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Abstract: Spurious reflections can preclude the accurate experimental

characterization of integrated optical devices. This is particularly important

for facet reflections in high refractive index platforms such as Indium

Phosphide (InP) or Silicon-on-Insulator (SOI) when no anti-reflective (AR)

coating is used. In this paper we present a novel method to recover the

original device characteristics from the measured power transmission in the

presence of such reflections. Our approach uses minimum phase techniques

to reconstruct time domain information which is filtered to remove the

reflection artifacts. A criterion to assess if a certain device exhibits the

minimum phase characteristics required to apply the technique is given.

Simulated and experimental results for multi-mode interference couplers

(MMICs) in SOI without AR coating validate the technique.

© 2009 Optical Society of America

OCIS codes: (230.3120) Integrated optics devices; (120.5700) Reflection; (220.4840) Testing
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1. Introduction

Characterization of integrated optical devices in research environments is often performed with

a tunable laser source (TLS) as input and a detector at the device output which records the

transmitted optical power as a function of wavelength. When a high refractive index platform,

such as InP or SOI, is used, power reflections at the chip facets can be very strong (∼ 30%

of the power is reflected at SOI facets). In a waveguide this results in the well known Fabry-

Perot fringes, which can be used to calculate propagation losses [1]. However, for devices

with several inputs and outputs more complicated interference patterns arise, because of the

multiple sources of reflection. As an example, Fig. 1 shows actual measurement data of a SOI

2×3 multimode interference coupler (MMIC), in a prototyping setup that will be described in

section 4.3. The amplitude of the interference fringes is of 5dB, thus completely obscuring the

actual device response which is only expected to vary approximately 1dB in the 1520−1580nm

band. Hence it is often necessary to cover the chip facets with an anti-reflective coating prior to

measurement. Nevertheless, the ability to measure propagation losses of reference waveguides

on the chip, using the Fabry-Perot technique, is then lost. Furthermore, from cost point of view,

it might be preferable to coat only those devices which are known to function correctly. This is

why several methods have been proposed to characterize devices without anti-reflective coating

[2, 3]. These are however limited to specific coupler configurations and depend on the value of

the facet reflection coefficient.

In this paper we present a technique that combines the concepts of Minimum Phase and

Temporal Filtering (MPTF), to completely remove the interference fringes arising from spuri-

ous reflections. We show that using minimum phase techniques it is possible to compute mean-

ingful time domain information, which is then filtered to eliminate the reflection artifacts and

recover the desired device characteristics. The temporal data can be computed directly from the

swept laser measurement of the chip. It is conceptually analogous to that obtained by Optical

Frequency Domain Reflectometry (OFDR) [4], and could also be used for other time domain

characterization techniques, such as [5]. Minimum phase techniques have been applied to the

characterization of Fiber Bragg Gratings [6, 7, 8], optical tomography [9] and the characteriza-

tion of nonlinear films [10] among others. The key issue of these techniques is to ensure that the

system which is being analyzed actually exhibits minimum phase characteristics [11, 12, 13];

if these are not fulfilled the accuracy of the technique is often affected negatively. Here, we

present a comprehensive theoretical analysis of the MPTF technique, and derive a minimum

phase condition for optical systems, which is in agreement with previously published experi-
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Fig. 1. Measured transmittance of a 2×3 MMIC in SOI without AR coating.

mental results, and can be used to assess the applicability of the MPTF technique.

The paper is organized as follows. The concept of the MPTF technique is outlined in section

2. Section 3 is devoted to the theoretical description of the technique (section 3.2) and the

derivation of a minimum phase condition for optical systems (section 3.3). A reader who is

mainly interested in the application and results of the technique may however proceed directly

to section 4, where the practical requirements of the technique are discussed (section 4.1),

and simulated and experimental results are presented for MMICs in SOI without AR coating

(sections 4.2 and 4.3). Finally conclusions are drawn.

2. Concept of MPTF

Before describing the MPTF technique, it is convenient to review a basic signal processing

concept: the impulse response function [14]. The impulse response function, m(t), of a certain

system is the inverse Fourier transform of its frequency response, M(ν):

m(t) =

∫ +∞

−∞
|M(ν)|exp(j� M(ν))exp(j2πνt)dν . (1)

Here, ν denotes optical frequency, i.e. ν = c/λ , with λ the free space wavelength, c the speed

of light in vacuum, and |M(ν)| and � M(ν) are, respectively, the magnitude and phase of M(ν).
In an optical device, m(t) can be thought of as the temporal output that would be recorded

when launching an infinitively narrow optical pulse into the system. On the other hand, when

measuring an integrated optical system with a TLS and recording the optical output power, the

data that is obtained is precisely the power frequency response |M(ν)|2 (or, equivalently, the

power wavelength response |M(λ )|2).

