exploiting the geometry of the
viewpoint sphere to access the neighbours of “sens-
ing operations”. Without detracting from the overall
importance of Tarbox’s pioneering view planning re-
search, there are a number of weaknesses with his ap-
proach to view plan optimization and solving the SCP.
His “linear” SA search followed a step-up operation
which had the disadvantage of not starting from a firm
lower limit3. There appears to be no rational basis for
determining how much computational resource should
be spent at the lower limit before incrementing the
size of trial view plans and continuing the search, and
so on until a feasible solution was found. In contrast,
our step-down approach operates from a firm upper
limit that is close to the optimal. We only decrement
view plan length once a compliant solution is found,
which becomes the new firm upper bound. His “bi-
nary search” approach also appears suspect because
the method requires definitive tests of movable upper
and lower bounds, neither of which existed. Finally,
examination of the simulated annealing implementa-
tion [16] indicates that very small perturbations were

2Note that for any i for which the denominator v(s;) = 0 in
the expression for m (v;), numerator m;; is also 0.

3However, if one could determine a firm lower limit there
would be no need to proceed further except to find a specific
instance of a solution at that lower limit.



employed in which a randomly-selected viewpoint in
the trial view plan would be perturbed to its neigh-
bour in position or boresight twist angle. Given the
small perturbation step and the exponential probabil-
ity selection function, it is unlikely that even a series
of higher energy perturbations would be sufficient to
break out of the current energy well. In other words,
the annealing portion of the algorithm appears weak,
such that the approach becomes primarily a computa-
tionally expensive method of local hill climbing.

5 Experimental Results

5.1 Viewability

For experimental subjects, we again use the Tsimshian
stone mask (Figure 2) and bunny (Figure 3) objects
previously reported at [9]. Both objects pose difficult
view planning challenges for triangulation-based range
sensors due to shadowing and self-occlusion problems.
The mask object was segmented into front and back
segments for view planning purposes. In this paper,
we consider only the more difficult rear segment. For
the bunny object, view plans were computed for the
object as a whole.

Viewability distributions for the mask and bunny
objects are shown at Figures 4 and 5. As the mask
object is segmented, we observe a wider dispersion in
viewability. The distribution is also bimodal. Regions
near the bottom of the main cavity are observed by a
high percentage of viewpoints. There is also a band
around the steep cavity walls observable by only a
small percentage of viewpoints. As an unsegmented
object that is somewhat spherical in shape, viewabil-
ity of the bunny is concentrated in the lower range
with some dispersion due to shape complexity. Again,
a small number of surface points are measurable by
only a small portion of viewpoint space.

5.2 Probe Initialization

Experiments were conducted with the bunny ob-
ject to compare viewability-weighted versus uniform-
weighted random probing. The measurability ma-
trix corresponds to one instance in a series of ex-
periments involving surface sampling error, pose er-
ror and pose error compensation. The matrix’s size
was s = 702 rows by v = 726 columns, with den-
sity ppr = 0.09579. Table 3 summarizes the results
of uniform- and viewability-weighted probing for view
plans of size n = 16,12,8. One thousand trials were
conducted at each view plan length. Columns 3 and 4
present statistics for the average measurability T,

Mask Viewability pdf
0.1 T T

Vlevx‘/ablllty pdf ——

0.06 |- ~

0.04 |- ~

0 ‘HHH
0.6

0 0.2 0.4

0.8 1
Viewability

Figure 4: Mask Rear Segment Viewability pdf

Bunny Viewability pdf
0.1 T T

Vlevx‘/ablllty pdf ——

0.08 |- 4

0.02 |- ~

0 I I I I
] 0.2 0.4 0.6 0.8 1

Viewability

Figure 5: Bunny Viewability pdf

[n | Weighting || i | 0y || Mgt | O |
16 | Uniform 7658 | .06449 || .9873 | .00538
Viewability || .8090 | .05384 || .9881 | .00463
12 | Uniform .6720 | .06896 || .9496 | .01461
Viewability || .7175 | .06206 || .9525 | .01106
8 Uniform .5333 | .07428 || .8243 | .02308
Viewability || .5805 | .06414 || .8271 | .01987

Table 3: Random View Plan Initialization



(o [ 57 [ S [ 5o [ B
16 || +5.64% | -16.5% +0.08% | -13.9%
12 || +6.77% | -10.0% +0.31% | -24.3%

8 +8.85% | -13.7% +0.34% | -13.9%

Table 4: Viewability- vs Uniform-Weighted Initializa-
tion

Mask Probe n = 6 pdf
0.1 T T T

l‘:‘robe n=6 p‘df _—

0.06 [ ~

0.04 4

0 ‘MHH‘\‘\MHH‘\ - [ I N
0 100 200 300 400 500 600 700 800
Probe Count

Figure 6: Mask Probe n = 6 pdf

and standard deviation measurability om,,, of the
initial, unoptimized probes. Columns 5 and 6 show
statistics for the average measurability M, and stan-
dard deviation measurability om,,,, of probes after lo-
cal optimization.

