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ABSTRACT

This report introduces some of the fundamental
ideas of the current theory of automatic control to
readers familiar with the ‘classical’ methods of Laplace
transforms, root loci, etc. The mathematical approach
is intuitive rather than rigorous. A selected bibli-
ography is appended.
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SOME CONCEPTS OF MODERN CONTROL THEORY

— J.S. Riordon —

1. INTRODUCTION

About ten years ago, the traditional transform approach to
the study of dynamic systems began to give way to the more fundamental
time domain approach. With this change there grew a whole new vocabulary
-~ or jargon =-- which perhaps obscured the fact that this '"modern'"
approach is in many ways just a different method of describing the
original system. However, its champions claim that it is much more than
this ~- that it is a powerful new technique which unifies heretofore
diverse concepts, and allows the introduction of systematized computer-
based design methods that were formerly not possible, The purpose of
this report is to introduce some of the fundamental ideas of the current
theory of automatic control to readers familiar with the "classical"
methods of Laplace transforms, root loci, etc, The mathematical
approach is intuitive rather than rigorous; for those readers who wish
to pursue the subject in greater depth, a selected bibliography is

appended.

2, CONTINUOUS-TIME LINEAR SYSTEMS

2,1 Transform Approach

A linear lumped parameter time-invariant dynamic system with

one input u(t) and one output c(t) may be described by the ordinary



differential equation

’ . n
butb @ ...+ bmu“m) =a cta ct ...+ anc( ) (1)
here G = du u(m) _ dmu
where U T 4t at™
. _ dc C(n) _ d"c
T dt?

th
In real physical processes n > m, and (1) is an n order differential
. . o th ,
equation; the system itself is said to be n  order. By taking Laplace
transforms, we obtain the transfer function
2 m
b +bs+bs + ,,.,+bs
0 2 m

. .
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a +as+as®+ ., n (2)
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2(g) =
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An analogue compute realization of this system is shown in fig, 1, Note

: . . h
that at least n integrators are required to simulate an nt order system,

<

bem b, b, bo
. |_ Xn-y im IZ x| Ci= X,
()1 & --- -- .
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Figure 1 Realization of %{s}



The Laplace transform approach is useful, since it replaces
the operation of convolution in the time domain with multiplication in

the transform domain. Moreover, system stability can be determined by

examination of the roots of the characteristic equation

a +a.s + a 52 + + sn = 0
0 1 2 e an

Laplace transform techniques also suffer from several

disadvantages:

i) the input u(t) must be a Laplace-transformable
function;

ii) design techniques are empirical, and tend to break
down altogether for multi-input, multi-output

systems;

iii) nonlinear or time-varying systems cannot be handled,

2.2 The State Space Concept

th
An n  order differential equation may be solved numerically
by transformation into n simultaneous first order differential equations,

Consider the system of fig. 1. Let the variable . be denoted Xs let

its first time derivative él be x2, its second, x3, and so on,

Inspection of fig. 1 shows that

xl = x2
s =y
2T %3
xn-l - xn
a
. 0 1 4h-1 u
X T «™ X - x - ... Xx + -
n a 1 a 2 a n a
n n n n

(3)

(4)



or in vector-matrix notation

/ N ¢ N N / N

X 0 0 ..

x1 1 .o 0 0 x1 0

X 0 0 e 0

x2 1 0 x2 0

. . . + 1 u (5)

L] = o

X o o0 0 1 x 0

) & & % %n-2 2h-1| |x

X -—-— - = |, -/ - n -

n a a a a a a

n n n n n n

\ / \ J N / \ J

The output, c, is given by

c = b0 x1 + b1 x2 + .... + bmxm+1 (6)
In more general form, the dynamic equations of a linear system
may be expressed as:
k(t) = A x(t) + B u(t) @)
2(t) = C x(t) (8)
where x(t) is an n-vector (the state vector)
A is an n x n matrix
B is an n x q matrix (q control inputs)
u is a q-vector (the control vector)
y is an r-vector (the output vector of r elements)
c is an r x n matrix

In the system of (5) and (6) q = r = 1, so that u = u is a

scalar and B = b is an n-vector.



Example: A system has the transfer function

C 1

=(s) =

U 2

s + 3s + 2

Express the system dynamics in the form of equations (7) and (8).

We observe that the differential equation of this system is

e(t) + 3 &(t) + 2 c(t) = u(t)
Letting x, = ¢ and x, = ¢, we can write
x=Ax+bu
as 5{1 0 1J X 0]l u
= +
*2 -2 -3 X, 1

Equation (8) becomes

y=I[1 0]

x
n
»

The state x(t) of a system at time t may be represented by a
point whose coordinates on a set of n orthogonal axes are
(xl(t), xz(t), ees xn(t) ). The set of axes defines a state space --
just an extension of the phase plane concept ~- and the path

x(t), to < t < t, traced out over a given time interval (to, tl) is

1
called the trajectory of the system in state space. It should be

pointed out that successive state variables need not be time derivatives
of each other as in (4) and (5). Any other linear combination of these

variables will do just as well, providing all the combinations are

linearly independent,

(9)

(10)

(11)

(12)

(13)
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Some advantages of the state space formulation are:

i. a set of first order differential equations is
often easier to solve than one ntP order equation;

ii, initial conditions are automatically included;

iii., the formulation applies to systems which are
linear or nonlinear, continuous or time sampled,
deterministic or stochastic;

iv, multi-input, multi-output systems may be
handled;

v. computer solution of (7) is straightforward;

vi. design criteria may be stated in a manner
suitable for computer calculation (this calculation
may still be difficult to implement, though);

vii, for a given state x(t1) at time t;, the system
behaviour at any previous time t < tj, has no
effect on future system response. In a sense the
whole history of the system's evolution is summed
up in the state vector.

2,3 System Stability

By analogy with the scalar equation
x(t) = a x(t)
we might reasonably expect that the autonomous vector equation
x(t) = A x(¢)
represents a stable system if the matrix A is negative in some sense,
In fact, its eigenvalues must be negative. Moreover, it can be shown

that the eigenvalues of A are simply the roots of the characteristic

equation (3).