To illustrate the concept of MPTF, consider light propagation inside a chip with reflecting

facets as shown in Fig. 2(a). C1 and C2 are the input and output coupling efficiencies, and R1, R2

are the facet amplitude reflectivities. S21 and S12 represent the device’s forward and backward

amplitude response, whereas S11 and S22 are the device’s input and output amplitude reflection

coefficients. The single mode input and output waveguides are modelled as

Di(ν) = exp(−αLi)exp(−j2πνneffLi/c), (2)

with Li the length of the waveguides, neff the effective index and α the loss coefficient. For

simplicity, here we are neglecting waveguide dispersion. This does not affect our analysis, as

long as the temporal effect of a waveguide can be considered to be a delay, i.e. its impulse

response is much shorter than the impulse response of the device. The impulse response of
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Fig. 2. (a) Physical model of a device inside a Fabry-Perot cavity with signal flow graph.

(b) Schematic representation of the impulse response m(t). (c) Minimum phase signal flow

graph.

the system in Fig. 2(a) is shown schematically in Fig. 2(b). It will typically consist of a direct

transmission term, m0(t) corresponding to the first transmission through the chip, and a sub-

sequent series echoes arising from internal reflections and facet reflections. The delay of the

direct transmission term is τ0, and the echoes occur at τi (i > 0).

The MPTF technique recovers the device’s forward response, |S21(ν)|2, from the measured

power response of the chip, |M(ν)|2, using the following steps:

1. Calculate the minimum phase response, � M̃(ν), from |M(ν)|. This is accomplished ei-

ther by logarithmic Hilbert transformation [15, 14], or using iterative error reduction

algorithms [16, 10].

2. Compute the minimum phase impulse response, m̃(t), as the inverse Fourier transform of

|M(ν)|exp(j� M̃(ν)).

3. Filter the unwanted echoes from m̃(t) and Fourier transform the direct transmission term,

m̃0(t). As we show in the Section 3.2, the square magnitude of the Fourier transform of

m̃0(t) yields the direct power transmission through the chip:

|M̃0(ν)|2 = |C1|2|C2|2 exp(−2α(L1 +L2))|S21(ν)|2. (3)
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4. The coupling and waveguide losses are obtained by measuring a reference waveguide and

repeating steps 1-3, which yields |W̃0(ν)|2 = |C1|2|C2|2 exp(−2α(L1 +L2)). The quotient

|M̃0(ν)|2/|W̃0(ν)|2 then gives the desired parameter |S21(ν)|2.

Naturally, filtering the direct transmission term is only possible if it is properly separated

from the first echo. As discussed in Section 4.1 this is usually the case if the device is not

narrow-band, and will be assumed in the following.

3. Theoretical framework

In this section we will provide the theoretical background of the MPTF technique. We proof

the applicability of the MPTF algorithm for devices with a single optical path from input to

output, as illustrated in Fig. 2(a). In the presence of multiple input and output waveguides,

and hence multiple optical paths from input to output, the validity of the technique depends

on the minimum phase nature of the device. A sufficient condition for such devices to exhibit

minimum phase is derived, assuming, as above, that the separation between echoes be large.

3.1. Laplace transform and minimum phase

Before analyzing the MPTF technique, it is convenient to recall some properties of the Laplace

transform. Given a certain impulse response m(t), its Laplace transform,which we will also

refer to as transfer function, is defined as

M(s) =
∫ +∞

−∞
m(t)exp(−st)dt, (4)

where s = σ + j2πν is the complex Laplace variable. Note that by setting s = j2πν in (4) the

transfer function reduces to the Fourier transform of m(t), that is, the frequency response M(ν).
In the following we will use two well known properties of the Laplace transform [14, 11]: i)

A transfer function M(s) is a minimum phase function, if and only if, all its poles and zeros are

in the left-hand half plane. ii) If M(s) is not minimum phase, it can be factored into a minimum

phase function, M̃(s), and an all pass function, M̄(s). The latter accounts for all the zeros of

M(s) in the right-hand half-plane and has unit magnitude, i.e., |M̄(ν)| = 1. From now on the ˜

and ¯ symbols will be used to denote minimum phase and allpass functions, respectively.

