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Abstract

Determining camera calibration parameters is an essential step in most com-
puter vision endeavors; it is a time-consuming task despite the availability of
calibration algorithms and software. A set of point correspondences between
points on the calibration target and the camera image(s) must be found, usually
a manual or manually guided process. Two commonly used calibration tools are
implementations of Zhang’s (OpenCV) and Tsai’s algorithms, however, these
assume that the correspondences are already found. A system is presented
which allows a camera to be calibrated merely by passing it in front of a panel
of self-identifying patterns. This calibration scheme uses an array of ARTag
fiducial markers which are detected with a high degree of confidence, each de-
tected marker provides one or four correspondence points. The user prints out
the ARTag array and moves the camera relative to the pattern, the set of cor-
respondences is automatically determined for each camera frame, and input to
the OpenCV calibration code. Experiments were performed calibrating several
cameras in a short period of time with no manual intervention. This system
was implemented in a program for co-planar calibration, results are shown from
several calibration tests with different cameras. Experiments were performed
comparing using either the four ARTag marker corners or a single marker cen-
ter as correspondences, and the number of image frames necessary to calibrate
a camera was explored. This ARTag based calibration system was compared to
one using the OpenCV grid finder cvFindChessBoardCornerGuesses() function
which also finds correspondences automatically. We show how our new ARTag
based system more robustly finds the calibration pattern and how it provides
more accurate intrinsic camera parameters.
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1 Introduction

Camera calibration is considered a solved problem but is still a difficult and time
consuming process, due to the first step of finding correspondences which is often
performed manually. Available calibration algorithms take as input a list of corre-
spondences between points on a calibration target and their projections in one or
several images. In general the problem of finding the correspondences themselves is
overlooked. A reliable fully automatic system would help researchers and industry
alike. Ideally a camera should be automatically calibrated only from a set of images
captured rapidly from unknown poses.

Finding the intrinsic parameters of focal length, scale factor (aspect ratio), radial
distortion parameters, and optionally thin prism distortion parameters for a camera
are necessary to achieve high accuracy for vision tasks such as stereo reconstruction,
etc. Addressing radial distortion is especially important for use with low cost NTSC
cameras and webcams with their low cost lenses as the field of view is typically
quite curved. Two used algorithms to determine these intrinsic calibation factors
are Zhang’s [15] and Tsai’s [13] algorithms, the popular OpenCV software functions
cvCalibrateCamera() and cvCalibrateCamera 64d() implements the former. Zhang’s
algorithm requires a list of correspondences from multiple viewpoints. Locating 20-
100 correspondences for each of 20+ camera images is a tedious and error prone task
if performed manually. Having even one incorrect point can be sufficient to cause the
calibration calculations to not converge.

Automatic methods to find these correspondences do exist, such as the the OpenCV
grid finder cvFindChessBoardCornerGuesses() function. However, they have limita-
tions of how much distortion or clutter the images can have, and how much of the
pattern must be seen.

This paper introduces a way to use the recently developed ARTag fiducial marker
system [4] as a more robust method to find these correspondences. A self-identifying
pattern consisting of an array of ARTag markers is presented to the camera-under-test
in various poses and these correspondences automatically generated. These are in-
put to the OpenCV cvCalibrateCamera() or cvCalibrateCamera 64d() function which
implements Zhang’s plane-based calibration routine.

The benefit of this system is that a camera can be calibrated in a matter of
minutes since the correspondences are determined robustly and automatically, the
camera is simply moved around to several views in front of a planar array of ARTag
markers and the calibration is performed completely automatically. In this paper 17
cameras were calibrated, with over 2000 images with about 20-60 correspondences
found automatically in each image frame, for a total computation time of less than
an hour. The whole process for a given camera takes under 5 minutes (Fig. 1).
Typically about 10-15 images are needed from different angles to accurately calibrate
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Figure 1: (Left) Camera-under-test is moved around to different views of self-
identifying pattern. Examples of captured images used for calibration (right). Typi-
cally 10-15 images are needed.

the camera.

1.1 Camera Calibration and Currently Used Automatic Rou-

tines

Camera calibration typically involves finding parameters for a camera model given
world-point correspondences. Photogrammetry’s bundle adjustment is highly accurate
and has complex models with dozens of parameters. At the other end of the spectrum
of complexity is the two parameter model of focal length and scale, or horizontal and
vertical focal lengths (Fx, Fy). The horizontal Fx and the vertical Fy focal lengths in
pixels can be simply calculated by measuring the image width and height of a known
object at a known distance. This assumes a pinhole projection model with the center
of projection (uo, vo) as being the image center, this is sufficient for many projects.
The next step in complexity is to calculate the entire camera matrix K containing
Fx, Fy, uo, vo and possibly the skew factor s. Most cameras, especially low cost ones
with lenses of small curvature, require going beyond this pinhole model to address the
“barrel” or “pincushion” effect of radial distortion. Radial and thin prism distortion
is typically modeled by polynomials with 1 or 2 term coefficients. Zhang’s model
[15, 14] finds these, which this paper labels as Fx, Fy, uo, vo for the focal lengths and
image center, k1, k2 for the radial distortion, and the thin prism parameters p1, p2.

To calibrate a camera with Zhang’s or other methods, one needs to have a list
of corresponding image points and world points (either co-planar 2D points, or 3D
points). Gathering these has usually been a manual task, which is slow and tedious
and prone to errors that adversely affect the results. If the camera is moved or jarred,
its focus or zoom changed, it must be recalibrated. Ways to do it automatically would
find much use. Soh et al. [12] and Shu et al. [11] describe this mostly ignored problem.

Auto-calibration attempts to find a camera’s intrinsic parameters from a series
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of images of natural scenes, relying on rigid motion [10, 8]. However, this produces
sparse and/or erroneously matched correspondences and the results of autocalibration
are seldom sufficient for applications demanding accuracy. Some sort of marker based
calibration is normally performed when accuracy is needed.

There are some tools to help, ARToolkit [7] is a software environment for Aug-
mented Reality that has a calibration program where the user clicks on an array of
circular dots in a special order, a sub-pixel estimate is made automatically by finding
the centroid of a thresholded connected group of pixels in the region of each user
click.