(14)

(15)



An eigenvalue of a matrix A is a scalar N such that for some

particular vector x (an eigenvector)

Ax=MArx (16)
Re-writing (16) as

Ax=MNIx (17)
we obtain

A-r1)x=0, x#0 (18)

where I is the identity matrix, with unit diagonal elements, and zero
off-diagonal elements.
Equation (18) holds if the determinantIA - XIlis zero; i.e.,

|A - A 1|= 0 (19)

Example: To find the eigenvalues of (9)

From (12), A=}|0 1]
-2 -3
|a - II 0 - A 1
=|-, 3 - AT A(-3-N)-(-2) = 0
i.e., N +3N+2=0
Kl = - 1; Kz = -2; (20)
Note that (20) is the characteristic equation of (9) and that
Xl and Kz are the corresponding poles in the s-plane. Obviously the
system is stable,
Again considering the analogy of (14) and (15) we might
reasonably assume that (15) has the solution
x(t) = exp [At] x (0) (21)

where x(0) = x(t=0) = initial conditions on integrators.



This assumption turns out to be true. The exponential of matrix A is
itself a matrix denoted ¢(t) and given by
1 2 1 3
o(t) = exp [At] =1 + At + 21 (At) + 3,(At) + ... (22)

o(t) is known as the state transition matrix,

2.4 Calculation of ¢(t) Using Laplace Transforms

A number of methods exist for calculating ®(t). The one we
shall consider here, although not necessarily the easiest, relates the
state transition matrix to Laplace transform analysis., If X{s) is the
Laplace transform of state vector x(t), then (15) may be written as
s X(s) - x(0) = A X(s) (23)
. X(s) = [sI - A ] -1 x(0)
ie., x(t)= ,c'l{[s I-A] '1} x(0) (24)

Comparing (24) with (21) and noting (22), we see that

oty = ¢t {[SI- A] '1} (25)

Example: Calculate &(t) for the system of equation (9).

[s1 - A] = s -1

2 s+3
-1 s + 3 1
[SI - A] = | G+l (s+2 (s+1) (s+2)
-2 s

(s+1) (s+2) (s+1) (s+2)



.o 0(e) = (26)

In this second order system we have

xl(t) é xl(O) + ¢ xz(O)

11 12

bap %10 T by, %,(0)

(27)

x, (t)

Note the interpretation which may be put on elements dij(t) of
the transition matrix. By inspection of (27), we have

¢_j(t) = value of state variable x; at time t
i
resulting from a unit initial value
of x, when all other state variables
J

except x, have zero initial value.
]

A useful property of the state transition matrix is that

® (et x=0 (£) [0 () x]

i.e., e (t,+t,) o (t)) © (t) (28)

This is known as the semigroup property of the operator o(t);

it underlies the usefulness of the state transition method in sampled

data systems and optimal control,

2.5 Systems with Control Input

Consider the scalar equation
x(t) = a x(t) + b u(t) (29)
If h(t) is the system impulse response then use of the convolution

integral shows that the solutiom of (29) is
t

x(t) = x(0) F +Lé“ h(t-1) bu(t) dt (30)
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But since this is a first order system
h(t) = eF (31)
Again the analogy between (29) and (7) correctly suggests that the

solution of (7) is

t
x(t) = ¢(t) x(0) + \/ﬁ o(t-1) B u(t) dt (32)
0

3. DISCRETE TIME LINEAR SYSTEMS

3.1 Transform Approach

In the theory of sampled data systems it is assumed that the
continuous function f£(t) shown in fig. 2a is modulated by a train of

impulse functions

k=w
Z d(t-kT)
k= - o

of'"zero"width, "infinite'" amplitude, and unit area, each pulse being
spaced by a period T, the sampling time (see fig. 2b). The

7

modulator output fk(t), shown in fig. 2c, has the form

£5(t) = £(t) E: 5 (t - kT) (33)
k=- w
1f f(t) = 0 for t < 0, then
£ () = zg: £(KT)  (t-kT) (34)
k=0

and its Laplace transform is
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o0

LIE(E)] = F(s) = f £5¢e) %% ae
0 0
- f E £(kT) & (t-kT) e °F 4t
0 k=0
. L -kTs
i.e., F (s) = Z f(kT) e (35)
=0
(Q)
1'—-.
=
>
|
A
(2]
| (b)
Oll2 34 56 78910--.
T-—o —— k ———————e

T IHI (©)

Figure 2 Impulse modulation
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We now substitute the variable

z = e (36)

and obtain the z transform F(z)

defined by

F(z) = F'(s) I R ATICY
s = E log z
\ -k
F(z) = 2; f(kT) =z (37)
k=0

Here the symbol Z (+) indicates ''the z transform of",

The z transform is the discrete time equivalent of the

Laplace transform, and the theorems of linearity, superposition,

convolution, etc, all have discrete time counterparts. Equation (36)

is a conformal mapping which maps the infinite number of poles and

% . . o .
zeros of F (s) in the s plane into a finite, and therefore manageable,

set in the z plane. Similarly the stable left hand side of the s plane

is mapped

transform

a partial

Example:

where

into the interior of the unit circle in the z plane.
Since the Laplace transform 1/(s+a) has an equivalent z
-aT .
z/(z-e ), the z transform of a system may be obtained from
fraction expansion of its Laplace transform,

C C
Determine G(z) when E(s) is given by (9).

