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I introduction.

Quantitative analysis of analytes present at trace levels in complex mixtures is one of
the most demanding experimental tasks facing the modern scientist. Concerns about
environmental pollution by trace amounts of highly toxic contaminants, for example,
have placed ever-increasing demands upon the analytical chemist to increase the
accuracy and precision of such measurements, and tc decrease detection limits, for
an ever-widening range of analytes.

This document represents an attempt to assemble and systematise methods which
have been developed to facilitate quantitative analyses of this kind through use of
external and internal standards. Most chemists have a general appreciation of these
terms; their definitions as used in this document are given in Section Il. However, in
the course of several years of operation of the Marine Analytical Chemistry Standards
Program (MACSP) of the National Research Council of Canada, it has become clear
to us that many of our clients for the instrument calibration solutions and isotope-
labelled internal standards, which the MACSP supplies, are unaware of some of the
better methods of exploiting such materials.

This document contains no original work. It is in effect a review of methods invented
by others (see e.g. Refs. 1-3 for earlier reviews). In addition, it is largely a theoretical
treatment, but the mathematics required involve only low-level algebraic manipulations.
it is hoped that this report can fill a gap in bringing together and systematising the
various methods, while drawing attention to their advantages and drawbacks. The
treatment focusses on chromatography combined with mass spectrometry, but
many of the considerations apply also to procedures using other
chromatographic detectors. Further, in order to keep the length within reasonable
bounds, the question of errors and statistical treatment of data will not be treated
systematically; excellent user-oriented reviews, of applications of statistical methods to
analytical chemistry, are available*®.

The experimental equipment used for modern quantitative analysis is highly
sophisticated, usually incorporating a high resolution chromatographic stage (most
often capillary column gas chromatography (GC) or high performance liquid
chromatography (HPLC)), coupled to on-line detectors of a wide range of complexity
of which mass spectrometry (MS) is the most flexible and informative. Faced with this
sometimes bewildering array of technological marvels, it is easy to forget that all
quantitative analyses ultimately depend upon the availability of pure analyte
standards, weighed out to the highest possible accuracy and precision on an
analytical balance (see Section VI). The sophisticated GC/MS or HPLC/MS
apparatus simply provides a means of comparing an electrical signal, generated by
passage of the analyte from the sample through the apparatus, to the corresponding
signal generated by a known (via weighing) amount of the analyte standard. This



document describes methods which have been devised to make this comparison
process as free as possible from experimental errors.

Such experimental errors are conveniently classified into random and systematic
errors. The smaller the random errors, the greater is the experimental precision. In
contrast, the experimental accuracy is a measure of how successfully the systematic
errors have been reduced, /.e. how closely the experimental values approach the
"true" or “accepted* value for the parameter being measured. The random errors
(experimental precision) are usually estimated expefimentally via the repeatability, -
i.e. the spread in values obtained on multiple consecutive repeats of the same
analysis, performed consecutively. The repeatability is often distinguished from the
reproducibility of the analytical procedure which refers to comparison of the results of
an experimental estimate of precision (repeatability), obtained on one occasion, with
those of a similar estimate obtained some time later or perhaps in a different
laboratory. Thus defined, the experimental reproducibility clearly involves both random
errors and uncontrolled systematic errors. Further, systematic errors are conveniently
sub-divided into bias errors (constant offset of the experimental from the "true” value)
and proportional errors (systematic differences between experimental and "true"
values, whose magnitude is proportionai to that of the "true" value).

The theory of random errors is highly developed®®. Systematic errors are more
difficult to deal with due, at least in part, to the difficulty in determining "true” values.
Detection and estimation of systematic errors are of crucial importance in the
pharmaceutical industry®, where errors in the concentration of the active ingredient in a
formulation can be literally a matter of life and death. It is thus not surprising that
analytical chemists employed by the pharmaceutical industry have been greatly
concerned with methods for estimating bias and proportional errors in quantitative
analysis; this concern is exemplified by the work of Cardone”"? which represents a
significant extension of earlier ideas of Youden™™™.

These approaches to the elucidation of systematic errors (both constant and
proportional), exemplified by the work of Cardone™?, are of great generality. The
corresponding treatment offered here is less general in most respects, reflecting the
.somewhat different contexts involved in environmental vs. pharmaceutical analysis.
For example, the fractional recovery F,” of the target analyte, from the raw sample into
the sample extract solution, is invariably a parameter of major concem in
environmental analysis. Since pharmaceutical formulations are generally less complex
and less variable, and more homogenéous (by design), it is often possible to design
analytical procedures for which F, is close to-100%. Methods for estimating F,,
however, will be a major focus of the present work.

In the mathematical treatment developed in this document, it has been explicitly

assumed that fractional recovery is the only important source of proportional
systematic error. This assumption clearly implies a loss of generality. However, by
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focussing on the F,” parameter it will be possible to show that the treatment developed
by Cardone™"? is not completely general, either. Thus, the relative lack of concern
with this parameter in the pharmaceutical context is exemplified by the almost
complete lack of attention paid’'? to surrogate internal standards, widely used in other
contexts to provide estimates of analyte recoveries F,. Further, one of the more
important conclusions of Cardone™" is that the slope of a plot of analytical response
vs. quantity of analyte should be identical for the Youden plot'™* (variations in analyte
quantity achieved by varying sample size} and for the Method of Standard Additions
(see Section I1IB(jii) below). This conclusion is valid only if the recovery efficiency for
the analyte originally present in the raw sample is identical to that for additional
analyte added as the pure standard to the sample. This condition can not be
assumed to be valid for many environmental samples, in which low values for F,’
reflect occlusion of the analyte in the sample matrix. (A problem which is, almost by
definition, unimportant for pharmaceutical formulations for which the active ingredient
must be fully available). These qualitative discussions are more fully discussed, and
expressed in mathematical form below. Sections 1ll and IV provide brief qualitative
discussions of the various methods, and present the corresponding working
relationships. More detailed algebraic derivations are presented in the Appendices,
which have been numbered to correspond with the appropriate parts of Sections 1lI
and |V, '

Finally, it is appropriate to discuss briefly the measurement and dispensing of
volumes of liquid solutions. The use of standard volumetric flasks, for the accurate
"making-up-to-volume" of solutions of the order of 1mL or greater, is well established.
Dispensing liquid volumes on the uL scale is a more demanding procedure, e.g. when
spiking a solution of standard (or internal standard) into a raw sample or extract
solution, or when injecting an aliquot of the extract solution into a chromatograph.

Modern automatic pipettes are capable of delivering ulL - sized volumes with high
accuracy and precision, and are essential for the best practice in spiking, accurate

dilutions, etc. Injections of extract solutions into a high-performance liquid
chromatograph (HPLC) can be accomplished with similarly high accuracy and
precision using modern loop-injector technology. However, injection of samples in
liquid solution into a stream of high-temperature carrier gas in a gas chromatograph
(GC) will always present problems in attempting to achieve high accuracy and
precision: this generalization holds also for "cold on - column” injection techniques.
Examples of documented problems arising from this problem, for various designs of
GC injectors, have been published'® ', Use of volumetric internal standards solves
this injection problem in GC, as well as more general problems arising from
inadvertent evaporation of volatile solvents from sample extract solutions and standard
solutions. These principles will be elucidated below, and are signalled by the absence
of volume parameters in the expressions derived for the desired quantity of analyte.



ll. Definitions of Symbols and Nomenclature.

An external standard is either a solution of the target analyte at known concentration,
or a known quantity of the analyte. An internal standard is a substance added in
known quantities to the sample to be analysed, and which is therefore measured in
the same chromatographic run as is the analyte itself. An internal standard should be
a stable compound not present in the original sample; it must either be
chromatographically resolvable from the analyte and other substances in the sample
extract, or provide a unique signal without interference (e.g. a characteristic ion at a
unique m/z value for mass spectrometric detection). For the best accuracy and
precision an internal standard should also preferably have a retention time similar to
that of the analyte, and be present at a similar concentration. A volumetric internal
standard is an internal standard which is added to the sample extract; it need not be
chemically related to the analyte of interest, but should fulfil the other requirements
described above for internal standards. A volumetric internal standard is used in
conjunction with an external standard solution, in order to circumvent uncertainties in
volumes of solutions and/or in the injection volumes in GC (injection volumes are
generally much more reproducible in HPLC). A surrogate internal standard is an
internal standard added to the sample itself, prior to any extraction, clean-up, efc., in
order to account for analyte losses during these steps; such an internal standard must
therefore possess physico-chemical characteristics which are identical (or as nearly so
as possible) to those of the analyte. When mass spectrometric detection is used, the
surrogate internal standard is often an isotope-labelled version of the analyte, and its
use amounts to a special case of Isotope Dilution Analysis. See Section IV for a more
complete discussion of internal standards.

For all methods described in this document, the simplest procedure applies if the
calibration curve, i.e. a plot of the appropriate instrumental signal vs. amount of
analyte injected (or some simple multiple thereof), can be shown to be a linear
function with a zero intercept. In the simple example of a method employing an
external standard (Method II1A (i)}, such a demonstration would involve injections of
varying quantities q,”” of analyte via accurate dilutions of a stock external standard
solution, and recording the corresponding chromatographic peak areas A,”. If a plot
of A vs. q,” is a straight line through the origin, then the response is uniquely
defined as the slope of this ling. The best experimental practice always involves
establishing the full calibration curve by direct experiment; however, if pressure
of time makes this impractical, the calibration may be estimated via a single-point
calibration procedure in which just a single value of g,” is used; it is preferable to
show previously that the necessary conditions (linear calibration with zero intercept)
are satisfied. Note that the "single-point calibration” nomenclature does not imply that
a single calibration chromatography run is all that is employed; a statistically
meaningful result should be determined by muttiple injections of the same calibration
solution.



LIST OF SYMBOLS USED.

Symbols marked with a prime * refer to the sample extract solution, possibly spiked
with surrogate internal standard. Un-primed symbols refer to the original sample,
prior to extraction, clean-up, etc. Double-primed symbols” refer to a standard
calibration solution (external standard) of unlabelled analyte, possibly spiked with an
internal standard of one kind or another. Triple-primed symbols " refer to a
quantity of pure solvent spiked with surrogate internal standard.

Subscripts are used extensively. Their meanings are as follows:

a = the target analyte;

e = analyte spiked into a raw sample in the form of an external
. standard solution, as in the Method of Standard Additions:

i and/or j = internal standard (surrogate and/or volumetric);

s = analyte spiked into a blank (control) sample;

X = unknown substance X, which interferes with the

chromatographic response of the target analyte;
y = pertaining to the Youden Sample Response Curve:
msa = pertaining to the Method of Standard Additions.

The major symbols used in this document are listed below in alphabetical order:

A, = chromatographic peak area (or height) for injection of a quantity q, of
sub_stance Z; the number of primes indicates the type of solution injected;

b = y-intercept of an experimental response curve, usually obtained by linear
least-squares regression; )

C, = concentration of analyte in the sample (= Q,/W,)

Cs = concentration of internal standard in the solution used to spike the

sample, sample extract and/or the external standard solution:
C,/ = " concentration of analyte in the external standard solution;

F = fractional recovery of substance Z from sample into extract solution,
partially defines Q;/ = F,'.Q, - L,’;

f, = fractional transmission of quantity q, of substance Z from

chromatographic injector to the detector, partially defines detector
response via A; = R,.(f,.q; - I,);
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k = slope of an experimental response curve, usually cbtained by linear
least-squares regression;

L, = fixed loss of substance Z occurring during extraction and clean -up,
partially defines Q;' = FZ Q; - L

fixed loss of substance Z after injection into chromatograph but before
exmng the detector, partially defines detector response via:

_
~
1

A;=Rz. (f;. G- Iz

Q, = total quantity of substance Z in a sample, sample extract, calibration
solution, efc.; ;

q; = quantity of substance Z in solution, injected (in injection volume v) into
the chromatograph;

R, = detector response for substance Z, per unit quantity of Z reaching the
detector, partially defines detector response via A; = R,.{f,.qz - I);

S, = quantity of pure analyte spiked into raw sample (or control sample) in the
form of external standard solution;

S, = total quantity of analyte in extract solution derived from a spike (S,) into
the sample;

\' = total volume of a solution (either sample extract or a calibration standard}
prior to removal of the first injection volume v, contains the
corresponding total quantity Q; of substance Z;

\" = chromatographic injection volume of solution;

Vg = volume of solution of internal standard (concentration C,g) used to spike
the sample or sample extract and/or the external standard solution;

Vv, = volume of solution of target analyte {concentration C,”) used to spike the
raw sample (Method of Standard Additions) or a blank {control) sample;

w, = mass of sample represented in the sample extract solution.

-~

All of the quantities Q and g may be assumed to be masses, though amounts of
matter (moles) may sometimes be used. In cases where both a surrogate and a
volumetric internal standard are employed, these are denoted by subscripts i and j,
respectively.



11} Anatytical Methods Using External Standards with No Internal Standard in
Quantitative Chromatography.

in this Section the methods of use of external standards in quantitative
chromatography, without the intervention of an internal standard of some kind, are
discussed.

In order to introduce the present approach using the simplest possible example, in
Section lllA it is assumed that the appropriate calibration curve is linear with a zero
intercept (and thus that a single-point calibration procedure (see Section II) is valid).
Section IlIB deals with circumstances in which these conditions are not fulfilled.

A Linear Response Curve with Zero Intercept.

In this case, the necessary conditions for a single-point calibration procedure to be
valid are assumed to be satisfied. However it is always preferable, where possible, to
use a full calibration curve procedure.

IIA(i) Standard Calibration Curve Method.

This method involves establishing the instrumental response curve, using standard
solutions of the analyte covering an appropriate range of concentrations C,” and
corresponding weighed quantities of analyte Q,” = (C,”.V”). Then the assumption that
the resulting calibration curve is linear with zero intercept (Figure 1) leads to the
working relationship given by eq [5] (see Appendix for details).

C.= Q/W, = A(1R.L).(VV).(FS) (1IW,) - [5]|

In the special case where only a single-point calibration procedure is used, the
appropriate form is eq.[6]:

C, = Qa/W; = {QF YW, = (VN YV'NIKASTAWQIF,) (1IW,) [6]
= (V)AL .ClWE W)

where C,” = (Q,”/V").
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Figure 1. Calibration curve obtained for an external standard, in which the intercept
is not significantly different from zero. In lll A (i) and (ii) it is assumed
" that such calibration data are fitted to a straight line forced through the
origin, with a slope interpreted as (R," . {,") oras k', in Il A {i} and Ill A
(ii), respectively. The injected quantities of analyte, q," and g, are
defined operationally as [ (v*/V") . Q"] and [ {v,"/ V") . S ], respectively.

All of the disadvantages of the Standard Calibration Curve method are evident in
 egs.[5] and [6]. Thus, volumes and concentrations appear explicitly; systematic
uncertainties in V', V” and C,” due to solvent evaporation, and random errors in the

injection volumes v' and v’ (not well controlied in GC, but much better in HPLC using
injection foop methodology), directly affect the final result.  The peak area A,” and its

calibration (either (R_.f,) in £q.[5] or (Q,”/A.”) in eq.[6]) must be measured in separate
chromatographic runs, introducing the possibility of systematic error due to
instrumental drift. The fractional recovery F,’ is not measurable from such
experiments alone, and the requirement for an-assumed value of unity introduces a
proportional error into the values of Q, thus calculated (yielding values for Q,
which are lower limits to the true vaiue). Note also that uncertainties in the
injection volumes imply that the ordinate {(independent variable) in Figure 1 is NOT
free of experimental uncertainties, which is a necessary assumption*®, in the simple
linear regression routines commonly used for such purposes. ,

10



HIA(ii} Calibration by Spiking Control (Blank) Samples.

In this context a control sample is taken to mean a sample which is identical in every
way to the sample to be analysed, except that it contains an undetectable quantity of
the analyte. The degree to which such a sample can be said to exist will vary strongly
with the situation, but it is relatively easy to achieve in a pharmaceutical formulation
context, for example.