The OpenCV software package [1] is a useful collection of computer vision al-
gorithms and source code, including the cvCalibrateCamera 64d() function which is
used herein for the camera calibration after the correspondences are found. OpenCV
provides a grid finder function cvFindChessBoardCornerGuesses() which attempts to
locate the corners in a chess-board/checkerboard pattern. It is typically followed by
the cvFindCornerSubPix() function to provide better corner accuracy.

The cvFindChessBoardCornerGuesses() function requires the user to provide the
dimensions (number of rows and columns) of the checkerboard. It attempts to order
corners in a grid to find correspondences. One disadvantage of this method is its lack
of robustness in that all points must be fitted into the grid for any correspondences to
be reported. It was found that the function did not work in the majority of our test
images, especially those from some highly radially distorted low cost NTSC cameras
and webcams which had lower quality lenses.

Also, even when FOV and distortion criteria were met, many images failed to
have their grids located, many images with low distortion, clearly visible grids, and
uncluttered backgrounds could not be used in calibration. Fig. 2 shows sample images
which were detected (left four images) and images which were not (right four images).

Shu et al. [11] have a system called CAMcal which uses corner detectors and
topological operators to find checkboard squares to order the corner points, it however
can fail when false corners get detected or when the pattern is viewed from an oblique
angle such that the triangulation step does not correctly link corners. CAMcal is quite
sensitive to imperfections in the image. However, it does not require that an entire
pattern is in view.

Soh et al [12] use a pattern of 16 squares which are found with thresholding and
blob analysis. The centroids of the squares are arranged to fit a regular grid using
attributed relational graph matching. The use of structural knowledge of the grid
could potentially improve the robustness of the pattern detection algorithm, though
little detail was given in the paper, nor is the software based on their method freely
available.

The ARToolkit and OpenCV programs require the full visibility of the entire
pattern, which makes it difficult to take several views and have enough sample points
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Figure 2: Examples of patterns successfully and unsuccessfully recognized by OpenCV’s
cvFindChessBoardCornerGuesses() function. The interior corners are detected and
ordered by the function, the upper row show images with the checkerboard with 8
rows and 10 columns, the lower row are images with a checkerboard of 4 rows and 5
columns. All interior corners need to be visible and the camera cannot have too steep
an angle from straight on. The grids in the left four images were successfully detected,
while the function failed on the right four images.

near the periphery of the image where they are needed most, one must always keep
all points inside the field of view.

None of these appears to provide consistent and trouble free robust automatic
calibration scheme, motivating the development of our ARTag based system.

1.2 Self-identifying patterns: ARTag

Self-identifying patterns are special marker patterns that can be placed in the en-
vironment and automatically detected in camera images. Also known as fiducial
marker systems, a library of these patterns and the algorithms to detect them help to
solve the correspondence problem. Self-identifying marker systems such ARToolkit
and ARTag are typically used for applications such as calculating camera pose for
augmented reality and robot navigation.

ARTag was chosen because of its robustness to lighting variation, its very low
false positive detection rate, and its very low inter-marker confusion rate (falsely
identifying the marker ID). ARTag is more robust than the popular ARToolkit in
these respects [5]. ARTag fiducials are square planar bi-tonal patterns which have a
square border and internal 36 bit digital pattern (Fig. 3).

ARTag is a bi-tonal system containing 2002 planar markers, each consisting of a
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Figure 3: (Left) ARTag markers. (Right) ARTag markers detected in an image (white
border and ID number overlaid). ARTag markers are bi-tonal planar marker patterns
consisting of a square border and a 6x6 interior grid of cells representing logic ’1’ or
’0’. 12 out of the library of 2002 markers are shown.

square border and an interior region filled with a 6x6 grid of black or white cells.
1001 of ARTag markers have a black square border on a white background, and vice
versa for the other 1001. The algorithm for detecting the markers in an image first
locates quadrilaterals which may be perspective views of the marker border, then
the interior is sampled into 36 binary ’1’ or ’0’ symbols. Further processing is in
the digital domain providing a non-linear response giving very low false positive and
inter-marker confusion rates. With ARTag, the probability of falsely identifying one
marker for another, or a piece of the background as a marker, is vanishingly low. Fig.
3(left) shows ARTag markers being detected in an image.

The ARTag [2, 3] self-identifying pattern system was employed in our system to
find correspondences in images of a uniplanar calibration object. The calibration
object is an array pattern of ARTag fiducials at known locations.

Fig. 3(right) shows the markers being automatically located in an image. ARTag
has some robust features that allow it to detect markers when partly occluded, how-
ever this “incomplete marker detection” can be turned off so that only completely
seen markers are used as correspondence points.

The correspondences are the centers of each ARTag marker located in the image
(Fig. 4). Both the usage of the four corners, and just the marker center were investi-
gated with the conclusion being that the best accuracy is obtained using the marker
center. This is detailed later herein.
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Figure 4: Stages of autocalibration. Input image (left) is searched for ARTag markers,
detected markers are shown (middle) and their corners or centers and the matching
world coordinate point used as correspondences (right). (note: right image shows
“ARTag corner” method where the marker corners are used providing 4 correspon-
dences per marker).

2 Automatic Calibration

A system was created by combining the ARTag marker detection with OpenCV’s
cvCalibrateCamera() function.

An array of 19 x 9 ARTag markers was printed and mounted on a table top size
60“ x 30” meddite panel and was used for most of the experiments in this paper. Two
smaller ARTag arrays patterns were printed on 8.5“x11” pages for the experiments
in Section 3.1. Table 1 shows results using the meddite panel.

Fig. 5 shows the calibration pattern, Fig. 1 show an Intel CS120 webcam being
calibrated by capturing views of the meddite panel.

The OpenCV cvCalibrateCamera 64d() function is a double precision implemen-
tation of Zhang’s uniplanar algorithm.