1 1 1

o ot [ -]

(s+1) (s+2) s+l s+2
C v —z -z
v = -T -2T

z - e z + e
Q(z) _ (al - az) z
u (z—al)(z-OQ)
o =e L. q o (38)

1
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Suppose the sampling time, T, is 0.2 seconds. Then al = 0.819 and

az = 0,670, so that

0.149 =z

C
o =
z° - 1.489 z + 0.549

Note that ql and az are the roots of the characteristic
equation; since both of them lie within the unit circle, the system is
stable,

One important property of the z transform is expressed by the

shift theorem, which states that if a function f(t) has a value f(k) at

t = kT, then
ZLERk-1)] = 20 2 [£(k) ]
We may re-write (39) as
C(z) (1-1.489 z ~ + 0.549 z 2y = U(z) (0.149 z'l)
In view of (40), (41) is seen to be
Z [c(k)] - 1.489 Z [c(k-1)] + 0.549 Z [c(k-2)]
= 0.149 Z [u(k-1) ]

so that the difference equation of this system is evidently

c(k) -1.489 c(k-1) + 0.549 c(k-2) = 0.149 u(k-1)
Equation (42) is a recursion relationship which allows the
computation of the output sequence {c(k)} for any given input sequence
{ u(k)} , k=0,1, 2, ... =,
In practice the system input function is not a series of
impulses, but usually a piecewise constant (staircase) function, This
may be considered as the output of a zero-order hold (sample-and-hold)

circuit whose input is a modulated impulse train. In such a case the

(39)

(40)

(41)

(42)
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z transform becomes

C z-1 L &
£(2) ~= .z [ - U(s)] (43)

Example: previous case, with sample-and-hold circuit added.

Ciy = 21 -1
=, [ s(s+1) (s+2) ]

_oz-l, z[ 1.1, _1 ]

Tz 2s s+1 2(s+2)

- z-1 b4 _ z + z

z 2(z-1) (z-al) Z(Z-OE)

€ () - 0.5 (1-2 & + aé) z+0.5 (@+a & -2Qa)
U (z - Otl) (z-Olz)

(44)
For T = 0.2 seconds, (44) becomes

c .016 .013
Sz - 0.0164 z + 0.0134 45)

z2- 1.489 z + 0.549

The corresponding difference equation is

c(k) - 1.489 c(k-1) + 0.549 c(k-2) = 0,0164 u(k-1) + 0.0134 u(k-2)

(46)
Comparing (45) with (39) we see that the poles are unchanged, but that
the zero has moved from the origin to z = -(0.0134/0.0164) = - 0.817,
and the d.c. gain has increased, To observe the latter effect, we may
invoke the final value theorem
lim ¢(kT) = lim (z-1) C{z) (47)

k- o z-1
which allows the calculation of the steady state response for a fixed

input, If the input is a unit pulse train with z transform

Z

U@ = o

then the steady state response of the system without a sample-and-hold
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circuit is

lim c¢(k) = 1lim (z-1) U(z2) %(z)
ker o z-1
= 1lim (z-1) (zf].) Qz Q1002 >
z-l - 1.4892 + 0.549
lim c(k) = 2.50 (48)
k—= o

while the steady state response with the sample-and-hold circuit must be

the same as the response of the continuous system to a step function.

0.0164z + 0,0134
. k = 3 - z [ L[]
Lim c(k) = lim (z 1)<z-l>< 22 - 1.489z +o.549>
k- o z-1
lim c(k) = 0.50 (49)
ke

which agrees with the continuous calculation with U(s) = 1/s; i.e.,

lim c(t) = 1lim s U(s) %(s)
t-> o s—= 0
. 1 1
- i’“o Se 5t ety (sazy | 030

Like the Laplace transform, the z transform is a powerful
analytical tool; however, it suffers from similar disadvantages. 1In
particular, it is not ideally suited for synthesis; design techniques
tend to be empirical, and the extension to nonlinear, multi-input, and

stochastic systems is difficult,

3.2 State Space Analysis of Sampled Data Systems

Since the state space approach works directly in the time
domain and does not rely on transform methods, the introduction of

time sampling involves little change in the system equations. In
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fact, it is only necessary to specify T and the form of u (impulse
train or piecewise constant) in (32), and we move in a single painless
step into the discrete time domain.

Example: Previous case; T = 0,2 seconds; Bu = b u & (t-kT) is an

0
impulse train of time-varying magnitude u(t); b = [1

as in (12),
From (26), with t = T = 0,2,
_1 0.968 0.149

2(0.2) =1 5,298 0.521] (50)

and in (32)
T

Jf ¢ (T-7) b u(t) ® (t-kT) dt = b u(T)

0
so that

x(1) = o(T) x(0) + b u(l)
and in general

x(k+l) = o(T) x(k) + b u(k+l) (51)
i.e.; X, 0.968 0.149 x) 0

(k+l) = (k) + u(k+l)
X -0.298 0.521} 1 x 1
2 2 B (52)
For a given impulse sequence {u(t) B (t-kT)} » the output
sequence { xl(k)‘} calculated with (52) is identical to the sequence
{c(k)} calculated from the difference equation (42). If the input is
piecewise constant instead of an impulse train, the final term of (32)
may be adjusted accordingly. Let u(t) take on a series of values
{u(k), kT < t < (k+l) T} . Then
T
Jf ®(T-1 ) b u(k) dt = D b u(k) (53)
0
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where D is an n x n matrix whose elements d, (T) are given by
1]

T
dij(T) = %{ ¢ij(T-T) dt (54)

In the example considered previously, the matrix &(T-t1) is

obtained from (26) with t = T - 7t , and may be integrated term by term

to yield
.5 =20, +0,5¢C S - C S o
b - by - 1.5 -2 A 0.5 2 0.5 1 + 0.5 )
- o - O o -
L+2 1 2 1 2
L) (55)
where al and aé are defined by (38). For T = 0.2, (55) becomes
0.198 0.0164
D (0.,2) =
(0.2) -0.0329 0.149 ]

so that the state equation corresponding to difference equation (46) is

X 0.968 0.149 X 0.0164

(k+1) = (k) + u(k) (56)
X -0.298 0.521 X 0.149

In the case of a multiple input u(k), the general form of (56)

is
x (kt+l) = o(T) x(k) + D(T) B u(k) (57)

3.3 System Stability

The relationship of ®(T) to the characteristic equation in z is
equivalent tothat of A (equation 7) to the characteristic equation in s,

Thus the eigenvalues Ai of O(t) are identical to the roots of the

characteristic z equation (check equation (52) against (39) in this

respect)., A necessary and sufficient condition for stability of a linear

sampled data system is that
|>\,|< 1
i
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4, NONLINEAR SYSTEMS

th
A general deterministic n  order nonlinear system with state,
control, and output vectors x, u, and y respectively may be represented

by the state description

x(t) = £(x, u, t) (58)
y(t) = g(x,t) (59)
r N
where f= f1(§, u, t)
f2(§, u, t) = vector of n functions
£ (%, u, t)

\ I /
and g is similarly a column vector of r functionms.