This method involves many of the same assumptions as the described in Section Il A
(i. Now, however, the calibration curve actually used is obtained by spiking different
quantities S, of standard into different aliquots of the control sample, which are then
taken through the complete analytical procedure. The most reliable method of
determining the quantities S, is by direct weighing of the pure standard. However, in
practice the spiking is often done by dispensing volumes V, of concentration C,” (S, =
V..C."”); this method is more convenient, but carries the risk of introducing both
systematic errors (e.g. from evaporation of solvent and inaccuracy of the volumentric
equipment) and random errors (via imprecision in the volumes dispensed).

By varying S, over an appropriate range, and determining the corresponding
chromatographic peak areas A. for injections of aliquots of the extracts, a calibration
curve can be constructed. Under the general assumptions of Section Ill, this
calibration curve is assumed to be a straight line passing through the origin (Figure 1).
Then, as discussed in the Appendix, Eq [9] is the working empirical relationship
for analyses using a calibration obtained by extracting blank samples spiked
with known amounts of analyte.

= QM. = (i) . (vVIV) . (AW, 9]

where k, is the slope of the calibration curve (see Appendix).

In summary, the method of Calibration by Spiking of Control Samples is subject to all
of the systematic and random errors described in Section IIA(i) for the Standard
Calibration' Curve Method, with the important exception that the proportional errors
associated with uncertainties in the fractional recovery are now less serious. By
combining the two methods it is possible (see"Appendix) to measure values of the
fractional spike recovery F./, a valuable parameter for purposes of Quality Control.
The present method is clearly more time-consuming than IlIA(i), which may be a
significant consideration in some circumstances. Further, the present method
depends on the availability of sufficient quantities of a suitable blank sample.

11



HIAG) Method of Standard Additions.

This method is similar to that described in Section l11A{ii), but now the spikes of pure
standard are added to different aliquots of the actual sample to be analyzed rather
than to a control (blank) sample. Known variable amounts S, of the external standard,
preferably determined by direct weighing (see Section HIA(ii)) are spiked into separate
aliquots of the raw sample prior to extraction, clean-up, etc. The method thus provides
its own calibration (no additional calibration experiments are required). In a qualitative
way, it is easy to understand that extrapolation to zero quantity of added (spiked)
analyte standard will yield the desired quantity of native analyte. The response curve,
obtained in an ideal analysis by the Method of Standard Additions (see Appendix for
details of the assumptions involved), is of the form illustrated in Figure 2.

Slope =k msa

bmsa

\ .

Figure 2. Ideal response curve for an analysis by the Method of Standard
Additions using a fixed mass of sample (W,), fixed extract volume (V')
and fixed injection volume (v'). The slope and intercept are the
quantities b, and k.., in eq [18].
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The desired quantity C, is given (see Appendix for details of assumptions) by eq.[19],
the working relationship for Method HIA(iii):

| C.= QW, = (bpukne (FSFS) = [19] ||

where K., and b, are determined empirically as the slope and intercept of the plot of
A, vs. 8, (Figure 2). Note an advantage here of the present method over that
described in Section HIA(ii); in the present case the recovered spike and analyte from

the sample are contained in the same sample extract solution, so that the volumes v’
and V' are the same for both and thus do not appear (i.e. cancel) in calculation of Q,

from eq [19]. In the method described in Section lIA(i), on the other hand, the
standard spike and the unknown analyte are contained in different solutions,
accounting for the appearance of the additional volume variables v,/ and V.’ in

egs.[7] - [13]. The irreproducibility of the injected volumes v and v.’, especially for GC
analyses, can be a major contributor to the random error in the final analytical resuit.

Since F.’ (fractional recovery of native analyte into the extract solution) is not
measurable, practical application of eq.[19] requires the further assumption that F,’ =
F,’ (fractional spike recovery), leading to a proportional error in Q, yielding a lower
limit to the true value, since in general F,’ > F,’ {see discussion of F,’ in Section
lA(i})). However, this proportional error is likely to be considerably smaller than that
in Method 1IA()) where it is necessary to set F, = unity.

In practice, observation of a linear plot of A’ vs. S, is a necessary but not sufficient
condition for the validity of all the assumptions involved; this point is discussed in
Section IlIB. However, note that it is possible to derive (see Appendix) a value for Fe’:

FS = Kpeo (V)R [20]

where F, is usually an upper bound to F,’ (no occlusion effects in the extraction of the
standard spike). However, any such information on recovery efficiencies is invaluable
as an indicator for Quality Control of the overall analytical procedure. Evaluation of eq
[20] requires measurement of the instrument response factor (R, . f,) in separate
experiments using standard solutions of analyte, as in Section IIl A (i).

Although the present document does not pretend to deal with the proper statistical
approach to experimental data with associated random errors (see the excellent
reviews by Miller and Miller*®), a cautionary word is appropriate at this point. The
commonly employed unweighted least-squares linear regression fit to experimental
values of y as a function of x (with the explicit assumption of zero uncertainty in x),
gives the following expression for slope k and intercept b:

13



k=2 [(x=X) (¥ -YV)17Z (x-X)* - [21]
b=Y-kX [22]

where X and Y are the arithmetical means of the experimental values x, and y,
respectively. The point here is that K and b, thus estimated, are negatively correlated
via eq [22]. A positive deviation, of the experimental estimate (eq [21]) for k from the
“trug" value, inevitably leads to a corresponding negative deviation for b, and thus an
even more important error in the ratio b/k. Thus although the Method of Standard -
Additions does indeed possess the advantage of requiring that only the ratio (F,//F,")
be assumed to be unity (rather than F,’ itself), it also has a potential disadvantage
common to all methods which evaluate a desired quantity as the ratio of a least-
squares intercept to the slope. This latter disadvantage can be substantially avoided
by using less restrictive least-squares fitting algorithms. However, in the present
context it is important to realise that eq [19], as commonly evaluated (eqgs [21]
and [22]), is subject to errors of a purely mathematical origin.

Under the assumptions and restrictions of Section llA, the Method of Standard
Additions is susceptible to simplification to a form analogous to a single-point
calibration. Such a simplification would involve only two analyses, e.g. of unspiked
sample and of one spiked aliquot (see Appendix). Such a single-point calibration
version of the present Method of Standard Additions is the only option if limited
amounts of sample are available. Indeed, the requirement for large amounts of
sample is the main operational disadvantage of the Method of Standard Additions. A
minimal sample size is determined not only by requirements of adequate
signal/noise ratios in the measurement of the signals A, but also by the
requirement that the sample analyzed be statistically significant, free of
significant random variations in the concentration of analyte due to intrinsic
inhomogeneity; the latter consideration is often important in environmental
analysis.

It is of interest that the present account of the Method of Standard Additions refers to
experiments in which varying amounts of standard S, are spiked into a fixed quantity
of sample. It has been shown' that the converse method, viz. a fixed amount of
standard spiked into varying quantities of sample, has no advantages. However, the
analysis of varying quantities of sample can provide information concermning bias errors
(constant systematic errors), and this approach is discussed in Section HIB(iii).

[
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lB. Calibration Curves with a Useful Linear Range but a Non-Zero intercept.

It is not uncommon, in analytical practice, to observe a calibration curve which is linear
to within the experimental precision, but which has a statistically significant non-zero
intercept. (Statistical tests, to determine whether the uncertainty limits on the intercept
do or do not encompass the origin, have been given by Cardone' and by Miller).
Such behaviour, if observed for solutions of pure standards, signals a fundamental
problem in the analytical method. There are two broad classes of such problems,
corresponding to positive and negative values for the y-intercept b (eq [22], see

Figure 3).

Figure 3a Fiqure 3b
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Fiqure 3. Generalised response curves with intercepts significantly different from
zero.
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A positive value for b corresponds to a non-zero analytical signal for a solution known
to contain none of the analyte. This effect usually involves chemical interferences and
rarely occurs for highly selective analytical techniques, e.g. those incorporating high-
resolution chromatography with mass spectrometric detection. A well-known example
of such a problem, however, is provided by analyses for tetrachlorodibenzo-p-dioxins
(*dioxin®) at ultra-trace levels (e.g. parts-per-trillion) in samples containing much larger
quantities (e.g. parts-per-million) of other chlorinated aromatic pollutants. Examples
are known where even capillary-column GC with high-resolution mass spectrometric
detection (up to 1.8 X 10, 10% valley definition) could not resolve the desired "dioxin"
signals from interferences co-eluting from a 60m capillary column! |f it were possible
to acquire a calibration curve as in Section I11A(ii), by spiking *dioxin® standard into a
{probably mythical) control sample which contained all of the interfering species but
none of the "dioxin" analyte, the curve would indeed show a positive y-intercept. It
would be highly unusual, however, if the instrumental calibration curve, obtained using
pure standard (Section IlIA(j)) were to show a positive value of b for a technique of
such high specificity. One would suspect presence of an impurity in the solvent in
such a case. (An impurity in the standard sample of the analyte would show up as a
proportional error in the external calibration curve, rather than as a constant bias}.
Where possible, it is good practice to attempt to remove or minimise problems
resulting in positive y-intercepts, by first identifying their causes. Where this is not
possible, the algebraic treatments described below may be used.

The second class of problems corresponds to negative values for the y-intercepts of
the appropriate calibration curves. The physical meaning of such negative values is
best approached via the implied positive values for the x-intercepts ¢ (Figure 3):

¢ = -bk [23]

where the least-squares linear regression expressions for b and k are given as eqs
[21] and [22). Such a circumstance implies a threshold value for g,”, below which no
signal is observed. Such observations, particularly for calibration experiments using
solutions of the pure standard (Section I1A(i)), are usually interpreted in terms of
irreversible losses of analyte on "active sites* on the column®®*' or on the injector or
.other components of the chromatography train®, or in the mass spectrometer ion
source®?*. A major problem with such effects is that they tend to be irreproducible,
and thus not susceptible to accurate calibration. Thus, it is preferable to investigate
the source of such effects and if possible to eliminate them, to the point where the
calibration curve passes through the origin to within the experimental precision.
Otherwise, the algebraic approaches describéd below must be adopted.

Such non-zero intercepts in calibration curves are examples of bias errors, as defined
in Section | above. The detection and characterization of bias errors; often in
conjunction with simultaneous proportional systematic errors (e.g. those associated
with values of F,’ < 1), is a major thrust of the approach promoted by Youden'™ and
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more recently by Cardone™. Many of the principles described in Section IliB are
adapted directly from their work.

H1I8(i) Standard Calibration Curve Method.

Observation of a non-zero intercept b*, in the calibration curve obtained using pure
analyte standards, leads to a modified form of eq [5], as the working relation: "

Lo, = o1 vm 11 ) g | 261 |

where the empirical slope parameter k” may be interpreted as (R_.f,).

The derivation of eq [26] (see Appendix) is an algebraic triviality, but its implications
for the propagation of experimental error are not trivial®’. This conversion also carries
chemical implications whose validity is by no means guaranteed in any particular case.
The values obtained for the experimental slope k”, and particularly for b”, in
the calibration experiments will not necessarily apply to the sample extracts.

For example if b” is found to be positive, often interpreted in terms of co-eluting
interferences, the amount of such interfering substances in the sample extract couid

well be very different from that in the calibration solution. If such interfering

substances were derived from the solvent different effective values for b” would
pertain, depending upon the total volumes of solvent employed in extracting and

dissolving the sample as opposed to dissolving the standard. On the other hand if b”
were negative, corresponding to a positive x-intercept often interpreted in terms of a

constant loss of analyte on active adsorption sites in the chromatographic train, this
amount of lost analyte could well vary depending upon the quantity of co-extractives
from the sample which could compete for these active sites.

The point of the foregoing discussion is to emphasise that non-zero values for b”
usualiy signal potential uncertainties which are best avoided, if possible, by diagnosing

the cause and taking appropriate remedial actions. Such actions might involve a more
selective analytical method if b” > 0, e.g. different chromatography and/or increased

mass spectrometer resolution, or (for b” < 0) changing columns and/or silylation of
appropriate portions of the chromatographic train, ete, However, if none of these
remedies improve the situation, assumption of the applicability of the calibration
F2a6r]ameters k” and b”, to analysis of sample extracts, gives the working relation eq

-
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111B(i) Calibration Curve with a Non-Zero Intercept Using Spiked Control Samples.

As in IIIA(il), the quantities of analyte whose values are known, and for which
analytical responses are determined, are the quantities S, of standard spiked into a
(fixed) quantity of blank sample. Here, however, the calibration curve is not presumed
to pass through the origin (Figure 3).

The non-zero intercept b,’ is subject to a discussion very similar to that for b” in IIB(i).
Thus, a value b, > 0 usually implies that a co-eluting interference is contributing to the
analytical response A, , but in this case the interfering compound(s) could arise from
the control sample as well as from the solvent. Similarly, if b, < 0 the corresponding
positive value for the x-intercept could now reflect loss of a fixed quantity of analyte on
*active sites” of some kind during the extraction and/or clean-up procedures, as well
as in the chromatographic train as discussed in Section HIB(i).

Comments made in IlIB(i), conceming the advisability of diagnosing and removing the
causes of non-zero intercepts if at all possible, also apply here. However, if this can
not be done, the Appendix shows that the working relationship is eq [28].

[ .= aaw, = (- b)) (viv) (1) (1) (28]

However, in the present case it is possible to demonstrate (see Appendix) how, for
simple specific examples, the calibration parameters k;” and b, determined
experimentally as the slope and intercept for the spiked controls, will be in error when
applied to determination of Q /W, for the rea!l sample via eq [28]. Since in general
F,’ < F/, use of the calibration value k,’ for the slope parameter can result in a
proportional error, while a bias error could result if L,” # L,”. This simple
example reinforces the recommendation that, if possible, the cause of a
calibration curve not passing through the origin should be sought and rectified.

HB(iii} . Method of Standard Additions and the Youden Sample Response Curve.

This Section is that which owes the largest direct debt to the work of Cardone™" and
of Youden™"®, In its most developed form, this approach’'® is a powerful protocol of
great generality for the detection of both bias and proportional systematic errors in an
analytical procedure. In order to explain the principles involved in a reasonable space,
a particular model for the analytical procedure will be employed:
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(a)  the chromatography/detection system used is sufficiently selective that no
interferences intervene (as discussed in HIB(ii), for example); the present
discussion could readily be extended to include this effect, if desired;

(b)  the detector response is dlrectly proportional to the quantity of analyte reaching
it, thus:

Aa’ = Ra (fa . qa’ "Ia) | | [38]

where |, represents the (assumed f;xed) quantity of analyte lost to "active sites"
located between the injector and detector, and {, is the fractlon of injected
analyte which reaches the detector if |, is zero;

{c)  extraction of analyte from the sample, and the associated selective
concentration procedures ("clean-up"), are subject to losses of both the
proportional and bias type; it is assumed that the proportional loss may vary
according to whether the analyte is that originally present that is spiked into the
sample, but the fixed Ioss (possibly on "active sites") is assumed to be the '
same;

Q = (F/.Q)+(F/.S) - L [39]

While the model specified in (a) - (c) is not completely general, it does cover
the majority of circumstances which can lead to significant error in quantitative
trace analysis.

Youden'" realised that a general approach to determining whether or not bias
errors were present was to determine a response curve in which the only
variation in quantity of analyte Q, was due to controlled variations in sample
size W,:

Q/ =F/. (Q/W,).W,-L/ [40]

Eq [40] is a special case of eq [39] with S, = 0 (no spiking) and written so that W,
becomes the independent variable. The lmpllclt assumption that C, = (Q/W,) is
constant amounts to ensuring that the sample is effectively homogeneous over the
range of values for W, to be used. Then, under the assumptions implicit in eqs [38]
and [40], it is straughtforward to derive the corresponding functional form of the
Youden Sample Response Curve: .