The quality of each calibration is evaluated by computing the reprojection error,
which is the Euclidean distance between the identified marker point and the projection
of its corresponding pattern point onto the image. Sometimes the calibration run fails
due to cvCalibrateCamera 64d() not managing to reach convergence. Usually with
larger sets of images this problem is avoided, however, the causes for these failure
cases is not clear. When the points were examined in failed calibration runs, they
turned out to not be matching failures, they were not outliers in the traditional
sense of being a false match between camera and world point. The ARTag marker
detection did not fail, rather it seemed that the convergence of Zhang’s algorithm (or
the implementation in OpenCV) seemed to be sensitive to the inclusion or exclusion
of some correct calibration points. It was decided to not remove points to obtain
a better calibration in our system, since unless a mismatch occurs every data point
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Figure 5: (Left) Self-Identifying array of ARTag markers used as a co-planar calibra-
tion target. Only a few markers need be seen, there are no constraints on what part
of the pattern needs to be visible. The wide pattern makes it possible to have many
views with inclined views. (Right) automatically recovered camera positions relative
to ARTag array.

should be used.

Nineteen different cameras or camera/frame-grabber configurations were calibrated
ranging from low cost webcams with resolutions 320x240 pixels, NTSC cameras, to
high resolution (1280x1024) digital cameras. A Camedia Olympus E20 digital camera
with a 9-36mm zoom lens and a Powershot S60 digital camera with zoom lens were
both used in 640x480 mode. The Powershot S60 was put into three zoom settings;
fully zoomed out (short focal length), in between (medium) and fully zoomed in (long
focal length). A Pixelink 654A IEEE-1394 camera provided 1280x1024 images with
a fixed 16mm lens. Two IEEE-1394 Dragonfly cameras from Point Grey Research
were used; a greyscale 640x480 camera and a “HICOL” color 1024x768 camera. The
greyscale 640x480 camera was tested with 5 different lenses; two 4mm lenses, a 6mm
lens, and two 8mm lenses. Three USB webcams and 2 NTSC cameras with 2 differ-
ent framegrabbers were used. Three different NTSC video cameras were used; a high
quality SONY XC 999 with 6mm lens, Sharp VL-AH150U camcorder, and a low cost
hobby surveillance camera. These NTSC video streams were captured with a an ATI
PCI All-in-Wonder frame grabber providing 640x480 images. Finally, the webcams
were: an Intel CS120 Easycam (320x240 pixels), a WC/50 Telemax webcam (320 x
240 pixels), and an Intel Pro (640x480), a Creative “Live Ultra for Laptops” USB 2.0
webcam (640x480), and a Logitech Quickcam Pro 4000 (640x480).

Table 1 shows the results of automatic calibration of these cameras using the
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ARTag array.

2.1 Using Marker Centers versus Using Marker Corners

The ARTag fiducial marker system software found markers in each image and reported
the ID along with the image locations of the four corners. The marker ID and corner
number was matched to an a priori 2D coordinates providing four correspondence
points per marker. A decision had to be made to use all four, or just use the marker
center found by intersecting lines connecting opposite corners. Both methods were
tested; the “ARTag corner” method and the “ARTag center” method, the latter
proving to be more accurate.

The ARTag system reports the corners of the square outline, found by intersecting
line equations calculated over the marker border sides. Due to blurring and other un-
desirable effects of the lens and aperture size, the brighter areas can expand affecting
the corner position. Usually the ARTag markers with the black square border are
used, and so the white background can expand shrinking the border, thus providing
an image measurement of the corners that shrinks towards the center. When calcu-
lating the marker center, the movement of the corners tend to mostly cancel each
other out and we expect better accuracy of the correspondence points obtained, at
the cost of having less of these points per frame. The effect of lighting is explored
in Section 3.2. Using the marker center is analoguous to using the center of round
calibration dots used in most (non-automatic) calibration setups.

The intrinsic parameters are shown for the “marker center” approach and eval-
uated by calculating statistics on the reprojection error, the standard deviation and
maximum reprojection error are shown. Also shown (last column of Table 1) are the
reprojection error statistics using the “marker corner” method.

2.2 Image Set Size

A practical question asked by one wishing to calibrate a camera is how many images
are necessary. Assuming the images were taken from varying distances and angles
relative to a calibration pattern, how many images should one capture?

We performed an experiment on eight of the camera configurations where we cali-
brated using image set sizes varying from 3 to 30 image frames per set. The accuracy
of the intrinsic parameters extracted was evalulated by measuring the reprojection
error when projected back to the full set of all frames. We randomly chose a subset
of images from the full set, calibrated the camera using them using the ARTag cen-
ter method, and then evaluated these intrinsic parameters. The intrinsic parameters
were evaluated by using the full set of images, calculating only the extrinsic param-
eters (using the OpenCV cvFindExtrinsicCameraParams 64d()), and observing the
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reprojection error and number of times the calibration run failed. A calibration run
was deemed a failure if the standard deviation reprojection error was greater than 3.0
pixels, or the maximum reprojection error was greater than 20.0 pixels. The stan-
dard deviation and maximum reprojection error was averaged over all the successful
calibration runs. 10 iterations were performed for each set size. For example, for the
Camedia camera we have 66 frames in the full set. We started by randomly selecting
2 frames and calibrated the intrinsic parameters, followed by calibrating only the ex-
ternal parameters against the full set (all 66 frames) providing the standard deviation
and maximum reprojection error. If either of these exceeded its threshold we labeled
the run a failure (outlier), otherwise we included the standard deviation error in the
average for a set size of 2 and likewise included the maximum error in the average for
a set size of 2. After performing 10 such tests, we incremented the set size to 3, 4, 5,
etc up to a set size of 30.

For all six cameras set sizes of 2-30 frames were tested. The full set size was 66
frames for the Camedia camera, 44 frames for the Dragonfly with an 8mm lens, 47
frames for the Intel Pro webcam, 68 frames for the Powershot at the longest focal
length setting, 49 frames for the medium focal length, and 63 frames for the short
focal length. The ARTag marker centers were used for correspondence points, there
were an average of 57, 56, 35, 21, 29, and 50 points/frame respectively for these full
sets.

These results are shown in Figs 6 and 7. The x-axis is the number of frames in a set,
the top plot for each camera is the average standard deviation error, the middle is the
average maximum error, and the bottom is the number of outlier (failed) calibration
runs. Note the correspondence with the longer focal length (narrower FOV) and the
number of frames required.