Equations (58) and (59) are the nonlinear equivalents of (7) and (8).

Example: If © is the electrical angle between the stator and rotor

fields of a synchronous motor, then the torque equation is
§+a6+Bsin6=1 (60)

where L is normalized torque, and & and B are constants. Letting

x1 = @, x2 = é, and u = L, we obtain the nonlinear state equation
i *2
& (61)
- i -Q
2 B sin x1 x2 + u
If the angle but not its derivative is observable, then
y=1[1 0] X,
=x (62)
X 1
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There is no simple solution to (58). However, if f is known,
then the n equations may be integrated numerically to obtain the state
trajectory for specific initial conditions and a specific control
sequence, Often it is desirable to linearize the system equations
about some (perhaps time-varying) operating point, so that
x(t) = A(t) x(t) + B(t) u(t) (63)

where A(t) is the Jacobian matrix

sy = O _[28 23 3f7
®=5% | & % = &
= 1 2 n
o, k%% "
axl axz axn
> of Y
_n 0 eees  _ 1
ox ox ox
. 1 2 )
and 8£
B(t) = 3a (65)
In the case of discrete time nonlinear systems, the general
formulation is
x(k+l) = £ (x(k), u(k), k) (66)
y(k) = g (x(k), k) (67)

For second order systems, or those which may be approximated as

such, considerable work has been done on phase plane analysis -- singular

points, limit cycles, etc. For control loops containing a separable non-
linearity, the extension of linear frequency response methods has led to

the concept of the describing function. Sufficient conditions for
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stability of nonlinear systems may sometimes be determined by the

application of Lyapunov's second method of stability analysis, All

of these approaches are limited, though, and no general theory of
nonlinear systems exists. Though further progress will no doubt be
made, it is probable that no general theory will ever exist, because
nonlinear systems are by definition the complement of a set; i.e., they
are the hodge-podge left over after one removes from the set of all

systems the well defined set of linear systems,

5. OPTIMIZATION TECHNIQUES: THE DESIGN PROBLEM

5.1 Performance Criteria

If we are to design optimum systems, we must first define the
term "optimum", To do this we introduce the concept of a performance
criterion, also known as a performance index (PI) or cost function. As
the name suggests, it is simply a measure of the system performance; an
optimum system with respect to a given cost function is one which causes
that cost function to assume an extremum value (maximum or minimum, as
desired). For example, the well known mean squared error criterion
imposes a quadratic cost on system errors. The quadratic form is widely
used, as it corresponds in many physical situations to a measure of
power. In some cases the cost function of a system changes as

circumstances are altered, so that the optimum solution today is different
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from that of yesterday. Thus under normal circumstances a merchant ship
may steam at about 16 knots to minimize a cost which is a function of
fuel consumption, wages, and delivery time, The optimum speed for the
same ship in time of war may be 24 knots; the difference is due to the
presence in the second instance of an additional speed-dependent cost
teim, '"probability of being sunk times resultant cost',.

In addition, all physical systems are subject to constraints,
although these may sometimes be ignored. Suppose in the previous
example that the ship's maximum speed is 24 knots. Under normal
circumstances, this constraint may be ignored in calculating optimum
speed, since its presence does not affect the result. 1In the second case
with the altered cost function, however, the constraint is operative, and
must be considered (the optimum speed with no constraint might be, say,

60 knots),

5.2 Static Optimization

In general system cost V is a function of a number of variables

X, X

1 ... X which may be manipulated either directly or indirectly.

2’ n
If we regard the set of xi's as a vector x, then the optimization

. ¥ ki ¥ % T e e
problem is to choose a vector x = (xl, Xps wee xn) to minimize the

cost function

Vo=V, Xy ael X ) = V() (68)

2’
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The problem is said to be static if x is not a function of time.
The classical approach to this problem is indirect; that is, instead of

seeking x* directly, we form a set of equations
V_ﬂ_(a_v ov v N

x— - 3 9 es e a

X Ox axl sz x /

N\

10

(69)

whose solution yields zf(subject to suitable conditions on the second
partial derivatives).

Frequently it is either not feasible to differentiate V or
else (69) has no analytic solution. In such a case a direct method
may be used to determine 5%. This technique usually involves some form

of hill-climbing (for minimization problems, the term, "valley descending"

might be more appropriate), the most common being that of steepest

descent, The gradient Vx is calculated or estimated (by small

perturbations about x) and an improved value of V is found by moving in
x-space along the gradient vector (the steepest path down the hill). Thus

given an initial point x_  with gradient Vx(O) we determine a new point

0

b
X, %

X, =X

X =Byt o U (0) (70)

0

where p is a scalar (the superscript T is a transpose operator).

%
is far from x , then almost any move along Vx

If b9

represents an improvement (reduction in V), However, as the optimum

point is approached, baffling features may arise. One problem is the
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determination of a suitable value for p so that successive values of x
neither creep slowly towards 5* nor overshoot it altogether. 1In
addition the hill itself may have a fairly exotic shape, such as a
steep four-dimensional curving ridge. A variety of ingenious methods
for dealing with such problems appears in the literature.