Aa' = Ra . (fa . qa"la) = Ra . fa' qa’ - Ra : la‘
R, . (VAV) . Fy £ (QUWJ]. W, =R, . f, . (VA [ + |, (V) /4]
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K, . W, +b, | | [41]

where k, and b, are the slope and intercept, respectively, of the Youden Sample

- Response plot. Note that, under assumptions (a) - (c), only negative or zero values
for b, are predicted (see Figure 4). If b, tumns out to be positive, the most probable
cause is that the bias errors are dominated by co-eluting interferences as discussed in
NIB(ii). A statistically significant non-zero value for b, indicates the presence of bias
errors in the analytical procedure, although this alone-can not determine whether
these errors arose during the extraction and clean-up steps or in the chromatographic
train. Under the present assumptions (a) - {c), this question could be approached by
determining the dependence of b, upon (V/V'): '

Aq
C
y
/TN
/ 7 W,
by /,
Figure 4. Hlustration of typical Youden plot in which the independent variable is the

quantity of (unspiked) sample analyzed, keeping the volumes (V',v)
constant. The apparent threshold value for W,, ¢, = -b/k,, reflects a bias
systematic error due to analyte loss on "active sites” in either or both of
the extraction/clean-up step and the final quantitative analytical

procedure.
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b, = -R,.[L’.f, . (V/V) +1] - [42]

A value for (Q/W,) can be obtained from the Youden slope k, (eq [41]) if it is
assumed that the proportional error factors F,’” and f, are both unity, and if R, can be
measured. This is not generally feasible, and the Youden method is usually
applied as a diagnostic approach to the detection of bias errors (but see eq [46]
below).

The Method of Standard Additions, described in IIA(iii) for the simple idealised case,
can be adapted to the more realistic mode! defined by assumptions (a) - (¢). In such
a procedure, eq [39] applies with the restriction that Q, is fixed (via a fixed value for
W,), and §, is the independent variable. Then, as detailed in the Appendix, the most
reliable value of (Q/W,) from the Method of Standard Additions is probably eq [46]:

I_ Ca = (Qajws) = [ (bmsa - -by)/kmsa] . (F;/F;)/Ws [46] -|

As before the ratio of analyte recovery efficiencies, for spiked and original analyte, is
difficult to determine experimentally and is always a major source of uncertainty. The
use of the Youden intercept b, as the appropriate correction for b,,,, rather than e.g.
the intercept b,’ of the Standard Calibration Curve (eq [27]), is in accord with the more
general conclusions of Cardone™ 2. :

IV.  Methods Involving Internal Standards.

Internal standards are used in quantitative chromatography for two reasons: to
remove or reduce the dependence of the final analytical result on the values of
volumes of solutions, and to provide some measure of the fractional recovery of
analyte from the sample into the extract. A compound used for the first purpose is
often referred to as a volumetric internal standard, and is usually added to the
extract solution itself. A surrogate internal standard, on the other hand, is added in
known quantities to the sample at as early a stage as possible. The fractional
recovery of the surrogate internal standard can provide some information on the
efficiency of recovery of the native analyte.

The principles upon which these two objectives can be achieved, and their limitations,

are discussed below. However, it will be convenient here to summarise the desirable
properties for an internal standard:
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(a) It must be completely resolved in the chromatogram from all other known and
unknown substances in the sample extract. (Note: for mass spectrometric
detection, the retention time of the internal standard need not be well-separated
from those of other components, provided that it is characterized by at least
one unigue m/z value within the appropriate retention time window and that the
total sample fiux into the ionization source is low enough that suppression
effects are negligible).

(b)  The intemal standard should elute as closely“as possible to the target analyte,
in order to minimise effects of instrumental drift.

(c)  The internal standard must be chemically stable under the conditions of the
analytical procedure.

(d)  Best accuracy and precision are obtainable if the peak height (area) for the
internal standard is as close as possible to that for the target analyte.

()  The internal standard must be wholly absent from the sample.

(H In the case of a volumetric internal standard lack of volatility is an important
consideration, when volatile solvents are used.

(@) A surrogate internal standard must be as chemically similar to the analyte as
possible. Where possible, this is arranged to be a stable-isotope-labelled
version of the analyte, implying that mass spectrometric detection must
generally be used. In view of requirement (g), the degree of isotopic
substitution shouid be sufficiently large that the probability of observing such a
molecule in the natural material {natural isotopic abundances) is negligible.

IVA. Volumetric Internal Standards in Conjunction with External Standards.

The simple case of a Standard Calibration Curve will be worked through in some detail
~ (Section IVA (i), in order to establish principles of more general applicability and also
the inherent limitations of the approach. The general intent of a volumetric internal

standard is to avoid the uncertainties associated with volumes such as v’ and V’ (see
- Section Il above). The most common of such uncertainties are:

(a) low precision in chromatographicﬁ injection volumes Vv, particularly for gas
chromatography;

(b) potehtial for uncontrolled systematic errors in total solution volumes V', when
volatile solvents must be used.
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These volume parameters are replaced by quantities Q, of internal standard, which are
thus ultimately defined by weighing procedures. However, in practice these quantities
are most often dispensed as volumes of a solution of the internal standard. This
apparent contradiction is resolved by noting that, as explained below, all that is
required of the volume-dispensing in this context is that it be reproducible, in the
sense that the same volume (of the same solution of intefnal standard) be added to
the sample extract solution to be analyzed, as to the stock solution of external
standard. Modern digital dispensers can achieve this with a high degree of precision.
The absolute values, of the dispensed volume and of the concentration of volumetric
internal standard, are not required. In order that the concentration of internal standard
solution be the same for all experiments, it is important that all such additions be
made at the same time to all solutions to be analyzed (particularly if the solvent is
volatile). Similar remarks apply also to certain applications of surrogate internal
standards, to be discussed below in Section IVB.

IVA(). Standard Calibration Curve.

As for any procedure incorporating a calibration curve, the important characteristics of
the latter must be determined, particularly the question of whether or not it
encompasses the origin, and also the extent of the linear dynamic range. In the
present context, a suitable calibration procedure could involve the foliowing steps:

(a)  using accurate weighings and appropriate dilutions (best not serial dilutions, for
which errors accumulate), prepare a series of standard solutions of the analyte;
however, before filling to the calibration mark on each standard volumetric flask,
add a fixed volume Vg of the solution of internal standard, of concentration Ces
(see general comments under Section IV A). If a volatile solvent is used, it is
important to perform all of these additions at the same time, so that each
solution contains the same quantity of volumetric internal standard:

(Q" = Vs . Cyg).

(b)  using weighings and dilutions, prepare a series of standard solutions of the
internal standard alone.

()  conduct the quantitative chromatography experiments on all solutions prepared
in (a) and (b), including as many replicate injections of each solution as are
feasible. .

The present treatment assumes the validity of a linear response curve with a

(possibly) non-zero intercept; this assumption must apply to both the analyte and to

the volumetric internal standard. Application of such a calibration to quantitative

analysis of sample extracts requires that these extracts be spiked with the

23



identical quantity of volumetric internal standard as was used in the calibration
experiments, Le. Q/ = Q;”. Note that all of these spiking procedures (calibration
solutions plus sample extracts) should be done at the same time, to minimise drift in
the values of Vs and/or of C,s. Then the following equation analogous to eq [49]
applies to analyses of the sample extracts (see Appendix):

Q. = [(AS - b)) / (A - b))/ (R AR AVQ]
Ca = Qalws = Qa'/(Fa’ . Ws) ' i [50]

where [(R,.f)/(R.f)/Q/] is determined experimentally as the slope of the plot
corresponding to eq [49] (see Appendix), for calibration experiments conducted using
the external standard solutions spiked with volumetric intemal standard, prepared as in
(a) above. In addition, evaluation of eq [50] requires the additional assumption that
the intercepts b,’ and b/, pertinent to the sample extract solutions, are given by the
experimental values b, and b;” from the calibration experiments (see Appendix).

It is not possible to generalise about the validity or otherwise of this assumption, and
this emphasises yet again the importance of investigating the causes of any non-zero
intercepts with a view to remedial action to reduce them to zero. |f this can in fact be
done, the long calibration procedure (a) - (c) can subsequently be shortened to a
single-point calibration procedure, involving just a single calibration solution
containing an accurately known quantity Q,” of analyte standard, and a reproducible
(but not necessarily accurately known) quantity Q of volumetric internal standard.

“The way in-which a volumetric internal standard corrects for systematic errors
associated with uncontrolled evaporation of volatile solvent (effectively uncertainties in
V’) can now be appreciated. This procedure uses Q; = Q/ as the normalising
parameter, rather than solution volumes. It is thus extremely important that the
volumetric internal standard itself be involatile, and that it be added in precisely equal
quantities to the analyte (external) standard solution(s) and to the sample extract(s).

The effect of a volumetric internal standard on the overall analytical precision is
less clearcut, however. If the random error is dominated by that in the injection

volume V, as is commonly the case for GC analyses, it might be expected that use of
a volumetric interna! standard would improve the precision. However, modern sample

loop injectors for HPLC can achieve a precision of injection of 0.05%; it seems
inherently unlikely that use of a volumetric internal standard could improve on this, and
indeed the question arises as to whether it might impair the overall precision. This
question has been considered in detail by Haefelfinger’®, in an interesting analysis of
the propagation of error in such experiments; this statistical analysis was illustrated by
real-life examples, including at least one in which the random error associated with the
manipulations of the volumetric internal standard were large enough to significantly
decrease the overall precision, relative to that achievable using only the simple
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external standard procedure (Section l11A(i)). Clearly, an informed assessment is
required in sach individual case®®, Despite such uncertainties concerning the effect of
a volumetric internal standard on reproducibility if controlled by injection volumes, use
of an internal standard can always provide a correction for instrumental drift.

1VA(ii). Calibration Using Spiked Control Samples.

In this Section, we discuss modifications to the method described in I1B(ii) appropriate
to incorporation of a volumetric internal standard. It is assumed in this treatment
that analyte losses, associated with "active sites” In the chromatography train,
have been reduced to negligible values, ie. |, is effectively zero. However, the
corresponding assumption is not made for the extraction/clean-up procedure

(L." not necessarily zero).

In this context, a fixed quantity Q/ of volumetric internal standard would be used to
spike all such final extracts from the blank samples, in a fashion analogous to that
described in IVA(i) for the analyte standard solutions.

The Ieast-squares-fit parameters k,;” and b/, determined from the calibration
experiments using the extracts of spiked control samples (see Appendix), are now
assumed to be directly applicable to analyses of real sample extracts, also spiked with
volumetric internal standard:

Aa’/Ai’ = ,i” . Qa + bs,i”
C.=Q/MW, =[ (AIA) - b1/ (k" . W,) [56]

In order for eq [56] to be valid within the assumptions made to this point, the
interpretation in terms of the model (see Appendix) shows that all of the following
conditions must also be satisfied:

Qif = Qlff; Fsll = Fal; LSII — Laf [57]

The first of these conditions may be satisfied experimentally by careful attention to
control of both C,; and Vs, as discussed in IVA(i). The recovery efficiency F,”, for
analyte standard spiked into a blank sample, is likely to be an upper limit for F. but
the discrepancy can be minimised if the recovery efficiencies are developed to the
extent that both approach 100%. The extraction/clean-up losses L, and L,” are not
necessarily constants (see discussion in Section IVB(i)), and should preferably be
reduced to zero if possible. The advantage of the spiked blank calibration procedure,
over that employing standard solutions of pure analyte (IVA(i), is that the two
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assumptions (eq [57]) conceming equality of parameters describing recovery efficiency
are less stringent than those required in IVA(i), viz. F/ =1 and L/ =0.

A different comparison involves the precision achievable using the method described
here, and the analogous method (Il1B{ii)) which does not use a volumetric internal
standard. This same question was discussed in IVA(j), and need not be repeated
here except to emphasise that an informed decision must be made in each case™.

IVA(iii) Method of Standard Additions with a Volumetric Intemal Standard.

In this section we consider the modifications to Section lIB(iii) brought about by
incorporation of a volumetric internal standard into the sample extracts, as discussed
above. The intrinsic advantage of the Method of Standard Additions is that it supplies
its own internal calibration procedure.

Again, in order to keep the algebra tractable, it will be assumed here that the
quantitative chromatography is well-behaved in the sense that |, is zero to
within experimental uncertainty. An analogous assumption must be made for the
interna! standard. However, the possibility of a bias error, arising during the extraction
and clean-up steps, is not excluded. Then, eq [42] of Section HiB(jii) still applies to
the Youden Sample Response experiments, but with |, = 0, with a corresponding
expression for the analytical response for the volumetric internal standard (see
Appendix).

~ The volume ratio (v/V’) again cancels exactly despite random variations in V', and is
replaced by the quantity of internal standard Qy, to give the theoretical expression for

the Youden Sample Response curve:
AN =R, . . /R f) . (FS/Q) (Q/WI . W -(R, . /R, . ) (L") [59]
= ky,i W, + b,

‘As discussed in NIB(iii), the main practical purpose of this procedure is to determine
whether or not a bias error exists, via a value for by; which is (or is not) statistically

different ftom zero. If random errors in v’ dominate those for the overall procedurs,
use of the volumetric internal standard will generally improve the precision®, and the

degree of confidence in evaluating b, will correspondingly increase.

With regard to the analyses corresponding to the Method of Standard Additions itself,
however, the extract solutions have been spiked with the same fixed quantity Q,” of
volumetric internal standard. We obtain a relationship independent of the volume ratio
(VIV} (see Appendix for details):
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AJAN =R, . /R 1) FSQN . S, + R, TR . f) F. Q- LVQ/ [60]

= kmsa.l.' Sa + bmsa,l

where:
brsay = (R - TR, ) . (F,7Q)) . Q, + by, “ [61]
krnsel..i = ky,l ' (Fa’/Fa') / (Qa,ws) ) [62]

As in Section llIB(jii), the most reliable value of Q,/W.,, obtainable from the combined
Youden Sample Response and Method of Standard Additions, is probably given by
combining eqgs [61] and [62]:

| Com QUW, = (B - By) el - (FLTE) /W, 631

with the necessary assumption that F,”= F". If the Youden Sample Response
intercept is not determined, it is necessary to assume in addition that b, =0,
(fe. L =0, see Appendix).

The same comments, conceming the likelihood that use of the volumetric internal
standard will improve or impair the overall precision®, apply here also. Note,
however, that if volatile solvents are used the incorporation of a non-volatile volumetric
standard will always provide insurance against bias errors introduced by uncontrolled
solvent evaporation from the final sample extract. Even if a volumetric internal
standard is included for this latter reason, there is of course no subsequent
requirement to evaluate the data using eqs [59] - [63). The internal standard can be
ignored, if it is judged to be wise to do s0°, and the methods of Section HIB(iii) used
instead.

IVB. Methods Explolting Surrogate Internal Standards.

The ideal surrogate internal standard is an isotope-labelled version of the target
analyte, with sufficient isotope labels in each molecule that the natural abundance of
this species in the sample, is negligible (condition (g) in the introductory comments to
Section IV). The mass spectrometric responses A, and A/, corresponding to
analyte and internal standard in the sample extract, do not then interfere with
one another, and this simplification is assumed to be valid in the entire
discussion of this section. (Incidentally, it is worth noting here that a high level of
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deuteration usually results in a significant shift of retention time, relative to that of the
non-deuterated analyte. This provides further separation of the two responses).

However, it is frequently difficult to acquire a surrogate internal standard which fulfils
this condition. As a result, the analyte and interal standard will probably co-elute,
and the (higher) m/z value monitored for the surrogate will contain interfering
contributions from naturally occurring isotopic variants (mostly *°C) of the native
analyte. In such cases it is necessary to deconvolute the two signals from one
another, using regression techniques. This deconvolution is complicated even further
it appreciable ion fragmentation, particularly hydrogen losses, occur in the mass
spectrometer. In such a case, one is faced also with interferences of the labelled
internal standard on the m/z value monitored as characteristic of the unlabelled
analyte. This problem has been extensively reviewed by De Leenheer et al? .

At some point, uncertainties introduced during the deconvolution procedure will
outweigh the advantages conferred by use of a surrogate internal standard, but it is
not possible to generalise further. Each case must be considered” on its own merits.
In some cases, it may even be preferable to use a closely related compound (e.g. a
methyl homologue) as a surrogate internal standard, rather than a partially isotope-
labelled version of the analyte, if clean separation of the mass spectrometric signals
turns out to be more critical than increased assurance that the recovery efficiently F/
provides a good estimate for F,” (see below). Note, however, that if a chemically
similar but non-identical compound is used as surrogate internal standard, the
relationship F/ = F,” is no longer necessarily valid. The idea that F/ provides an upper
limit to F,” is based on the combined assumptions that the surrogate is chemically
identical to the analyte, but that the original analyte may be more difficult to extract
(occlusion effects) but the surrogate added externally. The latter effect may, in some
cases, be minimised by allowing sufficient time for the internal standard and native
analyte to re-distribute themselves in the sample, prior to extraction.