Table 2 demonstrates this, three different cameras were calibrated with only 10
image frames and the calibration results analyzed. Five or six runs of 10 frames each
were conducted with each camera, using entirely different images. Firstly, one can see
qualitatively the consistency of calibration parameters between runs. Secondly the
reprojection error, in standard deviation and maximum form, is displayed for only
the points in the 10-frame set (first error column) and with the full set (second error
column). The results for the Dragonfly (8mm lens#1) camera are slightly consistent,
but that is to be expected from the longer focal length and the results shown in Fig.
7.
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Figure 6: Camedia and Intel Ipro cameras: calibration accuracy vs set size.

3 Comparison of ARTag System and OpenCV Grid

Finder

The OpenCV grid finder function cvFindChessBoardCornerGuesses() can be used to
automatically find correspondences between image and calibration plane coordinates
for camera calibration.

The function starts with converting the input image into a gray scale image fol-
lowed by thresholding to obtain a binary image. It then finds contours from the
binary image and extracts all the contours with exactly four sides. The corners of
those four-side contours are considered to be the corners of the chessboard. They are
ordered into a grid based on their geometric proximity.

The function often does not recognize all the points as discussed earlier. The
images must have low radial distortion, the grids must be completely visible, the
lighting has to be good for the thresholding step to succeed, and other factors have to
be right. In general, the detection can be unreliable and we found many images had
to be captured so that enough grids could be found for calibration. Fig. 2 shows eight
sample images. Table 3 shows some sample results of how often grids are located,
images are taken with 12 cameras of a 8x10 pattern. The pattern was well in the
middle of the view and close to perpendicular to the camera axis, however, the grids
are not detected in all the images. The average number of corners found (should be
80 for a 8x10 array) and percentage of successful grid extractions are shown.

This low detection rate can be compared to our system using ARTag markers
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Figure 7: Dragonfly IEEE-1394 and Powershot S60 digital camera: calibration accu-
racy vs set size. The longer focal lengths tend to require more image frames.
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where correspondences are found in all images, there is no requirement to see the full
pattern. With our ARTag-based system, every image taken with reasonable lighting,
focus, and lack of motion blur produces at least some correspondences. The ARTag
markers have a very low false detection rate, compared to the many false corners
detected by cvFindChessBoardCornerGuesses() if the scene around the pattern is
cluttered. Also, ARTag markers can be detected to almost 85◦ from the normal
whereas we could not get cvFindChessBoardCornerGuesses() to find markers past
60◦ from the normal.

The necessity of having the entire grid visible for any correspondences to be found
limits the potential accuracy of calibration. Zhang’s method requires multiple views
with different perspectives and it is difficult to get too many views where the points
stretch well into the image corners, where the distortion is greatest and in most need
of calibration. In contrast, our method allows the pattern to be larger than the field
of view so that any view has pattern points seen throughout the image.

A possible problem with cvFindChessBoardCornerGuesses() and similar checker-
board schemes such as [11] is a probable intrinsic weakness in using intersections
corners. As discussed in Section 2.1, blurring and other lens and aperture effects can
cause the brighter image areas to expand causing bridges of white or black pixels to
cross the intersection point for bright and dim lighting respectively, this can result
in two corners being detected instead of one (see experiments of Section 3.2). Pho-
togrammetrists, being more concerned with accuracy, prefer circular dot fiducials to
corners. Under perspective projection, a circle projects to an ellipse, and the center
of ellipse can be estimated with subpixel accuracy [9].

People are using cvFindChessBoardCornerGuesses() to find correspondences for
calibration and other applications such as finding correspondences between multiple
cameras to calibrate extrinsic parameters [6], find fundamental matrices, tensors,
etc. Users of cvFindChessBoardCornerGuesses() tend to keep the pattern dimensions
down to a small number of corners, such as a 4×5 array; this increases the probability
of the grid being detected since the odds of all corners being found and aligned
is higher with a smaller number of corners. However, this reduces the number of
correspondence points available per image frame.

Also, users of cvFindChessBoardCornerGuesses() often keep the array small in
the camera view, occupying about 1/3 of the image width. This reduces the chance
that the radial distortion will curve the corners from appearing in straight lines,
increasing the probability of detection. The pattern can be imaged in different parts
of the camera image to cover different parts of the field of view. The drawback is
that correspondences in these different areas of the field of view cannot be found
simultaneously, unlike with our ARTag-based system where markers

Calibrating a camera by imaging the checkerboard pattern confined to 1/3 of the
image width does provide calibration results, however they are not as accurate as our
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system can provide. Tables 4 and 5 show some calibration results using a checker-
board with 8x10 interior corners and 4x5 interior corners respectively. The intrinsic
parameters are found using the points from these images, the reprojection error is
calculated using both these points (second last column titled “subset”) and when
evaluated using the full set of points from previous experiments (last column titled
“full set points”). Attempts were made to calibrate five cameras with the 8x10 and
4x5 checkerboard patterns. With the 8x10 patterns, the calibration grids were only
detected in images from the Pixelink and Camedia cameras and only those could be
calibrated (Table 4). More grids were detected with the 4x5 patterns and calibration
grids were found with 4/5 of the cameras tested, the grids were not detected in images
from the CS120 webcam only.

Looking at Tables 4 and 5 we see superior calibration results (lower “full set
points” reprojection error) in the 8x10 array. The downside is of course that it could
only calibrate 2/5 of the cameras.

When comparing the results of Tables 4 and 5 to Table 1 we see our ARTag-based
method produces superior accuracy.

3.1 Comparing Accuracy with ARTag Corners, ARtag Cen-

ters, OpenCV Grid Finder, and Circular Dots

Another experiment was performed to directly compare the ARTag corner and center
methods, the OpenCV grid finder (cvFindChessBoardCornerGuesses() function), and
the traditional circular dot array used in calibrating cameras. The planar array of
dots was used as a benchmark to compare the ARTag and cvFindChessBoardCorner-
Guesses() methods against, the dots were painstakingly identified in the images with
manual techniques and the centroid found 1 for a thresholded image of each dot.
This allows comparison against what is likely the most common camera calibration
method.