Constraints introduce a further complication. Inequality
constraints may be handled frequently by adaptations of hill-climbing

methods, For linear cost functions and constraints, the highly

developed method of linear programming is an extremely powerful tool,

Equality constraints may in simple cases be handled by direct
substitution,
Example: Minimize
V=x +2x (71)
subject to x, X, = 8 (72)

Direct substitution of (72) into (71) shows that

-1
V= x1 + 16 x1

and the solution of (69) yields

X, = - 4

= -2
¥y
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An alternative method is the use of the Lagrange multiplier

technique. Let the m equality constraints be expressed in the form
¢i(§) =0, i=1,2, ... m (73)
We now form a new cost function V(x, A) such that
m

V(x, N = V(x) + Z 7\.i ¢i (74)

i=1

It can be shown that choice of the (n+m) variables (xl, x2, ces

X Kl, KZ’ ces Km) to minimize (74) with no constraints solves the

original constrained minimization problem,

Example: equations (71) and (72), Note that m = 1 and

so that

V(x, N\) =x. +2x, + A (xl

1 2 - 8) (75)

*2
Partial differentiation of (75) with respect to X5 Xy, and A gives

three simultaneous equations

1+ A x2 =0
2+ A x1 =0 (76)
xlx2 -8=0
For a minimum
Xl="‘l-,X2=‘2, )\=05

In this example direct substitution is simpler than the use of

a Lagrange multiplier. Suppose that it is necessary to minimize (71)
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subject to the constraint

o0

Jf exp [- % (x1-3)2] Jf exp [- % (x2-5)2] dx1 dx2 =6

- 00 X

1
Here ¢ (xl, xz) is so complicated that direct substitution is not
feasible. A computer solution with the Lagrange multiplier approach is

qiite straightforward, however,

5.3 Dynamic Optimization

In a dynamic system the control action taken at any time affects

the future evolution of the system trajectory so that a sequence of
control inputs constitutes a set of interacting variables. The system
cost function measures performance over the whole of a given time
interval (which may be infinite if desired), and so usually takes the
form of a time integral. Thus if power is the instantaneous parameter
of interest, optimization might imply the design of a minimum energy
system. If it is desired to minimize the amount of fuel required to
place a satellite in a given orbit (so that payload is a maximum), then
the integral of fuel flow rate must be minimized. Mathematically, then,
the problem is as follows:

Given the system dynamics

X=£ (% u, t)

with initial conditions

x (0) = Xq

a7

(78)
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choose a control sequence {.g(t), 0<t< T} or a feedback controller
{g(g,t), 0<t< T} to act in a given time interval [0,T) which will

minimize the (given) cost function
T
v =f L (x, u, t) dt + Vo (x(T) ) (79)
0

L(x, u, t) is a continuous scalar function (such as a

quadratic) and V. represents end-point costs (for instance, the cost

T
of errors in the final satellite trajectory). In any real system

there will also exist various constraints, but these will be ignored

for the present. {

5.4 Calculus of Variations

The classical approach to this problem is through the calculus
of variations developed by Euler, Lagrange, Bernoulli and others over
the past 300 years or so, It is desired to choose a function x(t)
such that the performance index

T

V(x, k) = / L(x, x, t) dt (80)
0

is minimized, It can be shown that a necessary condition for

minimization is given by the celebrated Euler-Lagrange equation

oL d oL

- < /= 81
ox dt ox% 0 (81)

We can fit (77) - (79) to this mould by letting the q control

X , and

variables represent additional state variables x e
p 4 n+l’ n+q
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by minimizing the cost function (79) subject to the constraint condition
that the dynamic equation (77) be satisfied., To ensure this condition,
we introduce n Lagrange multipliers kl(t), eee Xn(t), just as in the
static case, except that now the A's are time-varying. The Euler-
Lagrange equation is applied to the modified cost function formed by
adjoining the dynamic constraints. Boundary conditions on the A's are

determined from transversality conditions arising from the theory of

the calculus of variations,

Example: Given an interval [0, T), minimize

T
V= k-/_ (xi + a u2) dt (82)
0

for the system of equation (9).
Letting u = Xq and putting the constraints in the form of (73),

we obtain from (12)

(83)
¢2 = %, + 2 X, + 3 X, - Xy =0
so that the adjoined cost function L(x, A) is
2 2 . .
= - A + 3 x_-
L(x, A) X + a Xs + Xl (x1 x2) + 9 (x2+ 2 X, x2 x3) (84)

If (8l) is applied to (84) and the variable x_ is eliminated by

3

substitution, four equations result:
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\
X =2x - 3x + L A
%) 1 2 2a 2
? (85)
A =2 + 2 A
1 *1 2
N = - A A
N, R

/

Note that the variables are interconnected, Inspection of (85)

shows that the system takes the form shown in fig. 3. At the top is

ADJOINT SYSTEM

Figure 3 Realization of Euler-Lagrange equations
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the original system, while below it is another dynamic system known as

the adjoint system, which generates an optimum (minimum cost) control

signal, Note the very important fact that, although no a priori
assumption of feedback was made, the result indicates that a feedback
system is optimum. There is, however, quite a problem in implementing
suitable control., Equations (85) constitute four differential equations
for which four boundary conditions are known. But-- and this is the fly
in the ointment -- initial conditions are known for x, while final
conditions (Kl(T) = KZ(T) = 0 in this case) are known for A, Thus,
whether the equations are integrated either forwards or backwards in
time, two of the boundary conditions must be guessed. Just to make
matters worse, the equations governing the missing conditions are unstable;
i,e., the x equations are unstable in reverse time, and the A equations
in forward time. Thus even a small error in the guess will cause an
enormous error at the opposite boundary. This difficulty, which is a
feature of most dynamic optimization problems, is known as the two-point

boundary value problem (TPBVP). A solution of (85) may be obtained

numerically using successive approximations; however, as the order of

the system increases, this becomes a very time-consuming task.

5.5 The Maximum Principle

One of the limitations of the calculus of variations is that

the Euler-Lagrange equation is not valid when the magnitudes of control
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inputs u, are limited so that

u, < U (86)
as is frequently the case. 1In 1956 the Russian mathematician Pontryagin
formulated a new approach to the optimization problem which circumvented
this difficulty. Given a system of the form (77) and (78), it is desired

to choose u(t), 0 <t < T to minimize a cost function
n

V(x) = Zci xi (87)

i=1
where parameters c, are known constants, Now let a function H, the

Hamiltonian function be defined as

n
H=<p, £>= z;

-
i=1

P, £, (88)

where f is defined by (77) pi(t) are the adjoint or co-state variables.

The relationship between f and p is given by the canonical Hamiltonian

equations
x =H (89)
- P
. = - H
2 x (90)
where OH _ OH

with boundary conditions on p

p;(T) = - ¢, 91)
if x(T) is free (not specified).