IVB(i). Use of a Surrogate Internal Standard with No External Standard.

As mentioned above, the ideal surrogate internal standard is an isotope-labelled
version of the target analyte, with sufficient isotope labels in each molecule that the
natural abundance of this species, in the sample, is negligible. This is the case
assumed here. When such an analytical aid is available, it provides a means to
achieve an analytical result of a reasonable degree of reliability when a limited quantity
of sample is available. Procedures such as the Method of Standard Additions reguire,
in principle, multiple sample afiquots. All analyzed samples must be of a size
sufficient that sample homogeneity is assured, and that the analyte quantities Q, fall
within the dynamic range of the analytical procedure.
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The simplest procedure is to add a measured quantity Q, of the surrogate internal
standard to a measured quantity W, of the sample. The spiked sample is than taken
through the extraction and clean-up steps, and analyzed for both native and isotope-
labelled analytes in the same chromatography experiment. In the present treatment it
will be necessary to assume that no bias errors exist in the chromatographic
quantitation of either pure analyte or pure internal standard, ie. that l, and |, are both
zero. If this is found experimentally to be not so, it is strongly recommended that the
causes be identified and the situation remedied; otherwise the algebraic expressions
become intractable. - "

The ratio of chromatographic response factors (R, . /R, . f), a crucial quantity (see
Appendix) can be measured using solutions containing known guantities of both
analyte and internal standard. Frequently, in the case that the surrogate internal
standard is an isotopically labelled version of the analyte, it is assumed that
these response factors are equal for mass spectrometric detection. While this
assumption is probably valid for most cases when applied to total ionisation yields, it
can break down due to kinetic isotope effects if molecular ions are monitored and are
subject to appreciable ion fragmentation. A dramatic example of this effect has been
published®, It is good pratice to establish whether or not such an effect is operating
by comparing mass spectra of the analyte and its isotope-labelled analogue, as a
function of ion source temperature, ionizing energy, etc.

Deduction of values for Q, also requires knowledge of, or assumptions regarding, the
recovery parameters F.', F/, L', L. Some experimental information on this question
can be obtained if sufficient sample is available (see Appendix). The most usual
procedure, however, is to assume that F/ =F, (in most cases F,” will be less than F),
and that the constant loss parameters L,” and L/ are both zero. Note that it is
possible that non-zero values of L, and L’ may Interact with one another, due
to competition for the “active sites". This potential complication is related to
the so-called "carrier effect", whose importance has been the subject of
considerable debate?*2%%,

Finally, it is worthwhile to add a few comments about the quantity Q, of surrogate
internal standard, which directly determines the value of Q,. The best accuracy and
precision are achieved when Q, is determined by direct weighing of a sample of known
purity (both chemical and isotopic). However, such internal standards are generally
scarce and expensive, and it is common practice to dispense Q, as a measured
volume V,s of a solution of concentration C,. In this case the calculated value for Q,
depends directly upon the product Cyg . Vis (NG cancellation, as in the methods using
volumetric internal standards described in Section IVA). Thus, errors in the dispensed
volume Vg and in the concentration Cys are reflected directly in the value deduced for
Q

a*
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In summary, the simplest and most commonly used method employing a surrogate
internal standard, uses eq [67]: ‘ ‘

C. = QUW, = (AJAY) . Cis . VigW, - I 1671

Apart from the disadvantages associated with explicit dependence on Cg (potential -
systematic errors due to solvent evaporation) and Vs, eq [67] implies assumptions
concerning equal chromatographic response factors (usually, but not invariably®®,
valid), equal recovery efficiencies (F,” = F/'), and zero constant losses in both the
extraction/clean-up sequence (L, = 0 = L)) and in the chromatographic train

(Ia = 0 =Ii)'

IVB(ii). Use of a Surrogate Internal Standard in Conjunction with an External
Standard.

In this method, the surrogate internal standard is used to spike both the raw sample
{(as in IVB(i)) and an external standard solution(as was done for the volumetric internal
standard in IVA(i)). As a result, the quantitation is done by measuring Q, relative to
Q,” (a weighed quantity, rather than to Q, = Cs. V|5 as in IVB(j)), while the surrogate
internal standard plays a dual role of correcting (partially) for extraction efficiency and
also that of a volumetric internal standard. This dual role will become apparent in the
detailed treatment (see Appendix).

The problem of constant losses L,” and L', occurring during extraction and clean-up,
must be faced. As for the corresponding chromatographic losses |, and |, these will
interact with one another in a manner related to the question of the carrier effect?®***.
Thus, the only hope for an accurate and precise analysis is that these losses are
reduced to zero by appropriate experimental precautions. Under these conditions
the volume ratios cancel exactly to give the working relation eq [73], on condition that
Q/ =Q;

LC.= W, = (AJA) (AIA) (FIF) . @[y 73]

Note that the absolute values of @, and Q;” need not be known. The only condition
required is that they be equal, a condition met experimentally by using a good-quality
digital dispenser (good precision for V,g}, and by spiking the sample exiract and the
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external standard solution at the same time (same value for C,g, not necessarily known
accurately). This feature (lack of dependence on the absolute valug of Cg) is
particularly important when a volatile solvent must be used. Since surrogate internal
standards are usually scarce and expensive, they are usually not available in
guantities sufficient that a quantity Q; can be weighed out accurately and precissly
each time (a minimum of several milligrams, for most analytical balances). The same
restriction does not usually apply to the unlabelled standard, so sizable quantities Q,”
can be weighed out, and external standard solutions made up fresh, each time. This
is a considerable advantage of the present method over that described in IVB(i).

In addition, the procedures described here permit an estimate of the recovery
efficiency F/, of the surrogate internal standard, to be made (see Appendix):

Fio= (NIN) (V'IV) (VIV) [74]

provided Q; = Q. Such an estimate of F/ is subject to combined errors in the
volumes, and in any event provides only an upper limit to F,”. However, practical
application of eq [73] requires the assumption that F,’ = F/, and this is most likely to
be valid when F/ is close to unity. Thus, estimation of F, via eq [74] provides a check
on the internal consistency of this procedure.

1VB(iii) Analysis Using a Surrogate Internal Standard in Conjunction with Both a
Volumetric Intemal Standard and an External Standard,

This procedure is identical to Method IVB(ii) except that a volumetric internal standard
is also used, as described below, in order to provide more reliable measurements of
F{ (fractional recovery of the surrogate spiked into the raw sample). Monitoring F/is
essential for quality control of the overall analytical procedure, and is possible with
very littie- additional effort over and above that required for Method IVB(i)). However,
in cases where precision of injection volumes or detector drift are not major problems
(compare discussion in IVA(i)), Method IVB(ii) is adequate (eq [74]) and may even be
superior®® to the approach described below.

It is necessary to use two different symbols to denote the two internal standards.
Subscript i will denote the surrogate, as for Method IVB(ii), while a subscript j will
denote the volumetric internal standard. -

In practice, the surrogate internal standard is used to spike the raw sample and the
external standard solution, exactly as in Method IVB(ii). However, prior to analysis by
(usually} chromatography with mass spectrometry, both the sample extract and the
external standard solution are also spiked with a volumetric internal standard. (A
realistic example would involve analysis for a specific PCB congener, using a
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surrogate internal standard which is an all-'*C isotopic variant of the congener, and
using octachloronaphthalene as the volumetric internal standard which also serves as
a retention time reference point).

The volumetric standard does not enter the analytical result Q, itself; eq. [73] applies
under the same restrictions, including an assumed validity of a single-point caiibration,
as in Method IVB(ii). Under these restrictions eq [73] Iis valid as the working
relationship for the present method, but can be applied only if the fractional
recovery F,’ is assumed equal to F/. Note that, in particular, eq [73] assumes that the
surrogate spike quantities Q, and Q" are equal; this condition is readily fulfilied
experimentally, as discussed above.

However, the chromatograms obtained for the sample extract and external standard
also contain peaks corresponding to the volumetric internal standard, and this
information permits reliable measurement of F/. If these chromatograms are regarded
as analyses for the surrogate internal standard (subscript i) by Method IVA(), using
the external standard in conjunction with the volumetric internal standard (subscript j),
the relationships derived for Method IVA(i), but with the subscript substitutions a --> |
and i --> j, apply here.

By assuming that the relative response factors (R; . /R, . } are equal for the two
chromatographic runs (sample extract and external standard), the foliowing result is
readily obtained (see Appendix) if it was arranged by experiment that the volumetric
internal standard quantities were equal, i.e. Q' = Q/, and if in addition the surrogate
internal standard quantities were also equal, i.e. Q" = Q;

L ara =F/ = (A . (IA)) | 761 |

In this way, reliable measurements of F’ can be obtained from two peak area ratios,
obtained from the same chromatograms as those used to quantitate the analyte itself
{eq [73]). These values of F; are invaluable for quality control of the overall analytical
procedure but are upper bounds to F,' if the surrogate is an isotopically labelled
version of the analyte.

In summary, Method IVB(iii) has no advantage over Method VB(ii) as far as the
desired analytical result (Q,/W,} is concerned-(still uncertain due to lack of knowledge
of the ratio of fractional recoveries), but provides more reliable measurements of &/
with little additional effort, in cases where injection volumes v are the limiting factor in
the overall precision {usually true of GC methods). In other cases (e.g. HPLC loop
injection), injection volumes are dispensed with high precision and use of a volumetric
internal standard could actually impair the overall precision® .
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IVB(iv) Use of a Surrogate Internal Standard which is NOT an Isotopic Variant of
the Target Analyte. '

In some cases it may be necessary to use a surrogate internal standard which is not
an isotopic variant of the analyte. The most common circumstance under which such
a situation would arise corresponds to a case where an entire class of analytes is of
interest, but where isotopic variants are available for only a few members of the class.
For example, polychlorobiphenyls (PCBs) comprise a class of 209 congeners, of which
only a few are available as all-'®C variants. Another example is afforded by the
polycyclic aromatic hydrocarbons (PAHs), for which the number of isomers increases
dramatically as the molecular weight {(and thus the number of fused rings) increases;
again, only a very few compounds are available as perdeuterated internal standards.
(For the PAHs, only a small fraction of the unlabelled isomers are available as external
standardsl).

The discussion of Methods IVB(i)-(iii) was explicitly restricted to cases where the
surrogate internal standard is indeed an isotopic variant of the analyte. This.Section
considers the additional implications of circumstances where this condition is not
fulfilled. The first part of the discussion concerns circumstances where, although the
isotopic variant is not available, the pure analyte can be used as an external standard.
Finally, the implications of having neither external standard nor true surrogate internal
standard available for the analyte of interest, but where one or both of these are
available for a closely related analyte, will be described.

An example of the first circumstance is provided by PCB analysis where only
one or two all-"°C versions of chemically pure congeners are available, but
where all of the unlabelled congeners of interest as analytes are available. The
discussion may be separated for convenience into the extraction and clean-up step,
and the quantitative chromatographic analysis,

Extraction and Clean-up. The fractional recoveries F’ reflect the efficiency with which
the analyte or internal standard can be extracted from the spiked sample, and
successfully taken through subsequent fractionation procedures to the final cleaned-up
sample extract. In all of the methods discussed thus far, estimates of the desired
Quantity F.” via measurements of F,’ (Mathods HIA(ii)) and HIBiii)) or of F/ can be
taken to be upper limits to the true value of F.', corresponding to the likelihood of
discrimination against the native analyte due to occlusion within the sample matrix. As
discussed above, this effect ieads to potential systematic errors corresponding to
values of (Q/W,) which are lower limits to the true value. The same physical and
chemical effects are operative when using a surrogate which is an isotopic variant of
a compound related to the analyte of interest. However, not even the sign of the
Systematic error can now be assigned with any confidence since a priori it is just as
likely that F/ < F,’ as that F/ > F,”. While no fully satisfactory solution to this problem
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seems possible, some information on the nature of such systematic errors in any
given case can be obtained from additional experiments. Thus, in the present case
where an external standard is presumed to be available for the analyte of interest, F,’
can be measured by the Method of Controlled Additions (see IlIA(jii) and HIB(iii), and
this does provide an upper limit to F./, to be compared with F/. Comparisons among
different extraction/clean-up procedures can also provide helpful information.

Quantitative Chromatographic Analysis. An example of both systematic and random
uncertainties, arising from the chromatography per se, is provided by the case of a
mixture of analytes covering a wide range of volatilities, such as the PCBs; significant
quantitative errors can arise'® when using a Grob-type splitless injector for capillary
GC. These errors arise because the fraction of any given analyte successfully
entering the column is governed not only by carrier gas flow rate, valve actuation
purging time, and solvent properties, but also by non-reproducible effects such as
partial agrosol formation and partia! adsorption on the injector surface. These non-
reproducible effects are more important for the less volatile components, as has been
demonstrated'® experimentally for the PCBs. The use of internal standards can
alleviate this problem, but for quantitative PCB analyses a range of internal standards,
covering the volatility range of the analytes, is required””. For example, an all-'*C
tetrachlorobiphenyl used as a single internal standard for all the PCB congeners can
adequately correct for such injector errors for all tetrachlorobiphenyl isomers, and
reasonably well for tri-and pentachlorobiphenyl congeners, but the correction becomes
progressively less applicable for congeners with increasing degrees of chlorination®’.
Cool on-column injection techniques were shown'® to circumvent these problems of
irreproducible discrimination against less volatile components, provided that proper
attention is paid to the necessary precautions'®. In the case of the intrinsic mass
spectrometric sensitivities, it is not possible to predict with confidence even relative
total ionization efficiencies although various schemes based upon additive atomic
contributions have been proposed. Even less is known concerning the fragmentation
yields. Thus, although El mass spectrometric sensitivities for selected ion monitoring
(SIM) are reasonably reproducible, relative values are not predictable even for
analytes which are isotopic variants of one another®. In the present case, where it is
presumed that the unlabelled versions of both the analyte and surrogate 1S are
available, the relative responses in SIM can be determined experimentally.

We now discuss briefly cases where neither external standard nor true
surrogate is available. Unfortunately, this circumstance is all too common in
environmental analysis. To continue with the example of PCB analysis, it is frequently
necessary to estimate the amount of a particular congener from experiments in which
none of the available external nor internal standards are chemically identical to the
target analyte, though usually isomers of the target PCB congener are available.
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Extraction and Clean-up. As above, measured values of F can be systematically
larger or smaller than F,’, and there is now no possibility of using the Method of
Controlled Additions to measure F.”. For the example of PCB analysis, using e.g. one
specific all-'*C tetrachlorobiphenyl as surrogate, the measured value of F’ will be, as
usual, an upper limit to F,” for the corresponding native congener and hopefully should
not be too different for isomeric tetrachlorobiphenyls. Some knowledge about the
dependence of F., and thus of F/, on degree of chiorination, can be obtained by using
the Method of Controlled Additions for representative PCBs other than the analyte of
interest (which is presumed here to be not available as a pure standard). In this way,
it is possible to obtain some semi-quantitative feel for the likely variations of F/, and
thus for the correction factors to be applied to the values obtained for Q/W,, by
assuming F,” = F/. However, this is the best that can be done in these circumstances.

Quantitative Chromatographic Analysis. All of the comments made above apply in
this case also, but now there is no possibility of accurately determining the relative
responses for unlabelled analyte and internal standard. Again, the best that.can be
hoped for is that some semi-quantitative trends can be established. Any values of C,
estimated in this way must be treated with appropriate scepticism. :

V. Comments on Non-Linear Calibration Curves.

Although at first sight a situation involving non-linear calibration curves may appear to
be mathematically intractable, a simple decision renders it no more difficult
algebraically than any other method. As an illustrative example we shall use the

- method involving a surrogate internal standard in conjuction with an external standard
(Section IVB(ii), since this method is reasonably complicated but provides results of a
high degree of reliability.

If the calibration procedure, using external standard solutions spiked with constant
amounts Q" of surrogate intemnal standard, reveals a highly non-linear relationship
between (A,”/A/") and (Q,”/Q;"), possibly with a non-zero intercept, the most obvious
course would be to describe the dependent variable in these calibration experiments,
viz., (A”/A"), as a function of the independent variable (Q,”/Q"). Such a course
does lead to algebraic difficulties, basically because in the analyses of the unknown
samples the roles of the variables are reversed.