To fairly compare the four methods, identical poses were captured for each method.
The cameras were mounted on tripods and the four calibration patterns were hinged
together so they could be changed without changing the pose. The same number
of images were taken for each method, for each of 6 cameras. The marker points
are in the same positions in each image locations, all have 8 rows of 10 columns of
points. Each point corresponds to a marker corner in the ARTag corner method,
to a marker center in the ARTag center method, to a dot center in the circular
dot method, and to an inner corner in the checkerboard pattern for detection by
cvFindChessBoardCornerGuesses(). The experiment setup is shown in Fig. 8.

The results are shown in Table 6. The circular dots were all found manually and

1The centroid was found automatically once a region with the dot was identified.
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so have a 100◦ detection rate of grid, and the full 80 points found in each image. The
ARTag markers were detected in all the frames with varying number of correspon-
dence points. With all the four array types, the reprojection error was calculated
by projecting onto a larger set of points as described above - the error within the
points found for a calibration run can give deceptively low error. The ARTag system
achieved equal or better accuracy than the circular dot method but was performed
in seconds as opposed to several hours for manually locating and verifying the dot
centroid locations. The cvFindChessBoardCornerGuesses() function provided infe-
rior calibration results, this could be due to the less number of calibration grids that
were found, and/or a possible intrinsic weakness in using intersections corners.

3.2 Sensitivity to Lighting and Focus

With all these methods each correspondence’s location is determined by the position
of borders or corners which can be susceptible to the effects of the non-ideal prop-
erties of real cameras and lenses with respect to lighting change and blur. With an
ideal pinhole a bright point in the scene maps to a single image plane point, how-
ever with a finite aperture size and defocus the image plane point expands. With
increasing irradiance and binary theshold decisions to find lines, corners and circu-
lar blobs, light/dark edges tend to move towards the darker side, corners on dark
ARTag markers move inwards, and dark circular blobs shrink. Lighting and focus
thus affect the image coordinates in the correspondence points used for calibration.
With the greyscale Dragonfly camera ARTag marker corners moved by up to 1.5 pix-
els between light and dark exposures. The centroid of circular dots and the centers
of ARTag markers move less due to the cancelling effects of the different sides and
corners. Also, the intersection point at the checkerboard corners will turn into two
corners as either the opposite white or black squares merge due to bright or dim
lighting. The OpenCV CheckerBoardGuesses() function averages the distance be-
tween these two nearby corners found as endpoints of sides of closed quads, however
it is not clear how the following sub-pixel corner find operation will affect the reported
position.

Therefore we would expect to see the calibration results to be affected by increasing
light and lens/aperture non-ideal properties. We expect to see the ARTag corner
positions move more than the centers, and we are unsure of how the OpenCV grid
finder will respond. This was examined in an experiment where calibrations were
performed at different exposure settings. With the Dragonfly IEEE-1394 camera it
is possible to turn off the automatic shutter control and override it with a manual
setting from 0.25 to 60ms. We took 16 different exposure settings in this range at
each of 20 camera-pattern poses and separated the images into 16 separate calibration
runs. This experiment was performed both with the meddite ARTag array and a 4x5
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Figure 8: Comparison of calibration using ARTag corner, ARTag center, circular
blobs, and checkerboard method using identical poses and locations of correspondence
points. An array was made for each method and used to calibrate each camera, each
array has 10 x 8 points located in the same position, the first row shows the array
patterns. 10-30 images were taken of each array maintaining the camera pose (the
array patterns were hinged together) between imaging the four arrays. The second
and third rows above show all images for a single pose using the Dragonfly 8mm cam-
era. The first column shows ARTag marker corners being used as the correspondence
points, the second column shows ARTag marker centers being used, the third column
shows circular blobs being used, and the fourth column shows interior corners in the
checkerboard pattern used with the OpenCV CheckerBoardGuesses() function. The
results are shown in Table 6.
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checkerboard image. We also took 35 images with the normal auto-shutter of the
ARTag meddite array and used the marker centers as the “full set” for evaluating the
16 calibration runs with each system. Fig. 9 shows some images from the ARTag
and checkerboard image sets. Four images from a single pose are shown for both the
ARTag and checkboard array, some close-ups of a corner as it changes with shutter
setting is shown.

This provided us with two groups of images, one for the ARTag array and one for
the checkerboard array. Each group contains 16 sets of 20 images, each set being from
a different shutter setting. Correspondences in the checkerboard group are found with
the OpenCV CheckerBoardGuesses() function. For the ARTag array, correspondences
are found for both the center and corner methods. The intrinsic parameters are found
for each of the three methods for each shutter setting and the accuracy evaluated by
reprojecting to the “full set” of points.

Fig. 9 shows a plot of the results, the ARTag center method shows a flatter, i.e.
less sensitive response to lighting than the ARTag corner approach. The bottom of
the ARTag corner curve is in the region of the 18ms which the automatic shutter
chose with the lighting reflected off the ARTag array when auto-shutter was turned
back on. The OpenCV grid finder provides a more erratic response, possibly due to
only about 50% of images having the grid extracted, but the accuracy does seem to
be higher closer to the 30ms shutter setting chose by the auto-shutter mode. Our
hypothesis of the ARTag center method being less sensitive to the ARTag corner
method was verified, and both were found to be less sensitive than the checkerboard
method.

4 Conclusions

Calibrating cameras is a time consuming task despite the availability of calibration
algorithms and software. This paper introduced a system where a camera can be
calibrated fully automatically by simply taking images aimed at a self-identifying
pattern. A system was created to robustly find correspondences using the ARTag
self-identifying fiducial markers, this was input to the OpenCV implementation of
Zhang’s coplanar calibration algorithm. Experiments were performed calibrating sev-
eral cameras in a short period of time with no manual intervention.

It was found that when using ARTag markers for a calibration target, the best
calibration results are achieved by using the marker center instead of each corner,
thus providing only one correspondence per marker instead of four. This is assumed
to be analoguous to using the centroid of a circular dot, the center will move less with
blooming and defocus than will a marker or dot’s edges.