3.2. Analysis of MPTF

Consider again the basic device with one input and one output waveguide and reflecting facets

shown in Fig. 2(a). We will now analytically examine the application of the MPTF algorithm

to this system.

The transfer function of the system in Fig. 2(a) can be obtained using Mason’s rule [17],

yielding

M(s) =
C1D1(s)S21(s)D2(s)C2

Δ(s)
. (5)

The denominator is given by Δ = 1 − Q1 − Q2 − Q3 + Q1Q2, the loop gains being Q1,2 =
D2

1,2S11,22R1,2 and Q3 = D2
1D2

2S21S12R1R2, where the s dependence has been dropped for sim-

plicity. The numerator is the gain of the only forward path from input to output. In a signal flow

graph, a forward path is a path from input to output along which no node is encountered more

than once. In an optical device this condition can be understood as the lightwave not travelling

through the same waveguide in the same direction more than once. We shall now factor M(s)
into a minimum phase function and an all-pass function. Since M(s) is the transfer function of

a passive system, it is stable, so that all its poles are in the left-hand half-plane. The zeros of

M(s) arise from the zeros of its numerator and the poles of its denominator, Δ(s). All poles of
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Δ(s) are in the left-hand half-plane, since all transfer functions involved in the denominator are

stable. Hence, the only right-hand half-plane zeros of M(s) are those of its numerator. Thus,

M(s) may be factored as M(s) = M̃(s)M̄(s), with

M̃(s) =
C1D̃1(s)S̃21(s)D̃2(s)C2

Δ(s)
(6)

M̄(s) = D̄1(s)S̄21(s)D̄2(s). (7)

The minimum phase and all-pass parts of D1,2 are D̃1,2(s) = exp(−αL1,2) and D̄1,2(s) =
exp(−sneffL1,2/c), because D̄1,2(s) has a zero at σ = +∞, and |D̄1,2(s = j2πν)| = 1 (see also

[18, Eq. (7)]).

From (6) and (7) we see that M(s) is not a minimum phase function. Consequently, the

minimum phase information recovered from the measurement data, |M(ν)|2, is not the physical

phase of the measurement setup, but the phase of a system with transfer function M̃(s). The

signal flow graph of M̃(s),which is obtained by simple comparison of (5) and (6), is shown in

Fig. 2(c). Note that the forward path contains the minimum phase terms, whose product yields

the numerator of (6). The all-pass terms have been moved to the lower part of the loops, so that

the loops gains (Qi) that compose the numerator of (6) do not change. From Fig. 2(c) it is clear

that the minimum phase impulse response, m̃(t), is composed of a direct transmission term

m̃0(t) = C1C2 exp(−α(L1 +L2))s̃21(t), (8)

and a series of echoes from the different feedback loops. If the waveguides are long enough

to ensure that the echoes do not overlap with the direct transmission term, which in practi-

cal situations is often the case (see Section 4.1), the spurious echoes can be filtered. Fourier

transforming the remaining m0(t) term, and taking the square magnitude of the result we find

|M̃0(ν)|2 = |C1|2|C2|2 exp(−2α(L1 +L2))|S21(ν)|2, (9)

since |S̃21(ν)|= |S21(ν)|. This equation is one the main results of this paper. It shows that using

the minimum phase information computed from the measurement data, |M(ν)|2, it is possible

to recover the device’s magnitude response, |S21(ν)|2, multiplied by the total waveguide losses,

exp(−2α(L1 +L2)), and the total coupling losses, |C1|2|C2|2. As discussed in Section 2, these

losses can be determined by measuring a reference waveguide, so that they can be cancelled

from the device measurement. Naturally, this cancellation requires repeatable coupling charac-

teristics, which are achieved if the reference waveguide and the device are close to one another,

and their facets are polished to similar quality.