Accordingly the calibration data are best treated, by appropriate curve-fitting
procedures, to give directly the inverse functional relationship in which the peak area
is assumed to be the independent variable. While such an inversion of dependent and
independent variables is indeed an algebraic triviality, it carries implications for the
propagation of experimental errors as has been emphasised by Miller®.
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it is now necessary to make the crucial assumption that the same functional form
applies equally to the analyses of the extract solution from the spiked sample and to
the spiked external standard solutions.

Another necessary simplification is to assume that the offset losses L and L/ are zero
to within experimental error, and that F,” = F for a surrogate internal standard, the
working relationship for this method becomes eq.[80] (see Appendix):

| C. = QUW, = [0, ((ASIA Y0 IALTAM QW) [80]

It can be seen that eq[73], the working relationship for Method 1VB(ii), is just a special
case of eq[80]. Although eq[80] may look forbidding, it merely requires determination
of the functional form &,/ from appropriate calibration experiments (e.g. determining
the values of the coefficients in polynomial fits to the data), followed by substitution of
the experimental peak-area ratios determined for the extracts of the spiked samples,
into these functions. Similar treatments can be developed for the other methods if the
calibration curves turn out to be non-linear over the desired range. However, the
question of propagation of errors, associated with the inversion of dependent and
independent variables®, will always require considerable attention.

VL.  When is the Result of Weighing Equal to the Mass of the Object Weighed?

As emphasised in the Introduction, all quantitative chemical analyses refer ultimately
to a mass, as measured on an analytical balance, of a standard sample of the analyte
with a known degree of purity. Although the purpose of the present document is
not to describe details of experimental procedures, this essential (if non-glamorous)
fact is sufficiently important that some amplifying discussion is included here.

1t is important first to define some terminology. The mass of an object is an intrinsic
property of that object, in the same way as the amount of substance (proportional to

“the number of constituent atoms or molecules) is fixed; there are no known chemical
or physical phenomena which can alter these properties without destroying par of the
object. (We here take the term mass to mean the rest-mass, since relativistic effects
are of no significance for analytical chemistry’in the present context.) It is this aspect
of these properties which has led to their adoption as fundamental quantities in the
Systéme Internationale d'Unites (Sl units), with the kilogram and the mole,
respectively, as the units which permit Sl to be a coherent system’. There is thus no
possibility for debate concerning the meaning of "mass®.
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The same is not true, however, of the widely used terms *weight” and "to weigh".
Most physics textbooks interpret the weight of an object to mean the gravitational
force acting on that object, which is thus a function of both the intrinsic mass of the
object and of its position in space. In common usage "weight" is most often used as a
synonym for *mass®. The verb "to welgh" is almost universally taken to mean an
operation in which the mass of an object is measured via comparison of the local
gravitational force upon it with that upon a standard object of certified mass. (True
confusion often arises since such a standard mass is, in common usage, also referred
to as a "weight"). The archetypal weighing experiment involves use of a two-pan
balance in a comparison via the lever principle of the unknown object and the
standard-mass artifact. Then, when the lever is at equilibrium, the moments of the
two forces about the pivot must be equal:

m,.g.L, =m.g.L, [81]

If the arms of the lever are of equal lengths L, and since the value of the gravitational
acceleration (g) can be assumed to not vary over the length of the balance arm, this
reduces to: -

m, = Mg : : [82]

However, eq.[81] is only an approximation to the full expression of balanced forces for
the vast majority of cases where an object is "weighed" in this way. In almost every
case, the *weighing" is done in ambient atmospheric air, so both the object being
weighed and the standard mass are subject to buoyancy forces in accordance with the
Principle of Archimedes. Since any object immersed in a fluid displaces its own
volume of the fluid, and since this fluid volume would have been in equilibrium with its
own “weight" (in the sense of the gravitational force upon that fluid volume), the
buoyancy force on the displacing object must be equal and opposite to the "weight" of
the displaced fluid. Therefore, eq.[81] must be amended thus:

(My - Vid).ol, = (m, - V..d).g.L, [83]

where d, is the density of the ambient atmosphers, and V, and V, are the volumes of
the unknown and standard masses, respectively. On substituting:

V,=m/d; and V, =mJd, | - [84]
€q.[83] becomes: N
m, = ms'[(‘1 = da/ds)/(1 - da/du)] = ms'kasu [85]
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where the buoyancy correction factor k,, is @ function of the nature of all of the
ambient atmosphere and the standard and unknown masses. This correction factor
has the value of unity only under two circumstances, viz. either d, = zero (the
analytical balance is operated in a vacuum, an option seldom used in practice in a
busy analytical laboratory), or d, = d, (standard and unknown have equal densities).
The standard reference masses are, by international convention, made of stainless
steel with d, = 8 g cm™®, while most chemical materials thus weighed out have
densities of the order of 1 g cm™®, so even the second option for reducing k., to unity
is not available in practice. ' ‘

It is necessary therefore to investigate the values of k., for typical conditions. The
most important variable in determining d, is altitude, with values ranging from about
1.2 mg cm™ at sea level to about 1.0 mg cm™ at an altitude that of Denver; the

variations due to the weather (humidity) amount to only some +3%. For example, if
an object of density 1 g cm™ is weighed at sea level, with standard masses of density

8 g cm™®, the value of k,, calculated from eq.[85] is 1.00105, corresponding to a
systematic error of about 0.1% (too low a value of m,, the parameter actually
recorded, is required to balance the unknown mass.) If e.g. dried argon is used to
flush the balance when used to weigh air-sensitive compounds, the value for d, must
be caiculated a priori. '

This discussion has focussed on the two-pan lever balance, as a readily visualised
experimental arrangement. In fact the same considerations apply to modern single-
pan electronic balances which must be calibrated against a standard mass; the fact
that the standard is placed on the same pan, as is used subsequently for the unknown
object, does not alter the fact that buoyancy corrections are required. The question as
to whether or not these corrections are significant must be answered for each
individual set of circumstances.

Vill Conclusions

There are no easy answers in quantitative trace organic analysis. The “best”

procedure must be determined for each particular case. For cases where the matrix is

sufficiently complex that analyte recovery efficiency is an important question, surrogate
internal standards are an essential tool if unavailability of large quantities of sample
precludes use of the Method of Standard Additions. As emphasised in Section IVA,
use of a volumetric internal standard can greatly improve experimental precision in
some cases, but can also have a deleterious-effect in others. In this, as in other
aspects, it is the responsibility of the analyst to make an informed decision.

Another aspect in which professional judgement is an essential feature of a successful

analysis involves the question of whether or not the signal, supposedly corresponding
to the target analyte, is partly of entirely due to a co-eluting interference. This
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question of qualitative analysis, as a necessary preamble to quantitation, if frequently
overlooked. The probability of such co-elutions is surprisingly high, as has been
demonstrated®* both theorstically and experimentally. Demonstration of *peak purity*
usually involves full-spectrum analysis (e.g. full-scan mass spectrum or diode-array
detection of the complete UV-visible spectra) across the chromatographic peak(s) of
interest. Such detailed qualitative analysis is also advisable when testing a control
sample to ensure that it is free of the target analyte(s).

Statistical analysis of data, and experimental design and sampling strategies, are
essential features of quantitative analysis which are not treated in the present
document. A more mundane problem, which can lead to large uncertainties, involves
determination of chromatographic peak areas (or heights). Particularly when the
peaks of interest are superimposed upon a significant unresolved background,
appreciable unceretainties can arise in determining the appropriate baselines. It is
essentail that the rules programmed into the detector datasystem are fully understood.
Perferably the datasystem should provide an interactive feature which permits user-
defined "rubber-banding® of chromatographic baselines, for cases where the pre-
programmed routines are not acceptable.

Finally, use of certified reference materials has not been mentioned here. Generally,
such materials are used as quality control checks, but they can also be employed as
the basis for calibration of an integrated analytical procedure. However, reference
materials are generally expensive, representing a scarce resource, and while they do
offer the means of probably the most satisfactory calibration procedure, it is not often
that is is feasible to do so.
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APPENDIX: DETAILED DERIVATIONS OF WORKING RELATIONSHIPS.

This Appendix presents more detailed algebralic derivations of relationships discussed
in the main text. There is therefore considerable overlap between the two. It was
decided that it is more important here to ensure clarity than to pursue conciseness, so
that considerable duplication of material will be found. Sections and sub-sections
within the Appendix are numbered in strict accordance with those in the main text.

m Analytical Methods Using External Standards with No Internal Standard in
Quantitative Chromatography.

HNIA Linear Response Curve with Zero Intercept.
In this case, the necessary conditions for a single-point calibration procedure to be
valid are satisfied. However it is always preferable, where possible, to use a full
calibration curve procedure.

HIA() Standard Calibration Curve Method.

This method involves establishing the instrumental response curve, using standard
solutions of the analyte covering an appropriate range of concentrations C,” and
corresponding weighed quantities of analyte Q,” = (C,”.V”). Then the assumption of
a linear calibration curve with zero intercept corresponds in this case to a relationship
(eq [1]) between the independent variable Q,” and the dependent variable A",

A" =R,” . (quantity of analyte delivered to the chromatographic detector)

= Ra”.(fall.qa" - laﬂ‘) = Raﬂ.faﬂ.qa.” IF la” = ZGTO

= Ra".fé".(V”N”).Qa” [1]
where 1, (the constant analyte loss in the chromatographic train) must be zero if the
response curve is to pass through the origin. If this is found experimentally to not be
the case, it is good practice to determine the reasons and take remedial action since

non-zero values are often irreproducible (see introduction to Section 11B, below). The
instrumental response factor (R,”.f,”), thus determined for the external standard
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solution as the slope of a plot of A,”” vs. Q,”, can be written for the special case of a
single-point calibration procedure (i.e. single value of Q,”), as:

Raff.fafl = Aalf/qafl = (AaI’IQaff) (V”/V") [2]
since (q,”/Q,") = (V'"IV").

Refs. 5 and 12 describe statistical tests for deciding whether or not the intercept,
derived from a linear fit of A,” vs. Q,”, is significantly different from zero. The
corresponding relationship for chromatographic analysis of the extract solution from
the sample, can be rearranged to give an expression for Q,” as the dependent
variable;

Q, = A (VNV)R L) [3]

where again the constant loss I,” has been assumed to be zero. It is not possible to
measure (R,".f,") directly (Q,” is not known), so it must be assumed that R, 1, =
R,".f,” = R,f,. This is a general assumption made throughout the present
treatment. Associated (proportional) systematic errors can arise from drift of the
intrinsic detector sensitivity R, or from variations in the fractional transmission factor f,.
The value of R, will undoubtedly drift with time and exposure to sample, but the
effects of such drift can be controlled by alternating injections of the external standard
solution with those of the sample extract, permitting continuous monitoring of (R,”.1,”)
via eq[2]. More subtle uncertainties, associated with this assumption of constant
instrumental response, can arise for example if the chromatographic peak used to
measure A, is not as well defined or resolved as the corresponding peak used to
measure A,” for the solution of the pure standard. Such uncertainties can be resolved
only by repeating the analysis using a chromatographic method of significantly
different separation selectivity, although use of full-scan mass spectrometry can also
assist in such cases.

However, under this assumption of a constant or slowly varying response factor (R,.f,)
€q.[3] can be used to transform the experimentally observed chromatographic signal
A,"to Q/, the quantity of analyte present in the sample extract. Such an inversion
of the calibration procedure (eq [1]) carries implications for the propagation of
associated experimental uncertainties, as discussed by Miller®. Conversion of Q,/
to the desired quantity Q, requires knowledge of the fractional recovery of analyte
during the extraction and clean-up steps of the overall analytical procedure. The
present case of an assumed ideal linear relationship corresponds to an assumption of
the relationship given as eq.[4]:

Q' = F.Q,-L = F/Q, [4]
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with the implication that the fractional recovery F.’ is a constant (note also the
assumption of zero intercept L,”). Then egs.[3] and [4] may be combined to give
eq.[5], the working relationship for Method HIA(i):

C,=Q/W, = A/ (1/RL).(VA).(IIF) (1IW)

In the special case where only a single-point calibration procedure is used, egs.[1] or
[2], [3] and [4] are combined to give eq.[6]:

Q/W, = (Q/FF W, = (VN )YV N")AA)NQF) (1IW) | (6]
= (VNVYASIA YV .CUVFL W)
where C.” = (Q,"V"}.

All of the disadvantages of the Standard Calibration Curve method are evident in
egs.[5] and [6]. Thus, volumes and concentrations appear explicitly; systematic
uncertainties in V’, V” and C,” due to solvent evaporation, and random errors in the
injection volumes v* and v” (not well controlled in GC, but much better in HPLC using
injection loop methodology), directly affect the final result. The peak area A and its
calibration (either (R,.f,) in eq.[5] or (Q,"/A,”) in eq.[6]) must be measured in separate
chromatographic runs, introducing the possibility of systematic error due to
instrumental drift. The fractional recovery F,” is not measurable from such
experiments alone, and the requirement for an assumed value of unity introduces a
proportional error into the values of Q, thus calculated (yielding values for Q,
which are lower limits to the true value).

{lIA(ii) Calibration by Spiking Control (Blank) Samples.

1n this context a control sample is taken to mean a sample which is identical in every

way to the sample to be analysed, except that it contains an undetectable quantity of
the analyte. The degree to which such a sample can be said to exist will vary strongly
with the situation, but it is relatively easy to achieve in a pharmaceutical formulation
context, for example. ' ‘

This method again assumes the validity of eq.[1] for the instrumental response. Now,
however, the calibration curve actually used is obtained by spiking different quantities
8, of standard into different aliquots of the control sample, which are then taken
through the complete analytical procedure. The most reliable method of determining
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the quantities &, is by direct weighing of the pure standard. However, in practice the
spiking is often done by dispensing volumes V, of concentration C,” (S, = V,.C,”); this
method is more convenient, but carries the risk of introducing both systematic errors
(e.g. from evaporation of solvent and inaccuracies in the volumetric equipment) and
random errors (via imprecision in the volumes dispensed).

By varying S, over an appropriate range, and determining the corresponding -
chromatographic peak areas A,’ for injections of aliquots of the extracts, a calibration
curve can be constructed. Under the general assumptions of Section !, this
calibration curve is assumed to be a straight line passing through the origin:

AS’ = kS" (VS’NS,)' Sﬂ 7 . [7]

where k" is the experimental slope of the calibration curve from the spiked (thus
subscript ;) blank samples. |f this calibration is then assumed to be applicable to the
analysis of the real (unspiked) sample, the desired quantities are calculated as follows:

Q; = (). (V/N) . A/ _ [8]

In the absence of any additional information, it is now necessary to assume 100%
recovery of the analyte from the sample, ie. that Q, = Q/, to give:

lc.=am, = (1K) . (Vi) . (A/W) 9 |

Eq [9] is the working empirical relationship for analyses using a calibration
obtained by extracting blank samples spiked with known amounts of analyte.

Egs [7], [8] and [9] are straightforward empirical relationships, with experimentally
measured parameters. However, under the various assumptions of this section
(Section 1lIA), the wholly phenomenological eq {7] (with the experimentally determined
parameter k,') can be interpreted in terms of more fundamental parameters in an
appropriate form of eq [1], viz:

AS = (R.1) . (v V) 8y {10]

where (R,.f,) is the (assumed constant) instrumental response factor for the analyte,
and S, is that portion of the quantity of analyte, originally spiked into the blank
sample, which was successfully transferred to the sample extract (of volume V)
Again under the approximations made in this Section, the constant ioss L.’ in the
extraction/clean-up procedures is assumed to be zero:
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S,/ =F/ .S, | : [11]
so that eq [10]} becomes:
A = (R.fd) .F . (V). S, _ [12]

Comparison of eqgs [7] and [12] shows that the experimental slope k., may be
interpreted, under the stated assumptions, as:

k' = (Raf) - FS [13]
so0 that the empirical eq [9] can be similarly interpreted to give:
QM, = (1R, 4) . (F//F) . (VIV) . (ASW)) [14]

The practical consequences of the discussion of eqs [10 - [14] arise from the
understanding that combination of the external standard calibration method (Il A(i))
with the spiked blank sample calibration method (HIA(i) provides much better
information than either separately. Thus, lIA(i} permits independent evaluation of
(R..f,), which can be applied directly to eq [13] to provide a value for F,’, an upper
bound to F,’ since the native analyte in the sample may be subject to "occlusion
effects” which do not affect the analyte added as an external spike. Such an estimate
of recovery efficiency is nonetheless an important quality control parameter in judging
whether the extraction procedure is adequate.