The Maximum Principle states that (87) is minimized if u is

adjusted at all times to maximize the Hamiltonian H given by (88),
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Example: as in previous section

let

so that

where c, =c¢c. =

The Hamiltonian is

L] — 2
x3 = x1 + au

= +
\' clxl CZXZ + c3x3

2 2
H = P X, ~ p2(2 x, + 3 X, u) + p3(xl +au)

Application of (89) yields the original system equations

together with (92),

Boundary conditions

In view of (97), it

this value in (95),

while (90) becomes

Py = 2Py - 2 %Py
P, =Py +3p,

Py = 0

(91) are

T) = = . = -
p;(T) = p,(T) = 05 p4(T) 1
can be seen that p3(t) = -1 for all t. Substituting

we see that the adjoint equations (95) and (96) are

identical to those of (85). If u is unconstrained, maximization of H

implies

OH

Loy =p +2 =
Jdu u PZ a P3u 0
o : y= 1

.ees u=Hma P

and the state equations become

X1=X2

1
2= " 2% -3x,+77p,

e
]

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)
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If there were a limitation
Iul < U

on control effort, then (98) would be

1
U= T2a Py |p| < 220
u=+U s P, > 2al (100)
u=-10 R P, < (-2 a U)

and the four simultaneous differential equations in xl, xz, pl, pz would
be nonlinear.

A comparison of (99), (95), and (96) with (85) shows that in
the unconstrained case A and p are equivalent. Note that the TPBVP is
still present as well,

In a general linear system the relationship of the dynamics of

(H]

to those of p is clearly given by (90), which shows that
. T
T oL
=-Ap <.5§ > (101)

where p is treated as a column vector, Equation (10l1) shows that if x is

Io-

stable in forward time, then p is not, as has been noted previously.

5.6 Dynamic Programming: A Discrete Time Example

Concurrent with the development in the Soviet Union of
Pontryagin's maximum principle was the formulation by Bellman in the

United States of the method of dynamic programming. The idea behind
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this technique is to imbed the control problem relating to a particular
initial condition X, within a wider problem in which the initial and
final conditions may take on any values within prescribed limits. If
all such problems are solved, then the TPBVP ceases to exist,

Control of a dynamic system may be regarded as a multi-stage
decision process, in which each decision depends upon the current state
of the system, Thus control actions are dependent upon state; this is
equivalent to saying that feedback control is to be used. The optimal
control takes the form of a control policy g*(g,t), rather than an
essentially open-loop control schedule u*(t) applying only to a

particular value of x Underlying this concept is the principle of

0
optimality:
An optimal policy has the property
that whatever the initial state and
the initial decision are, the re-
maining decisions must constitute
an optimal policy with regard to the

state resulting from the first
decision,

For a sampled data system in which control actions take place
at a series of discrete stages or time intervals, the application of the
optimality principle may be seen in the following example:
Let the system be first order, with dynamics
x(k+l) = ¢ x(k) + d u(k) (102)

It is desired to determine a control policy which minimizes the cost
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function N-1

VN(O) = zi; (xz(i) + a uz(i) ) (103)
i=0

Note that because the process operates in discrete time intervals, the
integral cost function is replaced by a summation.

To begin, suppose the process runs for only one stage. Then
we wish to choose u(0) to minimize x2(0) + a u2(0). The optimal choice
is u*(O) = 0, and the resulting cost is

2
Vl(O) =x (0) (104)
Now suppose that N = 2, We must choose u(0) and u(l) so that

v,(0) = Min [ x2(0) + a u>(0) + x>(1) + a uz(l)]
u(0),u(l) ... (105)

Since the first two terms on the right are not affected by U)o (105)

becomes

V2(0) = Min [}xz(O) + a uZ(O) + Min (x2(1) + a u2(1) )]
u(0) u(d) .. (106)

The second minimization (for a single-stage system) has already
been performed. Replacing 0 by 1 in (104), we may re-write (106) as

V_(0) = Min [ x2(0) + a u>(0) + x2(1)] (107)
2
u(0)

with u*(l) = (0, Substitution of (102) into (107) gives

Min [ xz(O)'+ a uZ(O) + (¢ x(0) + d u(0) )2]

u(0) .o (108)
Differentiation w.r.t. u(0) yields
* _ cd
u (0) = PV x(0) (109)
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Substitution of (109) in (108) shows that V2(0) is proportional
to x2(0). Similarly at any stage k of an N-stage process
v, ) = g(k) = (1) (110)
where g(k) is the constant of proportionality at stage k.

Now N-1

v (k) = Min [ }:(xz(i) +a ul(i) )] (111)
u(k) ... u(N-1)

Application of the principle of optimality allows us to express (1lll) in
the recursive form

V. (k) = Min [xz(k) + a uz(k) +V (k+1)] (112)
N N
u(k)

From (102) and (110) we have

g(k) xz(k) = Min [xz(k) + a uz(k) + g(k+l) (¢ x(k) + d u(k) )2]

ucl) ce. (113)
Minimization of (113) yields
u¥ (k) = - h(k) x(k) (114)

where h(k) = iﬁfii%ziffzz (115)
The combination of (114) and (113) shows that
gk) =1+ a hz(k) + g(k+l) [c-d h(k)] 2 (116)
Equations (115) and (116) constitute a recursive method of cal~-
culating successive values of h(k) and g(k), working backwards from
the values h(N-1) = 0 (since u®(N-1) = O)and g(N-1) = 1, The set

{ h(k), k=0, 1, 2, ... N-l} , together with (114) defines an optimal
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control policy. Note the following points:

i, (114) defines a simple linear feedback control
scheme;

ii. the solution applies to any initial value of x.
iii., there is no TPBVP,
A similar approach may be used when (102) is a vector-matrix
) 1 th . .
equation describing an n  order system. The development is identical

in concept but all equations are in vector form.