3.3. Minimum phase condition for general device configurations

In the previous section we have shown that in systems with a single forward path the MPTF

technique successfully recovers the device response. Let us now consider more complex config-

urations with multiple forward paths, such as the 2× 2 coupler shown in Fig. 3. To determine

the minimum phase nature of such a system, it would be possible to explicitly compute the

overall transfer function of the device with the reflecting facets and then study the position of

its zeros. However, with the signal flow graph approach employed in the previous section, a

general minimum phase condition, which provides a better insight into the problem, can be

derived. Mason’s rule for graphs with N forward paths reads [17]:

M(s) =
1

Δ(s)

[

N

∑
k=0

Fk(s)[1+∑
qk

Pqk
(s)]

]

, (10)
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where Fk is the gain of the k-th forward path, N is the number of forward paths, and Pqk
(s) is a

product of loop gains of those loops that do not touch the k-th forward path. Since the numerator

of M(s) is now a sum of several terms, M(s) cannot be easily factored into a minimum phase

and an all-pass function as in (6) and (7). However, in many practical situation, including multi-

mode interference couplers (see Section 4.1), the delay introduced by the waveguides is much

larger than the impulse response of the device. As we show in Appendix A, this fact can be

exploited to derive a sufficient condition for the minimum phase part of M(s) to contain all the

relevant information on the device. This condition is given by

|F0| >
N

∑
k=1

|Fk|+
N

∑
k=0

|Fk|∑
qk

|Pqk
|, (11)

and is another main result of this paper. It states that if the gain of the shortest forward path (or

direct transmission) is larger then the sum of the gains of the remaining paths (and the relevant

loop gains), the associated impulse response is a minimum phase function (with exception of

the initial delay). In the case of a device with a single forward path such as the one analyzed

in section 3, (11) holds always, since it reduces to |F0| > 0. This is because if there is only one

forward path N = 0 and Pqk
= 0 because all loops touch the forward path.

As an application example of (11) consider the 2× 2 coupler illustrated in Fig. 3. Using

Mason’s rule and dropping the common delay of both forward paths (D1D3), we find V =
F0 +F1 +F0P0,where F0 = S31C1C3, P0 = R2R4S42S24D2

2D2
4 and F1 = S41S24S32R4R2D2

2D2
4C1C3.

Neglecting waveguide losses and setting Si j = 1/
√

2 (i �= j), Sii = 0, Ri = 0.56, which is the

approximate Fresnel reflection coefficient for a silicon-air interface as encountered in SOI tech-

nology, we find: |F0| ≈ 0.71|C1C3|> |F1|+ |F0||P0| ≈ (0.11+0.11)|C1C3|. Hence, the measured

data corresponds to a minimum phase function.

While the derivation of the minimum phase condition (11) is focussed on integrated optical

devices, it is expected to hold for more general systems, too, as long as the impulse response

consists of short, well separated pulses. In fact, it agrees well with previously published results

in other areas. In [10] it was found by simulation that an impulse response with two peaks of

comparable magnitude could still be successfully processed using minimum phase techniques,

whereas in the presence of a third peak the results were less accurate. Neglecting the Pqk
terms
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in (11) and setting N = 2, we find |F0| > |F1|, that is, the impulse response actually remains

minimum phase as long as the second peak is only marginally smaller than the first one. On

the other hand, for N = 3 we have |F0| > |F1|+ |F2|, which is obviously not fulfilled with three

peaks of comparable magnitude, so that the impulse response can no longer be assured to be a

minimum phase function. In another paper [21] it is shown experimentally that by artificially

adding an impulse at the origin to an arbitrary impulse response function, the sum becomes a

minimum phase function. In the treatment presented here this technique consist in increasing

the value of |F0| until (11) holds.

4. Application

The practical application of the MPTF technique is discussed in this section. First, measurement

setup requirements are studied and found to be readily realizable. Simulations for MMICs on

SOI are carried out and confirm the accuracy of the technique. Finally a 2× 3 MMIC on SOI

without AR coating is experimentally characterized, and some considerations on the extension

of the technique to narrow band devices are given.

4.1. Practical considerations

In this section we will address some practical limitations which have to be taken into account

to assure that the algorithm presented in the previous section yields accurate results.

First, and referring to Fig. 2(b), the separation of the first echo and the direct transmission

has to be large enough for the two pulses to be clearly separated. The duration of the direct

transmission pulse is approximately given by the reciprocal of the couplers bandwidth, whereas

the delay of the first echo is bound by the shortest input or output waveguide. From this, the

minimum waveguide length is found to be:

Lmin ≫
λ 2

0

BWDUTng
, (12)

where BWDUT is the DUT’s 3dB bandwidth, and ng is the group index. In micrometer scale

SOI rib waveguides the group index is approximately ng ≈ 3.6. Assuming a coupler bandwidth

BWDUT = 30nm at λ0 = 1550nm, we find Lmin ≫ 20 µm, which is verified in virtually any

practical layout.