The working relationship (eq [8],) for the calibration technique discussed in the present
section, can be understood (eq [14]) in terms of the assumptions of the model used
here. The advantage over the method described in INA(]) is that it is the ratio (F,"/F")
which is now the unknown guantity reflecting extraction efficiencies, and the usual
default option of setting this ratio to unity is likely to be much more accurate than the
corresponding assumption in HA(), viz. that F,” itself must be set to unity.

In summary, the method of Calibration by Spiking of Control Samples is subject to all
-of the systematic and random errors described in Section HIA(j) for the Standard
Calibration Curve Method, with the important exception that the proportional errors
associated with uncertainties in the fractional recovery are now less serious. By
combining'the two methods it is possible to measure values of F/, a valuable
parameter for purposes of Quality Control. The present method is clearly more time-
consuming than A(i); which may be a significant consideration in some
circumstances. Further, the present method depends on the availability of sufficient
quantities of a suitable blank sample.
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HA3ii) Method of Standard Additions.

This method is similar to that described in Section [I1A(if), but now the spikes of pure
standard are added to different aliquots of the actual sample to be analyzed rather
than to a control (blank) sample. Known amounts S, of the external standard,
preferably determined by direct weighing (see Section I1IA(ii)) are spiked into separate
aliquots of the raw sample prior to extraction, clean-up, efc. Then the total quantity of
analyte, recovered from the spiked sample and present in the sample extract, is:

Q. = (Q.F, +S.F) - (L +L) [15]

where F./ is the fractional recovery of that portion of the analyte which was spiked into
the sample as a standard solution (compare F.’ in Section NIA(i})). In general F/ > F./
since the latter accounts for losses due to imperfect extraction from the sample matrix
as well as for losses during clean-up. As in all of Section HIA, it is assumed here that

all F” parameters are constants, independent of sample size and analyte levels. The
constant losses L,” and L’ are assumed to be zero in the present case, but non-zero

values are discussed in Section IliB(iii), below.

Also in common with all methods discussed in Section HIA, it is assumed that the
instrumental response curve is the ideal version given by eq.[1], with the
chromatographic constant losses |,” and . also zero. Then Q. is also given by
eq.[16]:

Q' =(VNV)q, = (V’/v').Aa’/(Ba.fa) [16]
Combining eqgs.[15] and [16] gives eq.[17]:
A= [(v’N’).(F{a.fa)fFe']. S, + [(VIV').(R.1).F,/.Q,] , [17]

If the value of Q, is made constant by always extracting a fixed quantity W, of
sample (assumed homogeneous), and if the volume V' is maintained constant for all
injections (to within the available precision, a shortcoming of all methods not involving
an internal standard particularly if the chromatographic method is GC), eq.[17] predicts
that a plot of A,” vs. S, should be linear, with slope k.., and intercept b, .. given by:

Kmsa = [(V/V).(R.f).F] and b, = [(VV').(Re ). F.Q,] 8]

From eq.[18], the desired quantity C, is given'by eq.[19], the working relationship
for Method 1MA(lii): '

Cﬂ = Qa/ws = (brgsa/kmsa)'(Fe’lFa’)/Ws
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where k..., and b,.,, are determined empirically as the slope and intercept of the plot of
A, vs. S, (eqs [17] and [18]). Note an advantage here of the present method over
that described in Section IIA(ii); in the present case the recovered spike and analyte
from the sample are contained in the same sample extract solution, so that the
volumes Vv’ and V'’ are the same for both and thus do not appear in calculation of Q,
from eq [19]. In the method described in Section IlA(ii), on the other hand, the
standard spike and the unknown analyte are contained in different solutions,
accounting for the appearance of the additional volume variables v,” and V.’ in .
egs.[7] - [13]. The irreproducibility of the injected volumes v and v./, especially for GC
analyses, can be a major contributor to the random error in the final analytical result.

Since F,” is not measurable, practical application of eq.[19] requires the further
assumption that F,’ = F_’, leading to a proportional error in Q, yielding a lower limit
to the true value, since in general F/ > F.” (see discussion of F,” in Section HIA(ji)).
However, this proportional error is likely to be considerably smaller than that in Method
HIA(i) where it is necessary to set F,” = unity.

in practice, observation of a linear plot of A’ vs. S, is a necessary but not sufficient
condition for the validity of all the assumptions underlying the explicit form, eq.[16];
this point is discussed in Section |1IB. However, note that eq.[18] gives:

F' = Ko (VYR L) [20]

where F_’ is usually an upper bound to F,” (no occlusion effects in the extraction of the
standard spike). However, any such information on recovery efficiencies is invaluable
as an indicator for Quality Control of the overall analytical procedure.

Under the assumptions and restrictions of Section IlIA, the Method of Standard
Additions is susceptible to simplification to a form analogous to a single-point
calibration. Such a simplification would involve only two analyses, e.g. of unspiked
sample and of one spiked aliquot. Then two independent versions of eq.[17] will
result, which can be solved for the unknowns Q, and F,” (assumed equal to F,’).
Such a ‘single-point calibration version of the present Method of Standard Additions is
the only option if limited amounts of sample are available. Indeed, the requirement for
large amounts of sample is the main operational disadvantage of the Method of
Standard Additions. A minimal sample size is determined not only by
requirements of adequate signal/noise ratios in the measurement of the signals
A/, but also by the requirement that the sample analyzed be statistically
significant, free of significant random variations in the concentration of analyte
due to intrinsic inhomogeneity; the latter consideration is often important in
environmental analysis.

It is of interest that the present account of the Method of Standard Additions refers to
experiments in which varying amounts of standard S, are spiked into a fixed quantity
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of sample. It has been shown' that the converse method, viz. a fixed amount of
standard spiked into varying quantities of sample, has no advantages. However, the
analysis of varying quantities of sample can provide information concerning bias errors
(constant systematic errors), and this approach is discussed in Section IIB(fii).

MB. Calibration Curves with a Useful Linear Range but a Non-Zero Intercept.

It is not uncommon, in analytical practice, to observe a calibration curve which is linear
to within the experimental precision, but which has a statistically significant non-zero
intercept. (Statistical tests, to determine whether the uncertainty limits on the intercept
do or do not encompass the origin, have been given by Cardone™ and by Miller®).
Such behaviour, i observed for solutions of pure standards, signals a fundamental
problem in the analytical method. There are two broad classes of such problems,
corresponding to positive and negative values for the y-intercept b (eq [22]).

A positive value for b corresponds to a non-zero analytical signal for a solution known
to contain none of the analyte. This effect usually involves chemical interferences and
rarely occurs for highly selective analytical techniques, e.g. those incorporating high-
resolution chromatography with mass spectrometric detection. The second class of
problems corresponds to negative values for the y-intercepts of the appropriate
calibration curves. The physical meaning of such negative values is best approached
via the implied positive values for the x-intercepts c:

¢ = -blk | 23]

where the least-squares linear regression expressions for b and k are given as eqs
[21] and [22]. Such a circumstance in the context of eq [1] implies a threshold value
for q,”, below which no signal is observed. Such observations, particularly for
calibration experiments using solutions of the pure standard (Section ILA(i)), are
usually interpreted in terms of irreversible losses of analyte on “active sites" on the
column®®®" or on the injector or other components of the chromatography train®, or in
the mass spectrometer ion source®?*, A major problem with such effects is that they
tend to be irreproducible, and thus not susceptible to accurate calibration. Thus, it is
preferable-to investigate the source of such effects and if possible to eliminate them,
to the point where the calibration curve passes through the origin to within the
experimental precision. Otherwise, the algebraic approaches described below must be
adopted.

Such non-zero intercepts in calibration curves are examples of bias errors, as defined
in Section | above. The detection and characterization of bias errors, often in
conjunction with simultaneous proportional systematic errors (e.g. those associated
with values of F; < 1), is a major thrust of the approach promoted by Youden™"® and
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more recently by Cardone™2. Many of the principles described in Section IIIB are
adapted directly from their work.

111B(i} Standard Calibration Curve Method.

Observation of a non-zero intercept, in the calibration curve obtained using pure
analyte standards, is expressed mathematically in terms of a non-zero value for b” in
the modified form of eq [1]:

Aaff = k.” , qafl + bf’ = kf’ ] (V”N”).Qa’, +b!f [24]

where k” may be interpreted as (R,.f,) and b” is discussed below. Inversion of the
calibration relationship given as eq [24], to provide values of Q,” from measurements
of A,’ made on sample extract solutions, gives:

Q. = (A -b") (VIV) KK [25]

Conversion of eq [24] to eq [25] is an algebraic triviality, but its implications for the
propagation of experimental error are not trivial®, This conversion also carries
chemical implications whose validity is by no means guaranteed in any particular case.
The values obtained for k”, and particularly for b”, in the calibration
experiments (eq [24]) will not necessarily apply to the sample extracts (eq [25]).

For example if b” is found to be positive, often interpreted in terms of co-eluting
interferences, the amount of such interfering substances in the sample extract could

well be very different from that in the calibration solution. If such interfering

substances were derived from the solvent, different effective values for b” would
pertain, depending upon the total volumes of solvent employed in extracting and

dissolving the sample as opposed to dissolving the standard. On the other hand if b”
were negative, corresponding to a positive x-intercept often interpreted in terms of a

constant loss of analyte on active adsorption sites in the chromatographic train, this
amount.of lost analyte could well vary depending upen the quantity of co-extractives
from the sample which could compete for these active sites.

The point of the foregoing discussion is to emphasise that non-zero values for b”
usually sighal potential uncertainties which are best avoided, if possible, by diagnosing

the cause and taking appropriate precautions. Such precautions might involve a more
selective analytical method if b” > 0, e.g. different chromatography and/or increased

mass spectrometer resolution, or (for b” < 0) changing columns and/or silylation of
appropriate portions of the chromatographic train, etc. However, if none of these

remedies improve the situation, assumption of the applicability of the calibration

parameters k” and b” (eq [24]), to analysis of sample extracts, gives the working
relation as:
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Co=Q/W,=(A-b") (VNV)[(F,.K"). \_N*] [26]

where the empirical slope parameter k” may be interpreted as (R,.f,). Note that eq
[26] is derived from eq [25] plus an assumption of a constant value for the extraction
efficiency F.’ (eq [4]). The breakdown of this assumption can also lead to systematic
errors, and this possibility is discussed in Section IlIB(iii).

11iB(ii) Calibration Curve with a Non-Zero Intercept Using Spiked Control Samples.

As in IA(ii), the quantities of analyte whose values are known, and for which
analytical responses are determined, are the quantities S, of standard spiked into a
(fixed) quantity of blank sample. Here, however, the calibration curve is not presumed
to pass through the origin, so that the empirical eq [7] becomes:

A=k . (v NY). S, +by | [27]

The non-zero intercept b’ is subject to a discussion very similar to that for b” in HIB(i).
Thus, a value b, > 0 usually implies that a co-eluting interference is contributing to the
analyticail response A,”, but in this case the interfering compound(s) could arise from
the control sample as well as from the solvent. Similarly, if b, < 0 the corresponding
positive value for the x-intercept could now reflect loss of a fixed quantity of analyte on
“active sites" of some kind during the extraction and/or clean-up proceduras, as well
as in the chromatographic train as discussed in Section B(i).

Comments made in 1B}, concerning the advisability of diagnosing and removing the
causes of non-zero intercepts if at all possible, also apply here. However, if this can
not be done inversion of eq [27] to give an expression for S, » and application of this
inverted relationship to analysis of real samples (for which S, becomes Q,), is subject
to the same comments as applied to the corresponding inversion of eq [24] to [25]. In
the present case, the result is eq [28):

M C.=Q/W, = (A’ - b ) (V) (1K) (1W,) [28]

However, in the present case it is possible toxdemonstrate how, for simple specific
examples, the calibration parameters k,” and b,” determined experimentally as the
slope and intercept of eq [27] will be in error when applied to determination of Q /W,
for the real sample via eq [28]. For example, suppose it is found that b,’ < 0,
corresponding to irreversible fixed loss of analyte on "active sites" somewhere during
the analytical procedure prior®® to the quantitative chromatographic analysis, which is
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assumed to behave ideally. That is to say, in the calibration experiments the value of
S,/ (the quantity of analyte present in the extract of the spiked blank sample) is
assumed to be given by :

s/=F’/.S,-L' = - | [29]
Then, the analytical signal for such a calibration experiment will be given by:
Al =1, =1 (W) .S =1 . (vN) . F18, -[r. . (V). L] [30]

so that, for this simple model, the empirical slope and intercept may be interpreted as
follows:

k' = [(Raf)-(v/V)FT and by = [(R.f).(v'V )L [31]

In terms of exactly the same simple (but realistic) model, the corresponding
relationships for analysis of the real sample are:

Q) =(F .Q,)-L, . [32]
Al =IRA)WVV)FL Qo - [(Rof).(VV).L]
=k . (FJTFS) Qe by (L) [33]

where the second line of eq [33] has made the reasonable assumption (easily
corrected for) that (v/V') = (v/N,’). Since in general F,’ < F,’, use of the
calibration value k,’ for the slope parameter can result in a proportional error,
while a bias error could result if L’ # L. This simple example reinforces the
recommendation that, if possible, the cause of a calibration curve not passing
through the origin should be sought and rectified.

This same general conclusion holds for another simple realistic example, relevant 1o
the case that b > 0 due to presence of a co-eluting interference X in the control
(blank) sample. For simplicity, it will be assumed that no constant losses (e.g. L)
occur in this case, so that for the spiking calibration experiments:

s/ =F’.S,: Qg =F..Q, | [34]
A = (Ref).q) + (Ref).q = [(Ref)-(NV)FL 8y + [(RAA).(GV)F Q] [39]
where the double subscript (x,s) refers to the interfering compound x in the blank

sample. Then, for this particular example the slope and intercept (eq [27]) may be
interpreted as:
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k' = [(Ra.f)-(v,/NV).F'T and b, = [(F{x.fx)_.(vs'Ns’).Fx,s'.ers] {36]

Applying the same simple model to the analysis of the sample itself gives:

A = [RA)WVNV)LFD Q + [(RA)LVV)F.Q] '
=[k'. (F/FIQ, + b . (F/F,). (QJQXJQ] ‘ [37]

where the k. and b,” values in eq [37] are those given in eq [36]. Once again the use
of these calibration curve parameters, without correcting for differences in extraction
efficiencies, could lead to bias and/or proportional errors, and the situation is best
avoided if possible.

1B(iii) Method of Standard Additions and the Youden Sample Response Curve.

This Section is that which owes the largest direct debt to the work of Cardone™? and
of Youden™"™, In its most developed form, this approach”® is a powerful protocol of
great generality for the detection of both bias and proportional systematic errors in an
analytical procedure. In order to explain the principles involved in a reasonable space,
a particular model for the analytical procedure will be employed:

(a) the chromatography/detection system used is sufficiently selective that no
' interferences intervene (as discussed in ilIB(ii), for example); the present
discussion could readily be extended to include this effect, if desired;

(b)  the detector response is directly proportional to the quantity of analyte reaching
it, thus: '

Al =R, (4. a,-L) [38]

where |, represents the (assumed fixed) quantity of analyte lost to "active sites"
located between the injector and detector, and {, is the fraction of injected
analyte which reaches the detector if |, is zero: .

(c)  extraction of analyte from the sample, and the associated selective
concentration procedures (“clean-up*),”are subject to losses of both the
proportional and bias type, such that the proportional loss may vary according
to whether the analyte is that originally present or is spiked into the sample, but
the fixed loss (possibly on “active sites*) is assumed to be the same:

Q’=F’.Q+F/ .8,-L/ (39]
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While the model specified in (a) - {c) is not completely general, it does cover
~ the majority of circumstances which can lead to significant error in quantitative
trace analysis.