5.7 Dynamic Programming: Continuous Time

Consider a system
X=f=£(x u, t) (117)

in which it is desired to determine g?(&,t) to minimize a cost function
T

Jfl&ﬁa u, t) dt + VT(x(t) )
0
T
Let V(x,t) = Mlzin[j L(x, u, t) dt + VT] (118)
t

For a small time interval At, the principle of optimality may be applied
to give

V(x,t) = Min [ LAt +V(x + 4, t+ At)] (119)
u

If we assume that V is a continuous function of x and t, then a first-

order expansion of the last term of (119) gives

V(x,t) = Min [ L At + V(x,t) + %% At
u

n
120)
oV dxj (
+ <: zgj ox. dt > At ]
i=1 *
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wo_ (o n N
ox axl ’ axz oot axn ) X

Now, letting At - 0 and noting that the final term of (120) may be

expressed as

we have

ov ,
3¢ - M:;n [L(ﬁ, u, t) +< Vx, £ >]

which is known as Bellman's equation, The importance of this equation

lies in the fact that if a function V(x,t) can be found which satisfies
(122), then an optimal feedback control policy gf(ﬁ,t) can be derived
from it; note that system linearity need not be assumed. No TPBVP is
involved, as only the boundary condition V(x,T) = VT(§(T) ) is required.
At the risk of being repetitious we shall emphasize again the

difference between a pre-calculated optimal open-loop schedule

{gf(t), 0< t'<’r}, which results from the application of the calculus

of variations or the maximum principle, and an optimal feedback control

policy, {E*(ﬁ, t), 0<t< T} , obtained through dynamic programming.
The latter is nearly always preferable since it is much less sensitive
to noise (this, after all, is one of the prime reasons why any sort of
feedback control is used), One seldom gets anything free, however, and
the sad fact is that (122) is usually exceedingly difficult to solve,
so much so that one is frequently forced to abandon it in favour of the
lesser evil (computationally speaking) of the maximum principle with

its TPBVP.

(121)

(122)
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Equation (122) is a nonlinear partial differential equation,
Its solution would be simpler if it could be modified to form an

ordinary differential equation. To do this, we note from (118) that

av

Fro b AN AT (123)
but

dv ov oV dx oV

—_—= T 4 — — =

at - ot T % d& ot TSV £ (124)

Partial differentiation of (123) and (124) w.r.t. x yields a row-

vector equation

3 ov
ox ( ot :% z Ve T Ve £x =k (123)

If the order of differentiation is immaterial, then the first two terms

of (125) equal the time derivative of Vx. Thus

V =-1L -V £ (126)
X X X TX

where £x is the Jacobian matrix (64), and Vxx is the matrix of second

partial derivatives of V., Now let us define a function

k3

H'(x, Vo, £) = L (% w0, &) + <V (50), £Gu%,t) >

oo (127)
so that (126) becomes
Vx = - H; (128)
Observe that (128) is identical in form to the Hamilton
canonical equation (90). In Pontryagin's version of the maximum
principle, though, pn+1 = -1 (cf. (97) et seq,) and the Hamiltonian is

H=- L(x, u¥, t) +<plx,t), £ (x, u°, t) > (129)
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In the absence of control constraints, we may therefore equate

..
pi T Bxi (130)

to obtain
H= - H' (131)

Thus the Hamiltonian (127) derived from dynamic programming is
just the negative of Pontryagin's Hamiltonian; with the former, the

maximum principle becomes the minimum principle, i.e., V is minimized

by minimizing H' at all times. This is only a trivial variation on the
maximum principle, but it must be borne in mind to avoid confusion,
Generally speaking, Russian literature deals with the maximum principle
and western literature with the minimum principle (although it is
frequently called the maximum principle anyway in the latter case).

We may now re-write Bellman's equation, substituting (127),

to obtain

LA ]
v Ml:tn[H (x V) (132)

Both in this form and that of (122) this is also referred to as the

Hamilton-Jacobi equation.

In summary, dynamic programming offers the possibility of
computing an optimal feedback policy for a given dynamic system. Even
when this is not computationally feasible, it constitutes an intuitively
appealing method of deriving the maximum principle and (not shown here)
the Euler-Lagrange equation, Moreover it is easily adapted to handle

discrete time and stochastic systems.
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5.8 Linear Systems with Quadratic Cost Functions

Having covered, or at any rate, skimmed, the field of
optimization, we are legitimately entitled to ask whether this theory
can really be used; i.e., can we do better with it what we now do with
classical design methods such as root locus and compensation techniques?
For linear systems the answer is yes, providing a digital computer is
available., In this section we shall consider the application of
dynamic programming to linear systems of the form

x=Ax+3Bu (133)

with quadratic cost functions
T

ve[aex+a W a (134)
0

Note that the integrand in (134) is simply the multivariable form of a
scalar function
2 2
qx +ru (135)

T
Thus in a second order system the term x Q x is

2 2
T Kt A T X BTy
Without loss of generality, we may consider Q and R to be symmetric

matrices, Also, it is assumed that Q is positive semidefinite and R

is positive definite, which is to say that, for any vectors x # 0, u # 0,

T
X Qx >0
LJ.TR3>0
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This is equivalent to specifying that q is nonnegative and r is positive

in (135).

As previously discussed, all we need to do now is find a form

of V(x,t) which satisfies Bellman's equation (122), and derive an

optimal feedback policy. For the system (133) with no constraints, and

cost function (134) (by great good fortune a system which is at once

useful and mathematically well-behaved) it can be shown that V(x,t) has

the form

V(x,t) = 5 K (£) x

where K(t) is a time-varying symmetric matrix whose elements are not
functions of X.

Recall Bellman's equation

oV ,
- < = Min L+<V, £>
ot u x' =

We now substitute V, L and

Ih

[

T
-fK5=Mm[§ Qx+u R
u

+(Ax + Bg)T Kx + §T K (Ax + Bu)

u

Setting -%; (r.h.s.) = 0 gives

T
2Ru+2B Kx=0

u¥(t) = - R8T k() x(t)

Note from (138) that the optimal system is one using linear feedback.