Second, measuring |M(ν)|2 in a limited bandwidth determines the temporal resolution with

which the impulse response can be computed. Equivalently it limits the minimum spatial sep-

aration of two reflections that can still be distinguished. Imposing that this separation be the

physical length of the device under test, the following criterion for the measurement bandwidth

is readily derived:

BWmeas ≫
λ 2

0

LDUTng
. (13)

Note that (13) is very similar to the equation that determines the spatial resolution of a OFDR

measurements [4, Eq. 8]. For a coupler length of LDUT = 300 µm, and the same parameters

as before, we find BWmeas ≫ 2nm. With most moderns lasers sweeping 60nm or 100nm of

bandwidth is unproblematic, so that condition (13) can be readily fulfilled.

Finally, the required spectral resolution of the measurement is determined by the Nyquist cri-

terion: the sampling of the frequency response has to be fine enough to avoid temporal aliasing

of the impulse response, m(t). Taking into account that m(t) consist of a series of echoes from

the chip facets, we find:

Λ ≪ λ 2
0

Lmaxng
, (14)
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Fig. 4. (a) Simulated power transmission of a 2× 2 MMIC in SOI without AR coating.

The device layout is shown schematically in the inset of Fig. 4(b). (b) Computed minimum

phase impulse response. The length of the input and output waveguides shown in the in-

set are L1 = 1mm, L2 = 2mm, L3 = 3mm and L4 = 4mm. The length of the MMIC is

0.256mm [22].

where Λ is the spectral resolution and Lmax is the length of the longest round-trip in the device.

A chip length of 1cm (and an associated round-trip of 2cm), would require Λ ≪ 0.04nm.

The adequate spectral resolution is also easily identified experimentally by ensuring that the

interference fringes are smoothly sampled.

4.2. Simulations

We shall now assess the performance of the MPTF technique in two simulated scenarios: a

2×2 and a 2×3 MMIC on SOI with strong reflections from uncoated silicon-air facets.

The transmission and reflection of the couplers and the dispersion characteristics of the in-

put and output waveguides were simulated using the full vectorial eigenmode expansion based

Fimmwave software [22]. The reflecting facets were simply modelled as a constant Fresnel re-

flection amplitude coefficient R = 0.56, and perfect coupling was assumed for simplicity. The

smoothly varying parameters where then interpolated in Matlab to yield 12000 data points in

the 1520nm to 1580nm band, i.e., a spectral resolution of 0.005nm. Using S-parameter net-

work analysis, the reflecting facets, the waveguides and the MMIC were then connected. As

expected, the resulting power transmission (|M31|2) through the 2× 2 coupler exhibits strong

and complex fringes, as shown in Fig. 4(a). The minimum phase of |M31(ν)| was computed us-

ing the logarithmic Hilbert transform approach [15] and the minimum phase impulse response,

m̃(t), was computed through an inverse Fast Fourier Transform (FFT). The processing time

for these two operations is about 30ms using Matlab on a 1.6GHz notebook. Fig. 4(b) shows

m̃(t), where the time axis has been conveniently scaled to represent propagation distance. Also

depicted in Fig. 4(b) are the lengths of the input and output waveguides, which were chosen to

illustrate that m̃(t) has indeed physical meaning. Specifically, the echoes labeled A through E

can be associated with different round trips in the coupler. Echo A arises from the propagation

through waveguides 1 → 3 → 1 → 3, which is delayed 4mm with respect to direct path 1 → 3.

Echo B results from the trips 1 → 3 → 2 → 3 and 1 → 4 → 1 → 3, and C from 1 → 4 → 2 → 3.

D is the echo of the echo of A, and E is a combination of A and B.