It was found that the OpenCV cvFindChessBoardCornerGuesses() function is not
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Figure 9: Sensitivity of calibration accuracy due to lighting and non-ideal lens and
aperture qualities. The camera shutter was manually controlled in 16 settings from
0.25ms (dark exposure) to 60ms (bright exposure) at each of 20 pose positions for both
the ARTag and checkerboard array. Due to the point spread function) corners move
with increased lighting and defocus, the results show that the ARTag center method is
less sensitive to the lighting (shutter setting) than either the ARTag corner or OpenCV
grid finder.

as suitable for automatic accurate calibration since it functions well only when the
array is small compared to the size of the image, and cannot fill the full extent of
the image as is needed for accurate calibration as that the non-linear radial and thin
prism distortion effects manifest themselves with greatest magnitude away from the
image center. It was shown that the grid was often not detected when the pattern
filled the image, and the grid had to be small relative to the image for repeatable
enough detection to allow calibration. Both arrays with 8x10 and 4x5 intersection
points were tested, both had inferior accuracy relative to our ARTag-based system.
The 8x10 checkerboard grid provided better accuracy than the 4x5 grid however the
grid was detected less often so that less camera types were successfully able to be
calibrated.

A summary of the comparison between the OpenCV grid finder and the new
ARTag based system is that the ARTag system provides more accurate intrinsic pa-
rameters, verified by several experiments. We hypothesize that the increased accuracy
is due to two reasons; more calibration points are found due to a more robust pattern
detection, and these points extend further into the image corners. The ARTag system
can use a pattern that extends beyond the camera view so that correspondences more
completely fill the image, and utilizes all the input images (with reasonable lighting
and focus/blur conditions). The OpenCV grid finder’s “all or nothing” approach
where all points in the calibration grid must be recognized causes many images to be
unusable with zero correspondences provided.
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A comparison was performed with identical numbers of images, points and their
locations with identical camera-pattern poses for four methods; the ARTag center
method, the traditional circular dot method with manually located points, and a
8x10 checkerboard pattern. Equivalent accuracy was achieved with the ARTag center
method relative to the manual circular dot method, and the checkerboards detected
with cvFindChessBoardCornerGuesses() provided the poorest calibration results.

Experiments were performed to evaluate the sensitivity of calibration to effects
of lighting variation and non-ideal lens and aperture properties, the ARTag center
method was less sensitive to the ARTag corner method, and both were found to be
less sensitive than the checkerboard method.

Regarding how many frames are necessary for a good calibration, it was deter-
mined experimentally that reasonable calibration results can be obtained with as 10
frames for most cameras, but that a recommended number of frames is 15 or 20.

Our system showed how an array of ARTag self-identifying patterns can be used
for a fully automatic camera calibration system. With this system, a camera can be
calibrated automatically with a high degree of accuracy in a few minutes.
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Sequence K matrix Distortion Parameters Re-projection Error
Std. Dev / Maximum

# Avg. Fx Fy uo vo k1 k2 p1 p2 Center Corner
Frms Pts/Frm Set Points

Camedia Olympus E20 with 9 - 36 mm zoom lens (640 x 480 pixels)
66 57 1329.63 1330.01 317.42 235.81 -0.0613 0.3790 -0.0005 0.0006 0.14/1.97 0.30/10.40

Pixelink A-654 with 16mm lens (1280 x 1024 pixels)
22 84 2165.72 2203.61 658.13 517.77 -0.1128 -0.3241 -0.0032 0.0016 0.27/2.72 0.39/5.99

Powershot S60 Long focal length (640 x 480 pixels)
68 20 1796.56 1795.39 309.09 241.11 0.0689 -0.6264 0.0008 -0.0019 0.19/2.55 0.49/7.67
34 37 1784.63 1775.58 317.31 238.10 0.0480 0.0479 -0.0014 -0.0005 0.19/2.02 0.41/5.79

Powershot S60 Medium focal length (640 x 480 pixels)
49 27 1159.63 1158.63 315.94 237.93 -0.0512 0.1691 -0.0009 -0.0013 0.17/2.13 0.31/6.1

Powershot S60 short focal length (640 x 480 pixels)
63 48 531.70 531.46 322.45 243.19 -0.1448 0.1090 0.0005 0.0006 0.14/1.64 0.25/4.64

Point Grey Research Dragonfly IEEE-1394 camera with 4mm lens #0 (640 x 480 pixels)
49 66 525.86 525.84 339.19 261.77 -0.3872 0.1325 0.0005 0.0004 0.18/3.47 0.30/8.72

Point Grey Research Dragonfly IEEE-1394 camera with 4mm lens #1 (640 x 480 pixels)
74 51 530.58 530.74 332.03 273.24 -0.3871 0.1320 0.0005 -0.0004 0.16/2.20 0.29/9.04

Point Grey Research Dragonfly IEEE-1394 camera with 6mm lens (640 x 480 pixels)
50 38 885.06 888.99 344.80 260.17 -0.1814 0.1978 0.0013 0.0016 0.17/2.26 0.37/6.61

Point Grey Research Dragonfly IEEE-1394 camera with 8mm lens #0 (640 x 480 pixels)
44 55 1097.63 1100.41 327.69 256.40 -0.0523 -0.0883 -0.0023 -0.0019 0.13/1.62 0.35/7.28

Point Grey Research Dragonfly IEEE-1394 camera with 8mm lens #1 (640 x 480 pixels)
51 43 1098.57 1098.72 328.52 253.92 -0.0677 -0.0473 -0.0021 -0.0007 0.15/2.80 0.28/6.6

Point Grey Research Dragonfly IEEE-1394 HICOL camera with C-mount 16mm lens #1 (1024 x 768 pixels)
23 60 3502.10 3503.28 539.43 362.55 -0.1690 1.6502 -0.0006 -0.0032 0.44/4.78 0.85/20.50

Creative Webcam Live Ultra For Laptops USB 2.0 Webcam (640 x 480 pixels)
35 62 520.90 521.24 332.92 277.33 -0.2968 0.0903 -0.0006 -0.0020 0.16/1.97 0.25/6.66