Initialization methods are compared at Table 4. The
results show that viewability-weighted probe initial-
ization provides consistent improvement in both the
expected value and variance of initial measurability
across a range of view plan solution space. After probe
optimization, the distribution of optimized measura-
bility shows a slight improvement in average values
with a marked decrease in standard deviation.

5.3 Set Covering Performance

Next, view plans for the mask and bunny objects
were optimized using the probe method with uniform-
weighted initialization.

The measurability matrix for the mask rear seg-
ment had dimensions (s,v) = (244, 248), with density
pm = 0.32043. Tt corresponds to one instance in a se-
ries of experiments involving pose error and pose error
compensation. The upper bound on view plan length
was determined by ngy, = 8. The best solution found

(nlp [P [o» |
717 240 | 238
672 98.0 | 1031
5 | 2115.5 | 2935.5 | 26074

Table 5: Probe Set Covering - Mask

(n1? [» | |
18 | 42 51.0 44.1
17| 177 | 252.9 | 233.9
16 | 1822 | 3198.2 | 3502.9

Table 6: Probe Set Covering - Bunny

in these and other experiments had length np.s = 5.
Three hundred trials were conducted at each stage to
determine the statistics of probing to find a feasible
solution of the specified length. Table 5 presents the
median p, average p and standard deviation op statis-
tics for the number of probes required to find a feasible
solution at each view plan length. Figure 6 shows the
distribution of the number of probes required at length
n = 6. The distributions typically have an irregular
exponential form.

Similar view plan optimization experiments were
conducted with the bunny object previously described.
In this case, 101 trials were conducted at each stage
to determine the statistics of probing to find a feasible
solution of the specified length. The upper bound on
view plan length was determined by ng, = 19. Table 6
presents probe statistics for this object. The best solu-
tion found in these and other experiments had length
NBest = 16.

6 Conclusion

The view planning problem(VPP) is isomorphic to
the set covering problem (SCP), a well-studied prob-
lem in combinatorial optimization known to be NP-
Complete. Mathematical techniques, notably integer
programming methods, can provide provably optimal
solutions for small problems. However, the solution
space for real VPP/SCP applications of quite mod-
est dimensions is impossibly huge for current exact
mathematical techniques. Therefore, approximation
methods must be employed.

Two classical methods for solving the SCP, simu-
lated annealing (SA) and genetic algorithms(GA) in-
volve randomly probing solution space in a manner
analogous to processes observed in the natural world.



Both techniques produce progressively more optimal
solutions over time, yet both are known to be slow.

In many SCP applications, little is known about
the data or the covering sets and both are taken to
be random. However, in the view planning case, the
data is not purely random. Neighbouring covering sets
(viewpoints) exhibit strong correlation. By suitable
sampling, the topology of viewpoint space is known.
Consequently, view plans can be locally optimized by a
hill climbing operation, which is the basis for the probe
method reported in this paper. It could also be used
in conjunction with conventional simulated annealing
or genetic algorithms methods to provide good initial
seed solutions and to locally optimize new candidate
solutions derived by the SA or GA algorithms.

The probe method is applicable to any view plan-
ning scheme where the topology of viewpoint space V'
is known and where one can define an efficient view-
point neighbour function v; — N(v;). It relies on
the ability to bound solution space by setting an up-
per bound by greedy search and follows a step-down
search strategy, knowing multiple feasible solutions of
a given length exist above some lower limit. An impor-
tant limitation to the method is that it is applicable
only to the unicost SCP. Also, while optimization is
initially fast, progress rapidly slows down as the search
approaches the optimal, a characteristic of all probing
methods, including SA and GA algorithms.

Experiments have shown that viewability-weighted
view plan initialization has benefit in random sam-
pling of view plan solution space if local optimization
is not performed. This could apply to traditional GA
and SA algorithms. For the probe set covering algo-
rithm, it is debatable whether this improvement merits
the extra preprocessing step. Regardless of initializa-
tion weighting, the greatest improvement comes from
local view plan optimization.

This paper has documented a set covering algorithm
for the view planning problem exploiting the known
topology of viewpoint space. We have productively
used the method for some time. While we have not
yet implemented competing techniques for direct com-
parison, we believe the probe technique is competitive
for the view planning application with conventional
simulated annealing and genetic algorithms. How-
ever, it is likely not as computationally efficient as
some other mathematically-based advances in the SCP
literature. Recent advances in Lagrangian relaxation
methods [3, 4] appear particularly promising.
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