A 5ps wide smooth Kaiser window was used to filter the unwanted echoes and the remaining
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Fig. 5. Recovered coupler parameters for (a) a 2×2 MMIC and (b) a 2×3 MMIC.

direct transmission, m0(t), was Fourier transformed, yielding the recovered response shown in

Fig. 5(a). An excellent agreement between the original response and the MPTF processed data

is achieved. The minor deviations at the band edges are an artifact of the Fourier expansion. The

inset of Fig. 5(a) demonstrates that simple averaging of the measurement data (|M31|2) does

not generally yield accurate results. The 2× 3 coupler was simulated with 5.4mm long input

waveguides and 1.9mm long output waveguides to emulate the physical device layout, and

with the same bandwidth and resolution as the 2× 2 coupler. The coupler response recovered

by MPTF is plotted in Fig. 5(b), and overlaps almost perfectly with the original data, hence

confirming the validity of the technique for this coupler configuration, too.

4.3. Experiment

MPTF has been used to experimentally characterize a 2×3 MMIC in SOI without antireflective

coating, which was custom fabricated to our specification at the Canadian Photonic Fabrication

Center (CPFC). The couplers were etched into a 1.5 µm thick silicon substrate and had a foot-

print of 12.8× 512 µm2. The Fresnel power reflection coefficient at the facets is estimated to

be 30%. The measurement setup is depicted in Fig. 6. Linearly polarized light from a tunable

laser source (TLS), is converted to horizontally (TE) polarized light using a polarization rota-

tor (PR), and is launched into the chip with a lensed fiber. The output light is collected with a

microscope objective, and a polarization beam splitter (PBS) is used to filter unwanted polar-

ization components. Finally, a power detector (PD) converts the optical signal into the electrical

domain, where it is recorded with data acquisition board (DAQ). Measurements of the coupler

were taken in the 1480nm to 1580nm band, with a resolution of 0.001nm, which takes about

one minute using swept measurements. The strong interference patterns in the measurement

data are shown in Fig. 1, and are completely masking the coupler response. For calibration

purposes a reference waveguide on the same chip as the coupler was also measured. Fig. 7(a)

shows the MPTF processed transmission of the reference waveguide, which includes coupling

and waveguide losses, as well as laser sweep power nonlinearities. The minimum phase impulse

response is plotted in Fig. 7(b), and clearly shows the facet reflection at a distance of ∼ 7.7mm

(which corresponds to the length of the chip), as well as a weak back reflection from the MMI

#106382 - $15.00 USD Received 14 Jan 2009; revised 3 Mar 2009; accepted 4 Mar 2009; published 1 May 2009

(C) 2009 OSA 11 May 2009 / Vol. 17,  No. 10 / OPTICS EXPRESS  8358



TLS

PD

Chip facets

DAQ

Lensed fibre

Microscope Objective

2 × 3

MMI

PR

PBS

Reference Waveguide

Fig. 6. Measurement setup (not to scale).

c

Fig. 7. (a) MPTF processed calibration data. (b) Minimum phase impulse response (c)

Recovered coupler response.

at a distance of ∼ 2.7mm. The processed coupler data divided by the reference data is plotted in

Fig. 7(c). Due to fabrication tolerances the experimental wavelength response is slightly shifted

with respect to the simulated data given in Fig. 5(b), but both the absolute insertion loss as well

as the shape of the curves are in good agreement with the simulations.

4.4. Generalization to narrow band devices

While we have focussed our discussion on broadband devices, the MPTF technique could be

extended to narrow band devices such as ring resonators. Naturally, these devices must exhibit
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minimum phase, which for ring-resonators is only the case if the coupling coefficient is smaller

than the roundtrip losses. To characterize non minimum phase ring resonators, a technique sim-

ilar to the one described in [21] (see section 3.3) could be used. Since the impulse response of

ring resonator is long, the input and output waveguides have to be long enough to avoid over-

lapping between the direct transmission and the echoes (see Eq. (12)). Finally, the temporal

filtering window has to be chosen adequately. If the passband information is of particular im-

portance, smooth temporal windows should be employed. Good reproduction of the resonances

requires rectangular windows, which exhibit higher spectral resolution [14, Ch. 11.2].

5. Conclusions

In this paper we have presented the MPTF technique which allows for the accurate charac-

terization of integrated optical devices in the presence of prominent reflections. The technique

reconstructs minimum phase time domain information from the measured power transmittance,

which is then filtered to eliminate the reflection artifacts. A sufficient condition, Eq. (11), for an

optical system to exhibit minimum phase has been established. This condition is in agreement

with with previously published experimental results, and can be used to assess the applicability

of the MPTF technique. The bandwidth and spectral resolution required to obtain accurate re-

sults are readily achievable in practice, and the technique has been successfully applied to 2×2

and 2×3 SOI MMI couplers without antireflective coating in simulation and experiment. These

results indicate that the prospects are excellent for implementing this technique as a versatile

tool for characterization of integrated waveguide devices.