Logitech Quickcam Pro 4000 USB 2.0 Webcam (640 x 480 pixels)
25 31 795.39 793.86 373.12 255.62 0.1260 -0.0840 -0.0006 0.0043 0.30/1.86 0.73/13.13
25 37 786.26 789.44 373.26 271.22 0.1227 -0.0660 0.0028 0.0049 0.29/2.62 0.63/5.8
50 34 790.89 791.27 372.97 262.95 0.1238 -0.0722 0.0010 0.0046 0.30/2.59 0.68/13.4

Intel CS120 Easycam (320x240 pixels)
40 16 435.33 442.29 157.82 172.09 0.6612 -2.9329 0.0076 -0.0034 17.1/146.7 0.40/7.5
25 17 461.61 465.96 160.79 124.00 0.6531 -2.8174 -0.0031 -0.0014 0.34/2.28 0.53/9.1

29 17 26.66 121.13 -90.57 505.78 -0.0022 0.0000 0.0005 0.0105 1010/1010 0.48/5.00
47 22 453.48 457.55 163.71 130.80 0.6222 -2.4422 -0.0039 0.0017 0.22/1.85 0.35/4.53

Intel Pro webcam (640 x 480 pixels)
47 33 846.85 847.53 322.42 232.31 -0.0060 -0.1462 0.0020 -0.0017 0.22/1.77 0.42/5.11
48 29 848.54 847.28 322.44 228.40 -0.0162 -0.0767 0.0024 -0.0018 0.25/2.46 0.54/8.62

SONY 999 NTSC camera captured with ATI PCI framegrabber (640 x 480 pixels)
40 59 633.87 620.20 304.13 240.31 -0.2034 0.1060 -0.0002 -0.0003 0.13/1.25 0.27/5.06

Single-board X10 greyscale NTSC camera captured with ATI PCI framegrabber (640 x 480 pixels)
27 31 632.60 616.31 346.58 239.30 -0.4231 0.1764 -0.0002 0.0000 0.19/1.21 0.39/4.72
26 32 632.04 616.23 347.64 240.47 -0.4198 0.1750 -0.0007 -0.0001 0.20/1.64 65.45/901.98

NTSC camcorder Sharp VL-AH150U captured with ATI PCI framegrabber (640 x 480 pixels)
29 32 745.73 726.79 306.63 231.89 -0.2151 0.3351 0.0000 0.0013 0.25/2.77 0.57/10.62
47 22 864.01 753.82 384.74 140.92 -0.3158 0.0152 0.0756 -0.0002 30.8/356.3 26.3/381.3

Table 1: Calibration Using OpenCV cvCalibrateCamera() function with points ex-
tracted automatically using the ARTag pattern array (mounted on the meddite panel)
with two methods; using the marker center as a correspondence point, or using all
four corners (2nd last and last column show respectively show error). Calibration pa-
rameters are shown for the center method, only error is shown for the corner method.
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Sequence K matrix Distortion Parameters Re-projection Error
Std. Dev / Maximum

# Avg. Fx Fy uo vo k1 k2 p1 p2 Subset Full Set
Frms Pts/Frm Points

Camedia Olympus E20 with 9 - 36 mm zoom lens (640 x 480 pixels) - ARTag center method
10 64 1331.02 1331.32 315.63 234.32 -0.0745 0.5360 -0.0003 0.0002 0.12/1.19 0.14/1.99
10 58 1323.99 1318.46 324.40 239.69 -0.0375 0.0705 -0.0002 0.0029 0.12/1.19 0.15/1.89
10 46 1319.20 1328.02 316.48 259.98 -0.0822 0.5427 -0.0011 0.0004 0.13/1.68 0.15/1.88
10 60 1324.77 1322.48 322.81 240.47 -0.0543 0.3123 -0.0009 0.0023 0.14/1.85 0.15/1.90
10 70 1334.85 1332.93 315.55 223.41 -0.0474 0.2750 -0.0004 -0.0000 0.16/2.03 0.15/2.04
10 43 1334.30 1321.36 297.01 210.90 -0.0284 -0.2354 -0.0014 -0.0040 0.16/1.00 0.16/2.10

Dragonfly IEEE-1394 camera with 8mm lens #1 (640 x 480 pixels) - ARTag center method
10 42 1076.85 1117.15 327.68 310.38 -0.0506 -0.1185 -0.0067 -0.0001 0.19/2.88 0.52/5.22
10 54 1094.95 1097.97 330.77 259.02 -0.0733 0.0056 -0.0029 -0.0003 0.16/2.77 0.15/2.77
10 41 1099.22 1098.37 335.90 251.96 -0.0884 0.0630 -0.0017 0.0001 0.11/0.98 0.17/2.71
10 37 1099.71 1098.79 322.86 258.59 -0.0729 0.0912 -0.0004 -0.0027 0.13/1.26 0.16/2.93
10 44 1096.88 1102.26 323.20 260.42 -0.0692 -0.0500 -0.0026 -0.0017 0.15/1.10 0.16/2.88

Intel Pro webcam (640 x 480 pixels) - ARTag center method
10 30 853.47 856.51 324.55 231.07 0.0005 -0.1876 0.0032 -0.0018 0.18/1.24 0.23/1.23
10 39 847.71 846.36 319.60 228.48 0.0034 -0.2178 0.0022 -0.0024 0.21/1.18 0.22/1.18
10 34 845.40 853.41 323.09 239.31 -0.0058 -0.1064 0.0019 -0.0012 0.22/1.41 0.22/1.41
10 28 838.42 841.23 325.08 241.79 -0.0143 -0.1237 0.0010 -0.0005 0.23/1.65 0.23/1.65
10 35 851.01 848.67 326.89 223.14 -0.0330 0.0075 0.0032 0.0001 0.25/2.13 0.25/2.64
10 26 855.75 848.68 328.14 212.26 -0.0501 0.1393 0.0013 -0.0001 0.29/2.20 0.25/2.39

Table 2: Accuracy of calibration with only 10 frames. The first column of reprojection
error is that seen within just those 10 frames, the second column is the reprojection
error when the intrinsic parameters were evaluated over the full set of frames. All runs
were performed with 10 different frames and used the ARTag marker center method.
The consistency of parameters between runs can be seen.