Youden'" realised that a general approach to determining whether or not bias
errors were present was to determine a response curve in which the only
variation in quantity of analyte Q, was due to controlled variations in sample
size W: ~

Q. =F.. @MW) . W,- L | [40)

Eq [40] is a special case of eq [39] with S, = 0 (no spiking) and written so that W,
becomes the independent variable. The implicit assumption that C, = (Q/W,) is
constant amounts to ensuring that the sample is effectively homogeneous over the
range of values for W, to be used. Then, under the assumptions leading to egs [38]
and [40], it is straightforward to derive the corresponding functional form of the
Youden Sample Response Curve:

Al = Ry.(f.9) =R, .f.q’ -R..l
R.. W) . F/ . . QM. W, =R, .1, . WN) L+ L(VAE]  [41]

il

= k,.W,+b,

where k, and b, are the slope and intercept, respectively, of the Youden Sample
Response plot. Note that, under assumptions (a) - (c), only negative or zero values
for b, are predicted. If b, terms out to be positive, the most probable cause is that the
bias errors are dominated by co-eluting interferences as discussed in IIB(ii}. A
statistically significant non-zero value for b, indicates the presence of bias errors in the
analytical procedure, although this alone can not determine whether these errors
arose during the extraction and clean-up steps or in the chromatographic train. Under
the present assumptions (&) - (¢), this question could be approached by determining
the dependence of b, upon (v/V'):

by = -R,. [l . &, (V) + ] [42]

A value for (Q/W,) can be obtained from the Youden slope k, (eq [41]) if it is
assumed that the proportional error factors F,” and {, are both unity, and if R, can be
measured. This is not generally feasible, and the Youden method is usually
applied as a diagnostic approach to the detection of bias errors (but see eq [46]
below).

The Method of Standard Additions, described in HIA(iii) for the simple idealised case,
can be adapted to the more realistic model defined by assumptions (a) - {c). In such
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a procedure, eq [39] applies with the restriction that Q, is fixed (via a fixed value for
W,), and 8, is the independent variable. Then, egs [38] and [39] may be combined to
give: '

A/ Rt (VV).Q, -R,.l,

[Ree (VAV). £,F1.8, + R (VAV)IF, £,.Q, fo-L) ~(VAV)L] [43]

= Kmsa « Sg + Drpeq

Comparison with eq [41] shows that:

Brsa [(Rut) . (V') .F/.Q] + b, | [44]
Kmea = Ky (FSIF) / (QJW,) [45]

where Q, in the context of egs [44] and [45] denotes the quantity of analyte in the
fixed quantity of sample used in the present Method of Standard Additions. |t is
evident, from this special but entirely realistic model treatment, that Cardone’s claim’™*?
that the Youden and MSA plots may be viewed as simple extensions of one another is
valid only if F,” = F,” . This condition is mostly readily fulfilled if both recoveries are
close to 100%, as can frequently be achieved for the relatively simple matries found in
the pharmaceutical preparations of concern to Cardone™2. However, it is seldom that
this condition can confidently be claimed to be fulfilled in the case for complex
environmental matrices.

The most reliable value of (Q/W,) from the Method of Standard Additions is probably
that obtained by combining eqs [44] and [45]:

|_| Ca = (Q/W,) = [ (o - bkl . (FEIW, [46]

%_—

As before the ratio of analyte recovery efficiencies, for spiked and original analyte, is
difficult to determine experimentally and is always a major source of uncertainty. The
use of the*Youden intercept b, as the appropriate correction for b rather than e.g.
the intercept b, of the Standard Calibration Curve {eq [27]), is in accord with the more
general conclusions of Cardone”™" .
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[V. Methods Involving Internal Standards.

Internal standards are used in quantitative chromatography for two reasons: to
remove or reduce the dependence of the final analytical result on the values of
volumes of solutions, and to provide some measure of the fractional recovery of
analyte from the sample into the extract. A compound used for the first purpose is
often referred to as a volumetric internal standard, and is usually added to the
extract solution itself. A surrogate internal standard, on the other hand, is added in
known quantities to the sample at as early a stage as possible. The fractional
recovery of the surrogate internal standard can provide some information on the
efficiency of recovery of the native analyte.

The principles upon which these two objectives can be achieved, and their limitations,
are discussed below. The desirable properties for an internal standard are
summarised in the main text.

IVA. Volumetric Internal Standards in Conjunction with External Standards.

The simple case of a Standard Calibration Curve will be worked through in some detall
(Section IVA (i), in order to establish principles of more general applicability and also
the inherent limitations of the approach. The general intent of a volumetric internal
standard is to avoid the uncertainties associated with volumes such as v’ and V' (see
Section Ili above).

IVA(D). Standard Calibration Curve.

As for any procedure incorporating a calibration curve, the important characteristics of
the latter must be determined, particularly the question of whether or not it
encompasses the origin, and also the extent of the linear dynamic range. In the
present context, a suitable calibration procedure could involve the following steps:

(a)  using accurate weighings and appropriate dilutions (best not serial dilutions, for
which errors accumulate), prepare a series of standard solutions of the analyte;
however, before filling to the calibration mark on each standard volumetric flask,
add a fixed volume V¢ of the solution 6f intemal standard, of concentration Cg
(see general comments under Section IV A). If a volatile solvent is used, it is
important to perform all of these additions at the same time, so that each
solution contains the same quantity of volumetric internal standard (Q = V¢ .
Cis).
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{b)  using weighings and dilutions, prepare a series of standard solutions of the
internal standard alone.

(c)  conduct the quantitative chromatography experiments on all solutions prepared
in (a) and (b), including as many replicate injections of each solution as are
feasible. g

The following treatment will assume the validity of a_linear response curve with a
(possibly) non-zero intercept. Then, the detector response to the analyte in these
calibration experiments is assumed to be analogous to eq [38]:

A’ = R (f,.q”-1)=R,.f,. v"N").Q”-R, .|, [47]

where b,” = (-R, . |,) is determined as the y-intércept of the plot of A" vs. Q,”.
Similarly, analysis of the series of solutions of pure internal standard leads to the
analogous relationship:

AiIII - Ri . fi (V’”N"’) . Qih’! - Hl . II [48]

where b/” = (-R, . L) is measured as the y-intercept. The main purpose of these
experiments, summarized in eqs [47] and [48], is to determine the intercepts. I
possibie the physical and/or chemical reasons, underlying statistically significant non-
zero values for these intercepts, should be sought; it is preferable, as noted
previously, to reduce these intercepts to zero.

Now the data from the analyses of the standard solutions of analyte, spiked with a
constant quantity Q" of internal standard, are analyzed in a fashion different from that
summarized in eq [47]. The responses A,” and A" are medsured for each
chromatogram, and interpreted in terms of the ratio of eqs [47] and [48]:

(A =B LA B = [(RAMRA) 1 Q7. Q. [49]

In each individual analysis of this kind, the volumes v’ and V" are the same for both
analyte and internal standard, so the cancellation is exact in each individual case,

regardless of random error (note that V* is the original volume of each solution, in
which the guantities Q,” and Q” were dissolved). It is this manipulation which results

in exclusion of the errors in the volumes from the final analytical result. The quantity
[(Re.f)/(R.£)/Q/"] is determined experimentally as the slope of the plot of the corrected
intensity ratio (left side of eq [49]) vs. Q.”. This plot should exhibit a zero intercept, if
the corrections b,” and b/ have been determined properly.

This completes the proposed calibration procedure. Application of such a

calibration to quantitative analysis of sample extracts requires that these
extracts be spiked with the identical quantity of volumetric internal standard as
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was used in the calibration experiments, Le. Q = Q”. (Alternatively, it is

possible to arrange that Q/ = n . Q" (n integral) by using more than one volume from
the same digital dispenser used to spike the calibration solutions). Note that all of
these spiking procedures (calibration solutions plus sample extracts) should be done
at the same time, to minimise drift in the values of V,g and/or of C;s. Then an equation
analogous to eq [49) applies to analyses of the sample extracts:

Q. = [(AS - b) /(A - b)) T [(Re KM (R B/ . [50]

where [(R,.f.)/(R.f)/Q"] was determined experimentally as the slope of the plot
corresponding to eq [49]. In addition, evaluation of eq [50] requires the additional
assumption that the intercepts b,” and b/, pertinent to the sample extract solutions, are
~ given by the experimental values b,” and b/ from the calibration experiments.

It is not possible to generalise about the validity or otherwise of this assumption, and
this emphasises yet again the importance of investigating the causes of any non-zero
intercepts with a view to remedial action to reduce them to zero. If this can in fact be
done, the long calibration procedure (a) - (c) can subsequently be shortened to a
single-point calibration procedure, involving just a single calibration solution
containing an accurately known guantity Q,” of analyte standard, and a reproducible
but not necessarily accurately known quantity Q;” of volumetric internal standard.
Then eq [49] applies, with b,” and b both zero, and the calibration factor
[(R,.f.)/(R.f)/Q"] can be determined {mean value and standard deviation) from
repetitive injections of this standard calibration solution.

The way in which a volumetric internal standard corrects for systematic errors
associated with uncontrolled evaporation of volatile solvent (effectively uncertainties in
V) can now be appreciated. This procedure uses Q; = Q/ as the normalising
parameter, rather than solution volumes. It is thus extremely important that the
volumetric internal standard itself be involatile, and that it be added in precisely equal
quantities to the analyte (external) standard solution(s) and to the sample extract(s).

The effect of a volumetric internal standard on the overall analytical precision is
‘1less clearcut, however. If the random error is dominated by that in the injection

volume V', as is commonly the case for GC analyses, it might be expected that use of
a volumetric internal standard would improve the precision. However, modern sample

loop injectors for HPLC can achieve a precision of injection of 0.05%; it seems
inherently unlikely that use of a volumeétric internal standard could improve on this, and
indeed the question arises as to whether it might impair the overall precision. This
question has been considered in detail by Haefelfinger®, in an interesting analysis of
the propagation of error in such experiments; this statistical analysis was illustrated by
real-life examples, including at least one in which the random error associated with the
manipulations of the volumetric internal standard were large enough to significantly
decrease the overall precision, relative to that achievable using only the simple
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external standard procedure (Section llIA(i)). Clearly, an informed assessment is
required in each individual case®.

IVA(ii). Calibration Using Spiked Control Samples.

In this Section, we discuss modifications to the method described in 1lIB(ii} appropriate
to incorporation of a volumetric intemnal standard. In general, the instrumental
response to an injected quantity q,” of analyte will be given by:

A =R,. 0, .0"-1) .' [51]

where A, has been used instead of A,” to denote the analytical signal, since the
latter symbol has also been used for the case of standard solutions of pure analyte. It
turns out that non-zero values of |, result in algebra which is too intractable to be of
practical use. Accordingly, it is assumed in this treatment that analyte losses,
associated with "active sites" in the chromatography train, have been reduced
to negligible values.

However, the corresponding assumption is not made for the extraction/clean-up
procedure:

A’ = (VN 8 = W'N) (F.S,- L") [52]
Combining eqgs [51] and [52] gives eq [53}:
A =Ry F (VN S, - [(Rf) . VIV . L] [53]

where F,” is the fractional recovery of the spiked analyte from the blank sample
matrix, and L,” is the associated constant loss. The quantity of analyte spike S, is the
independent variable.

In this context, a fixed quantity Q" of volumetric internal standard would be used to
spike all such extracts from the blank samples, in a fashion analogous to that
described-in IVA(i) for the analyte standard solutions. The analytical response for the
internal standard is given by an equation analogous to eq [51] with |, assumed to be
zero (see above): .

A = R.f. (VN . Q" [54]

The peak areas (or heights) A,” and A" are measured in the same chromatographic
analysis of the same sub-volume v” of spiked sample extract of volume V”. Thus,
dividing eq [53] by eq [54] to give eq [55] implies that (v*/V”) cancels exactly,
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for each individual experiment regardless of statistical variations in v’ from
experiment to experiment. This is, of course, the whole point of using a
volumetric internal standard.

AZIAY = (R A/RA).F QM) .S, - [(Raf/RLQ)] [55] -
= .I” . Sa + bs.l”

The least-squares-fit parameters k" and b, /" are now assumed to be directly
applicable to analyses of real sample extracts, also spiked with volumetric internal
standard: .

AN = K. Qu+ b,/
Ca = Qa/Ws = [ (Aa’/Ai,) " bs.i"] / [ks,I”' Ws] [56]

In order for eq [56] to be valid within the assumptions made to this point, the
interpretation in terms of the model shows that all of the following conditions must also
be satisfied:

Qi’ - Qi”; Fs” = F&r; Ls” = La’ [57]

The first of these conditions may be satisfied experimentally by careful attention to.
control of both C; and Vg, as discussed in IVA(i). The recovery efficiency F,”, for
analyte standard spiked into a blank sample, is likely to be an upper limit for F,” but
the discrepancy can be minimised if the recovery efficiencies are developed to the
extent that both approach 100%. The extraction/clean-up losses L,” and L,” are not
necessarily constants (see discussion in Section 1VB(i)), and should preferably be
reduced to zero if possible. The advantage of the spiked blank calibration procedure,
over that employing standard solutions of pure analyte (IVA()), is that the two
assumptions (eq [57]) concerning equality of parameters describing recovery efficiency
are less stringent than those required in IVA(i), viz. F, =1 and L, = 0.

A different comparison involves the precision achievable using the method described
here, and the analogous method (llIB(ii)) which does not use a volumetric internal
standard. This same question was discussed in IVB(i), and need not be repeated
here except to emphasise that an informed decision must be made in each case®.

-

1VA(iii) Method of Standard Additions with a Volumetric Internal Standard.

In this section we consider the modifications to Section IlIB(iii) brought about by
incorporation of a volumetric internal standard into the sample extracts, as discussed
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above. The intrinsic advantage of the Method of Standard Additions is that it supplies
its own internal calibration procedure.

Again, in order to keep the algebra tractable, it will be assumed here that the
quantitative chromatography Is well-behaved in the sense that 1, in eq [38]
(Section HIB(iii}) Is zero to within experimental uncertainty. An analogous
assumption must be made for the internal standard. However, eq [39] will be used
without further simplification, /.e. the possibility of a bias error, arising during the
extraction and clean-up steps, is not excluded. Then, eq [42] still applies to the
Youden Sample Response experiments, but with |, = 0, and the corresponding
expression for the analytical response for the volumetric internal standard is:

A= R.f.(viV).Q [56]

where Q/ is the fixed reproducible quantity of internal standard added to each extract

solution, of volume V’ before the first aliquot volume Vv is removed for analysis. On

dividing eq [41] by eq [58] under the stated conditions, the volume ratio (V'/V’) again
cancels exactly despite random variations in v/, to give the theoretical expression for
the Youden Sample Response curve: ‘

AN =R, .1, B ). (FS Q) (Q/MWI]. W, -(R, . £./R . 1) (L7Q)) [59]
=k,;. W, + by

As discussed in IB(iii}, the main practical purpose of this procedure is to determine
whether or not a bias error exists, via a value for by, which is (or is not) statistically

different from zero. If random errors in v dominate those for the overall procedure,
use of the volumetric internal standard will generally improve the precision®, and the

degree of confidence in evaluating b,, will increase correspondingly.

With regard to the analyses corresponding to the Method of Standard Additions itself
(fixed mass of sample W,, vary amounts S, of pure analyte added), eq [43] with |, = 0
is the relevant theoretical expression for the analyte response. Now, however, these
extract solutions have been spiked with the same fixed quantity Q' of volumaetric
internal standard, whose analytical response is given by eq [58]. On dividing eq [43]
by eq [58], we obtain a relationship independent of the volume ratio (VIV'):

AN =R, /R B) FQNT. Sy + (R, . /R §) (B, . Q, - LVQ! [60]
= kmsa.i . Sa + bmsa.l
Comparison of eqs [59] and [60] gives:

Prmsay = (Ry . 1/R . ) . (F/Q7) . Q, + by, [61]
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kmsa,l = ky.l . (Fa’/Fa') / (Qalwa) ’ [62]

As in Section 11B(iii), the most reliable value of Q,/W,, obtainable from the combined
Youden Sample Response and Method of Standard Additions, is probably given by
combining egs [60] and [61]:

Ca = Qa/VIVs = [(bmsa.l - by.i) /kmsa,I] . (Fe’/Fa’) / Ws " [63] “

with the necessary assumption that F,” = F,". If the Youden Sample Response
intercept is not determined, it is necessary to assume in addition thatb,; = 0, /.e. L' =
0.