Appendix A: Derivation of Eq. (11)

Here we derive a sufficient condition for a multi-path device to exhibit minimum phase. The

transfer function, M(s), of such a device is given by (10), which is reproduced here for conve-

nience:

M(s) =
1

Δ(s)

[

N

∑
k=0

Fk(s)[1+∑
qk

Pqk
(s)]

]

.

Using the same argument as in section 3.2, it is clear that the denominator of M(s), Δ(s), does

not introduce any non-minimum phase terms, so that we may focus solely on the numerator.

Each of the Fk(s) and Pqk
(s) terms in (10) is a product of facet reflectivities, Ri, coupling co-

efficients, Ci, device transmission coefficients Si j(s), and waveguide transmissions Di(s). If we

write the delays of the waveguides explicitly, the numerator of M(s) becomes

V (s) = exp(−sτ0)

[

F0 +
N

∑
k=1

Fk exp(−sτk)+
N

∑
k=0

Fk exp(−sτk)∑
qk

Pqk
exp(−sτqk

)

]

, (15)

where τ0 is the delay of the shortest forward path and Fk and Pqk
do not depend on the wave-

guide delays. As discussed in section 3, exp(−sτ0) is an all-pass term, which will be lost when

computing the minimum phase response, so we will drop it for the remainder of the discussion.

The other delays involved in V (s) must however be conserved when computing the minimum

phase response, because they allow for the temporal separation of the direct transmission term

from the other forward paths. Consequently, we need to establish a condition that ensures that

V (s) be a minimum phase function (with exception of the exp(−sτ0) term).

In many practical situation, including multi-mode interference couplers (see Section 4.1),

the delay introduced by the waveguides is much larger than the impulse response of the de-

vice. Equivalently, the frequency response of the latter varies very slowly when compared to

the former. Hence, for mathematical convenience we may approximate the Si j parameters to be
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Fig. 8. Discrete time representation of a sequence of impulses.

constants, so that Fk and Pqk
in (15) become constants, too. With this simplification v(t), the

impulse response function associated with V (s), is simply a finite sequence of impulses with

different amplitudes. Consequently, we may treat it as discrete time signal, i.e. as a sampled

signal whose amplitude is non-zero only at the position of the impulses (see Fig. 8). The sam-

pled signal can then be z-transformed [19, Ch. 2] yielding V (z), a polynomial in z−1. Let mM

be the degree of this polynomial. For V (z) to be a minimum phase function its zeros must lay

inside in the unit circle |z| = 1 [19, Ch. 7]. Let us now define U(z) = zmMV (z) which has the

same zeros as V (z) and is given by

U(z) = F0zmM +
N

∑
k=1

FkzmM−mk +
N

∑
k=0

FkzmM−mk ∑
qk

Pqk
z−mqk . (16)

Note that the degree of U(z) is mM so that it has exactly mM zeros. We now define the functions

f (z) = F0zmM (17)

g(z) = U(z)− f (z). (18)

and invoke Rouché’s theorem, which states [20]:

If two functions f (z) and g(z) are analytic inside and on some closed contour γ , and | f (z)|>
|g(z)| on γ , then f (z) and f (z)+g(z) have the same number of zeros inside γ .

The functions f (z) and g(z) defined in (17) and (18) are analytic because they are polyno-

mials. Hence, if we impose that | f (z)| > |g(z)| on |z| = 1, U(z) = f (z) + g(z) has the same

number of zeros inside |z| = 1 as f (z). Since f (z) has mM zeros at z = 0, U(z) has mM zeros

inside |z| = 1. But U(z) only has mM zeros in total, so that all zeros of U(z) are inside the unit

circle. Hence, if | f (z)| > |g(z)| on |z| = 1 then V (z) is a minimum phase function. Using the

triangle inequality |z1 + z2| < |z1|+ |z2| we thus find that a sufficient condition for V (z) to have

all its zeros inside the unit circle is

|F0| >
N

∑
k=1

|Fk|+
N

∑
k=0

|Fk|∑
qk

|Pqk
|,

which is the expression we were looking for.
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