Camera average % Grids Camera average % Grids Camera average % Grids
corners located corners located corners located

Pixelink A-654 80 100 HICOL Dragonfly 53 40 Intel Pro 76 80
Dragonfly 4mm 67 0 Creative Ultra 80 60 X10 NTSC 75 80
Dragonfly 6mm 70 40 Logitech 4000 56 40 SONY 999 NTSC 61 40
Dragonfly 8mm 70 0 Intel CS120 66 60 Telemax WC/50 63 40

Table 3: Grid detection results using OpenCV CheckerBoardGuesses() function. Im-
ages with the complete checkerboard visible are captured for each of 12 cameras. The
average number of corners found, plus the percentage of the five for which the entire
grid is found are shown. Some of the images are shown in Fig. 2.

Sequence K matrix Distortion Parameters Re-projection Error
Std. Dev / Maximum

# Avg. Fx Fy uo vo k1 k2 p1 p2 Subset Full Set
Frms Pts/Frm Points

Pixelink A-654 with 16mm lens (1280 x 1024 pixels) - cvFindChessBoardCornerGuesses() method 8x10 grid
12 80 2181.54 2172.08 659.57 499.60 -0.1501 -0.6800 0.0012 0.0007 0.13/1.20 0.54/1.32

Dragonfly IEEE-1394 camera with 8mm lens #1 (640 x 480 pixels) - cvFindChessBoardCornerGuesses() method 8x10 grid
22 80 1121.91 1119.69 363.06 234.38 -0.0411 -0.1045 -0.0034 0.0117 0.11/1.04 0.28/2.17

Table 4: Calibrating using the cvFindChessBoardCornerGuesses() method with a
8x10 grid where the checkerboard only fills 1/3 of the field of view. Only the Dragonfly
8mm camera produced images where sufficient frames where grids could be detected.
With the CS120 webcam, no corners were detected despite a sharp image, with the
Intel Pro webcam an average of 32 corners were found per frame but none with grids
extracted. An average of 46 corners/frame were also found with the high resolution
Pixelink A654, and grids were extracted in 12/51 frames. Thus of the four, only two
could be calibrated.
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Sequence K matrix Distortion Parameters Re-projection Error
Std. Dev / Maximum

# Avg. Fx Fy uo vo k1 k2 p1 p2 Subset Full Set
Frms Pts/Frm Points

Pixelink A-654 with 16mm lens (1280 x 1024 pixels) - cvFindChessBoardCornerGuesses() method 4x5 grid
25 20 2209.35 2203.71 668.56 437.21 -0.1785 -0.4815 -0.0043 -0.0032 0.12/0.89 0.84/9.90

Dragonfly IEEE-1394 camera with 8mm lens #1 (640 x 480 pixels) - cvFindChessBoardCornerGuesses() method 4x5 grid
22 20 1145.43 1136.73 310.62 162.15 -0.0084 -0.1572 -0.0171 -0.0053 0.08/0.44 0.42/3.10

Intel Pro webcam (640 x 480 pixels) - cvFindChessBoardCornerGuesses() method 4x5 grid
22 20 869.88 865.83 322.43 212.08 -0.0092 -0.0982 -0.0015 -0.0037 0.09/0.48 0.41/3.18

Logitech Quickcam Pro 4000 USB 2.0 Webcam (640 x 480 pixels) - cvFindChessBoardCornerGuesses() method 4x5 grid
11 20 804.14 801.39 357.00 226.49 0.1293 -0.0608 -0.0191 -0.0051 0.09/0.50 0.37/2.93

Table 5: Calibrating using the cvFindChessBoardCornerGuesses() method with a
4x5 grid where the checkerboard only fills 1/3 of the field of view. Checkerboard
grids were found in 25/30 frames taken with the Pixelink A654, in 23/25 frames with
Dragonfly (8mm lens #1), in 24/25 with the Intel Pro webcam, and in 11/25 frames
taken with the Logitech 4000. None (0/25) were found with the CS120 webcam.

Camera ARTag corners ARTag centers Circular blobs checkerboards
% avg. Reproj. % avg. Reproj. % avg. Reproj. % avg. Reproj.

det. pts error det. pts error det. pts error det. pts error
Pixelink A-654 100 80 79.4/865 100 77 1.30/9.03 100 80 5.24/48.9 92 79 1.12/7.81
Powershot S60 100 76 0.55/3.55 96 37 0.43/3.23 100 80 0.49/3.81 13 63 0.72/5.86
Dragonfly 8mm 100 79 0.18/2.00 100 68 0.32/2.43 100 80 0.27/1.99 6 69 46.1/477

HICOL Dragonfly 100 80 0.78/9.45 100 63 1.44/9.56 100 80 1.19/8.37 40 60 1.65/13.7
Creative Ultra 100 79 0.45/3.55 100 48 0.50/5.78 100 80 0.62/5.93 58 78 0.99/10.7

Intel Pro 100 78 0.46/3.54 100 45 0.51/3.92 100 80 0.47/3.65 14 60 20.2/301

Table 6: Comparison of calibration using ARTag corner, ARTag center, circular blobs,
and checkerboard methods. An array was made for each method and used to cali-
brate each camera. The ’% det.’ column is the percentage of frames for which the
calibration grid could be extracted, the ’avg. pts’ column is the average number of
points used in each successfully detected grid (maximum 80), and the reprojection
error is shown as standard deviation / maximum in the ’error’ column. The arrays
are aligned so that they have the same number of correspondence points (80) in the
same locations. For each pose each array is placed in the same location without
moving the camera, the cameras and each pose are chosen to give the best chances
of the OpenCV CheckerBoardGuesses() function working. Several (15-40) poses are
used to generate a set of correspondences for each camera and array. The instrinsic
calibration parameters determined using each camera and array are evaluated for re-
projection error using a larger set of correspondences (ARTag marker centers) from
experiment 1 (Table. 1) Some of the images are shown in Fig. 8.
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