The same comments, concerning the likelihood that use of the volumetric intemnal
standard will improve or impair the overall precision®, apply here also. Note,
however, that if volatile solvents are used the incorporation of a non-volatile volumetric
standard will always provide insurance against bias errors introduced by uncontrolied
solvent evaporation from the final sample extract. Even if a volumetric internal
standard is included for this latter reason, there is of course no subsequent
requirement to evaluate the data using eqgs [59] - [63]). The internal standard can be
ignored, if it is judged to be wise to do s0%, and the methods of Section 11IB(jii) used
instead.

IVB. Methods Exploiting Surrogate Internal Standards.

The ideal surrogate internal standard is an isotope-labelled version of the target
analyte, with sufficient isotope labels in each molecule that the natural abundance of
this species in the sample, is negligible (condition (g) in the introductory comments to
Section IV). The mass spectrometric responses A," and A/, corresponding to
analyte and internal standard in the sample extract, do not then interfere with
one another, and this simplification is assumed to be valid in the entire
discussion of this section.

1vB(i). Use of a Surrogate Internal Standard with No External Standard.
The simplest procedure is to add a measured quantity Q, of the surrogate internal

standard to a measured quantity W, of the sample. The spiked sample is than taken
through the extraction and clean-up steps, and analyzed for both native and isotope-
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labelled analytes in the same chromatography experiment. In the present treatment it
will be necessary to assume that no bias errors exist in the chromatographic
quantitation of either pure analyte or pure internal standard, ie. that I, in eq [38] is
zero, and similarly for |, in the analogous expression for the internal standard. If this is
found experimentally to be not so, it is strongly recommended that the causes be
identified and the situation remedied; otherwise the algebraic expressions become
intractable.

Then, the expressions for the chromatographic responses for analyte and surrogate
internal standard are:

A’ =R,.1,.q'=[R,.%.(VN).F].Q,-R,.f . (VN).L/ [64]
A =R.f.q’ =[R.f.(vVN).F].Q-R.1.vN).L [65]

On dividing eq [64] by [65], the volume ratio (V/V’) cancels exactly for each individual
analysis, despite random variations from case to case, since analyte and surrogate

internal standard are present together in the same homogeneous extract solution.
(AJAT) = (R, . /R, - ) (FF) [Q, - LR 71(Q - LTF) [66]

In order to deduce a value of Q, from the measured values of Q, and of (A /A)), via
eq [66], additional information and/or approximations are required. The ratio of
chromatographic response factors (R, . /R, . f) can be measured using solutions
containing known quantities of both analyte and internal standard. Frequently, in the
case that the surrogate internal standard is an isotopically labelled version of
the analyte, it is. assumed that these response factors are equal for mass
spectrometric detection. While this assumption is probably valid for most cases
when applied to total ionisation yields, it can break down due to kinetic isotope effects
if molecular ions are monitored and are subject to appreciable ion fragmentation. A
dramatic example of this effect has been published®™. It is good pratice to establish
whether or not such an effect is operating by comparing mass spectra of the analyte
and its isotope-labelled analogue, as a function of ion source temperature, ionizing
energy, elc.

The use of eq [66] to deduce values for Q, also requires knowledge of, or
assumptions regarding, the recovery parameters F/, .F,, L/, L’. Some experimental
information on this question can be obtained if sufficient sample is available that
several aliquots can be analyzed using varying quantities Q, of surrogate. Then eq
[65] indicates that a plot of A/ -vs. Q; should provide a value of (L//F/) as the ratio of
the intercept to the slope. Estimates for F and L, separately can be obtained from
the same plot if independent information on (R, . f) and on (V'/V') is available. (Note
that, ideally, F should be equal to F,’, pertinent to the Method of Standard Additions).
The most usual procedure, however, is to assume that F/ = F,’ (in most cases F,” will

65



be less than F;), and that the constant loss parameters L.’ and L are both zero.

Note that it Is possible that non-zero values of L and L’ may Interact with one
another, due to competition for the “active sites". This potential complication is
related to the so-called “carrier effect", whose importance has been the subject
of considerable debate®***%,

Finally, it is worthwhile to add a few comments about the quantity Q; of surrogate
internal standard, to which eq [66] directly relates the value of Q,. The best accuracy
and precision are achieved when Q, is determined by direct weighing of a sample of
known purity {both chemical and isotopic). However, such internal standards are
generally scarce and expensive, and it is common practice to dispense Q, as a
measured volume V,; of a solution of concentration C,s. In this case the calculated
value for Q, depends directly upon the product Cis . V|g {no cancellation, as in the
methods using volumetric internal standards described in Section IVA). Thus, errors
in the dispensed volume Vg and in the concentration Cg are reflected directly in the
value deduced for Q,.

In summary, the simplest and most commonly used method employing a surrogaté
internal standard, uses eq [67): '

[oo-am, - ) . oe vew, ____ 67

{

Apart from the disadvantages associated with explicit dependence on Cs (potential
systematic errors due to solvent evaporation) and Vg, eq [67] implies assumptions
conceming equal chromatographic response factors (usually, but not invariably®,
valid), equal recovery efficiencies (F,” = F/'}, and zero constant losses in both the
extraction/clean-up sequence i
(L)’ = 0= L") and in the chromatographic train (I, = 0 =l).

1IVB(ii). Use of a Surrogate Intemal Standard in Conjunction with an External
Standard.

in this method, the surrogate internal standard is used to spike both the raw sampie
(as in IVB(i)) and an external standard solution{as was done for the volumetric internal
standard in IVA(i)). As a result, the quantitation is done by measuring Q, relative to
Q,” (a weighed quantity, rather than to Q, = Cjz. V\g as in 1VB(i)}, while the surrogate
internal standard plays a dual role of correcting (partially) for extraction efficiency and
also that of a volumetric internal standard. This dual role will become apparent in the
following treatment.
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For the external standard solution spiked with surrogate internal standard, the
following relationships hold within the linear dynamic range of the analytical method:

A’ =R,.f,.(VN").Q” -R,.I, [68]
A’ =R .. WVN").Q" -B,.| [69]

The constant chromatographic losses |, and |, must be determined experimentally, by
calibration experiments using solutions of different concentrations or possibly different

injection volumes v” of the same solution. It is always best to take precautions to
ensure that the effects of such chromatographic *active sites* are zero, but this is

even more important in cases like the present one where competition for any “active
sites" can occur, i.e. the effective values for l, and |, will not be-constant, but will vary
with the absolute values of q,”” and g/ in the injected volume. Therefore, it is
assumed in what follows that experimental precautions have been taken to ensure that
the "active sites" have been deactivated to the point where l, =0 =1, Then the
situation is equivalent to that of a single-point calibration, so dividing eq [68] by [69]
gives the calibration factor required in the analysis of the sample extract:

R, . f/R.f.Q" = (AMA) Q" [70]

where Q,” is measured by weighing the pure unlabelled standard, and the ratio
(A."/A") can be measured and its precision estimated by replicate injections.

Analogous considerations apply to the extracts of the sample spiked with surrogate
internal standard. Now, however, the problem of constant losses L,/ and L/, occurring
during extraction and clean-up, must be faced. As for the corresponding losses |, and
| these will interact with one another in a manner related to the question of the carrier
effect”***®, Thus, the only hope for an accurate and precise analysis is that these
losses are reduced to zero by appropriate experimental precautions. Under these
conditions the analytical responses, for extracts of the spiked samples, are:

Al = R,.f,. (vIV).F/.Q, ' [71]
A= R.E.WN).F.Q [72]

On dividing eqs [71] and [72] the volume ratios cancel exactly, and combining the
result with eq [70] gives eq [73], on condition that Q" =Q '

Ca = Qafws = (Aa’/ Al') (Ai”/ Aa") (FI'IF a') ‘ (Qa”lws)
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Note that the absolute values of Q, and Q;” need not be known. The only condition
required is that they be equal, a condition met experimentally by using a good-quality
digital dispenser (good precision for Vig}, and by spiking the sample extract and the
external standard solution at the same time (same value for C,s, not necessarily known
accurately). This feature (lack of dependence on the absolute value of C) is
particularly important when a volatile solvent must be used. Since surrogate intemal
standards are usually scarce and expensive, they are usually not available in
quantities sufficient that a quantity Q, can be weighed out accurately and precisely - -
each time (a minimum of several milligrams for most analytical balances). The same
restriction does not usually apply to the unlabelled standard, so sizable quantities Q,”
can be weighed out, and external standard solutions made up fresh, each time. This
is a considerable advantage of the present method over that described in IVB(i).

In addition, the procedures described here permit an estimate of the recovery
efficiency F/, of the surrogate internal standard, to be made. Dividing eq [72] by eq
[69] (with |, = O) gives eq [74]:

Fro= (AN (V'IV) (V) [74])

provided Q, = Q;”. Such an estimate of F/ is subject to combined errors in the
volumes, and in any event provides only an upper limit to F,”. However, practical
application of eq [73] requires the assumption that F, = F/, and this is most likely to
be valid when F/ is close to unity. Thus, estimation of F/ via eq [74] provides a check
on the internal consistency of this procedure.

IVB(iii} Analysis Using a Surrogate Internal Standard in Conjunction with Both a
Volumetric Internal Standard and an External Standard.

This procedure is identical to Method 1VB(ii) except that a volumetric internal standard
is also used, as described below, in order to provide more reliable measurements of
F/ (fractional recovery of the surrogate spiked into the raw sample). Monitoring F/ is
essential for quality control of the overall analytical procedure, and is possible with
very littie additional effort over and above that required for Method IVB(ii). However,
in cases where precision of injection volumes or detector drift are not major problems
(compare discussion in IVA(()), Method IVB(ii) is adequate (eq [74]) and may even be
superior®® to the approach described below. :

It is necessary to use two different symbols to denote the two internal standards.
‘Subscript i will denote the surrogate, as for Method 1VB(ii), while a subscript j will
denote the volumetric intérnal standard.

In practice, the surrogate internal standard is used to spike the raw sample and the
external standard solution, exactly as in Method IVB(ii). However, prior to analysis by
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(usually) chromatography with mass spectrometry, both the sample extract and the
external standard solution are also spiked with a volumetric internal standard. (A
realistic example would involve analysis for a specific PCB congener, using a
surrogate internal standard which is an all-'*C isotopic variant of the specific congener,
and using octachloronaphthalene as the volumetric internal standard which also serves
as a retention time reference point).

The volumetric standard does not enter the analytical result Q, itself; egs.[68]-{73]
apply under the same restrictions, including an assumed validity of a single-point
calibration, as in Method IVB(ii). Under these restrictions eq [73] is valid as the
working relationship for the present method, but can be applied only if the
fractional recovery F,’ is assumed equal to F/. Note that, in particular, eq [73]
assumes that the surrogate spike quantities Q, and Q;” are equal; this condition is
readily fulfilled experimentally, as discussed above.

However, the chromatograms obtained for the sample extract and external standard
also contain peaks corresponding to the volumetric internal standard, and this
information permits reliable measurement of F'. If these chromatograms are regarded
as analyses for the surrogate internal standard (subscript i) by Method IVA(i), using
the external standard in conjunction with the volumetric internal standard (subscript j),
the relationships derived for Method IVA(i), but with the subscript substitutions a -> i
and i --> j, apply hers.

By assuming that the relative response factors (R; . /R, . 1) are equal for the two
chromatographic runs (sample extract and external standard), the foliowing result is
readily obtained: ‘

Qi! - (AiI/Ajf) . (AjMIAiIf) . (QI’IQJ”) .Qill [75]
If it was arranged by experiment that the volumetric internal standard quantities were

equal, ie. Q' =Qy", eq [75] is simplified. If in addition the surrogate internal standard
quantities were also equal, ie. Q" = Q, eq.[75] further reduces to:

QI = F/ = (AIA) . (AVIN)

In this way, reliable measurements of F/ can be obtained from two peak area ratios,

obtained from the same chromatograms as those used to quantitate the analyte itself

(eq [73]). These values of F; are invaluable for quality control of the overall analytical

procedure but are upper bounds to F,’' if the surrogate is an isotopically labelled
version of the analyte.
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In summary, Method IVB(iii) has no advantage over Method IVB(ii) as far as the
desired analytical result (Q/W,) is concerned (still uncertain due to lack of knowledge
of the ratio of fractional recoveries), but provides more reliable measurements of F{
with little additional effor, in cases where injection volumes v are the limiting factor in
the overall precision (usually true of GC methods). In other cases (e.g. HPLC loop
injection), injection volumes are dispensed with high precision and use of a volumetric
internal standard could actually impair the overall precision® . :

IVB(iv) Use of a Surrogate Intemal Standard which is NOT an Isotopic Variant of
the Target Analyte.

This topic is fully discussed in the main text.

V. Comments on Non-Linear Calibration Curves.

Although at first sight a situation involving non-linear calibration curves may appear to
be mathematically intractable, a simple decision renders it no more difficult
algebraically than any other method. As an illustrative example we shall use the
method involving a surrogate internal standard in conjubction with an external standard
(Section 1VB(ii)), since this method is reasonably complicated but provides results of a
high degree of reliability.

If the calibration procedure, using external standard sofutions spiked with constant
amounts Q" of surrogate internal standard, reveals a highly non-linear relationship
between (A.”/A”") and (Q,”/Q/""), possibly with a non-zero intercept, the most obvious
course would be to describe the dependent variable in these calibration experiments,
viz., (AIA/"), as a function of the independent variable (Q,”/Q;”). Such a course
does lead to algebraic difficulties, basically because in the analyses of the unknown
samples the roles of the variables are reversed.

Accordingly the calibration data are best treated, by appropriate curve-fitting
procedures, to give the inverse functional relationship:

QQ7" = @, {(ATA)) [76]

~

where no restrictions upon the form of the function @, are required, though in
practice a simple power series is often sufficient. The simple resporise function
exemplified by eq[1] is no longer appropriate. )
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While such an inversion of dependent and independent variables is indeed an
algebraic triviality, it carries implications for the propagation of experimental errors as
has been emphasised by Miller®.

It is now necessary to make the crucial assumption that the same functional form
applies aiso to the analyses of the extract solution from the spiked sample. That is,
eq.[76] is assumed to apply also to this analysis, with the identical values of the
function parameters as were determined experimentally from the analyses of the
spiked external standard solutions:

QA = @,{(AA))} : [77]
Dividing eqs [76] and [77], gives eq.[78]:

Q/M, =
[78]
[D,"{(ATA YD, (A TAMNAQIIQ).(Q W)

where each of the two peak area ratios is determined within a single chromatographic
run, and each ratio may be evaluated as a mean value of repetitive determinations.
The quantities Q,” and Q" in eq[78] are measured quantities. However, the desired
quantity is Q/W,, not Q,"/W,, and Q; is not known although the original quantity Q; of
surrogate added to the raw sample is known (generally arranged to be equal to Q).
We thus require the relationships between Q,’ and Q,, and between Q’ and Q,

The only feasible simplification at this point is to assume that the offset losses L. and
L’ are zero to wit_hin experimental error, so that:

Q' = F.Q, and Q = F.Q [79]

Then, provided that it was arranged experimentally that Q, = Q”, and
assuming that F,” = F for a surrogate internal standard, the working relationship for
this method becomes eq.[80]:

QW, = [0, {(ATA WO, (A, IA QS TW,) [80]

It can be seen that eq[73), the working relationship for Method IVB(ii), is just a special
case of eq[80]. Although eq[80] may iook forbidding, it merely requires determination
of the functional form &, from appropriate calibration experiments (e.g. determining
the values of the coefficients in polynomial fits to the data), followed by substitution of
the experimental peak-area ratios determined for the extracts of the spiked samples,
into these functions. Similar treatments can be developed for the other methods if the
calibration curves turn out to be non-linear over the desired range. However, the
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question of propagation of errors, associated with the inversion of dependent and
independent variables®, will always require considerable attention.
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