This is a very important result, since it specifies the structure of the

from (136), (134) and (133) respectively:

(136)

(137)

(138)
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controller without any a priori assumptions, All we need do now is find
the unknown matrix K(t). To do this we substitute (138) into (137) to
obtain

- x KBR B Kx+x KAx-x KBR B Kx

1

T -
x=x (KBR BTK-Q-ATK-KA)g_:_

1%
e
b

K(t) B R T BY K(t) - Q - AT K(t)- K(t) A

i.e. R(t)

Equation (139) is a form of the matrix Riccati equation; since

the first term on the r.h.s. is quadratic in K, the equation is nonlinear.
If, as in (134) there are no terminal costs, then the end point boundary
value of K is K = 0 (null matrix). Equation (139) may then be integrated
backwards in time so that a matrix function K(t), 0<t < T becomes
available, Application of (138) yields the optimal feedback control
policy.

Note that the development in this section closely parallels
that for the scalar discrete time system in section 5.6. An important
feature of the Riccati equation is that, going backwards in time K(t)
reaches a steady state value, so that, provided the system operation is
not near its endpoint, a stationary linear feedback mechanism is optimum,
This stationary matrix is that which satisfies (139) when the l.h.s.

is zero,

(139)
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Example: We shall consider the design of an optimum position control
system using an armature controlled d.c. motor. The motor

transfer function is

c _ G
U(s) ) TS (140)
where c(t) = shaft position (radians)

u(t) = armature voltage

G = motor ''gain" (rad. per sec. per volt)

T = motor time constant (sec.)

The object of design is to minimize the tracking error without
incurring either an excessive control input (causing saturation) or an
excessive error rate. Suppose that the required output angle is zero but
that the actual output angle is c(t) and the shaft speed is ¢(t). What
feedback policy will cause c(t) to approach zero in an optimal fashion?

We assume a cost function of the form
©
2 2 2
V= (le1+Bx2+7u)dt (141)
0
where xl =c (142)
x, = ¢

Clearly the designer's choice of @& , B , and 7 will affect the
parameters of the solution. For instance if 7 is small relative to @&
and B , then large input voltages may be called for because the cost of
control effort is relatively small, The choice of suitable values for
the parameters of a cost function is not always simple, and remains in
many cases an engineering art. Let us assume that we have chosen & , B,

and 7 and proceed.



A

From (140) and (142) we see that the state equation is

X, ) 0 1 xl . 0 . (1%
x o -1 X &
2 T 2 T
Inspection of (l41) and (143) shows that
A= 0 1 B = 0
0 -1/t G/t
Q=1]< 0 R= 7
0 B
The Ricatti equation (139) is thus
¢ . .
k11 k12 1 k11 k12 0 (o /1l k11 k12
k.. Kk A G/t Kk k
12 22 12 22 12 22
.
I 0 100 ETRRSTY I PRSP o 1
(0 °F RS I PR kg ¥po) |0 VT
e (144)
Note that since K(t) is symmetric, k_, = k__, Multiplication of the

12 21
matrices in (144) yields three simultaneous nonlinear ordinary

differential equations

k. G2
) 1 12
k, = —( —— |-0Q
11 y < . > . (145)
k,. k 2 12
. . 11 12 G -k, .+ — (146)
k, A = — = 11 T
12 Y T
) 1 k22G ’ k22
kK = = -B- + 2 147
22 7 ( T > p-2 k12 T ( )

Boundary conditions are kll(T) = klZ(T) = kZZ(T) = 0. The fact that
T = o in (141) need not bother us; this merely means that, as explained

previously, the system is not near its endpoint in time, and we are
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looking for stationary solutions to (145) - (147)., There are two ways
of obtaining them:
i) Dbegin at the boundary conditions and integrate

Kk . . . . K
backwards in time numerically until kll’ k12 and 13

are stationary;

ii) set the left hand sides equal to zero and solve
the resultant simultaneous algebraic equations by

successive approximation,
Once this solution is obtained, we take the final step of

applying (138)

-1
u' = - R T Kx
= - L [0G/t ]|k k) X
y 11 12 1
k k b4
12 22} \ 2
k
1 [ K1p€ 5556 ] .
= - = X
V4 T T 1
xz‘

to obtain the optimal feedback policy

k.. G k
u* - 12 . _ 22G X
7T 1 7T 2

(148)

The resulting system configuration is shown in fig,., 4.
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Figure 4 Optimal system configuration

The form of the optimal solution leads us to the observation
that, in general, an optimal position control system employs both
position feedback and rate feedback, Surprising? Hardly; this is
Just proportional plus derivative feedback, or equivalently, the use
of lead network compensation. Nonetheless this example does indicate
that the theory of optimal control is not wholly divorced from the
real world; it is, in fact, a useful design tool. Generalizing
further on equation (138), we see that an optimal control system
employs feedback of every system state. We note that some of the

feedback of coefficients may be small or zero, though.
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The full advantages of optimal design are not apparent in
this second order example. When the system is of higher order, and
especially when it is a multi-input system, the advantages of this
straightforward computer-oriented design method over traditional
compensation techniques become quite clear. Many such examples

exist in the literature.

6. CONCLUSION

The purpose of this report has been to introduce a number
of concepts which constitute the foundations of automatic control
theory. Obviously, mastery of these methods requires a very much
more detailed study than is presented here; the interested reader is
referred to the bibliography. To conclude the survey, we shall emerge
from the foundations and cast a brief glance at a few items in the

superstructure; i.e,, topics which are of current research interest,

1. Stochastic Systems

When disturbances are present it is always desirable to
exercise some form of closed loop control, The computation of
suitable control policies for stochastic systems is ususally very

difficult, however. The only case which has been treated
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extensively is the linear-quadratic system of section 5.8 in which

additive gaussian noise is present.

2, Filtering and Estimation

An important aspect of the control of stochastic systems is
the estimation of state variables since these are frequently either

not accessible, or can be measured only with noisy transducers.

3. 1Identification

This area includes the problems of modelling and parameter
estimation, that is: a) the choice of a suitable model structure which
is neither too complicated for computer manipulation nor too gross an
approximation of the real system, and b) the estimation of the model

parameters from system operating records.

4, Adaptive Control

The combination of optimal control theory with areas 2) and
3) above allows us in principle to design an adaptive controller; i.e.,
one which attempts to optimize system performance in the face of
uncertain and/or time-varying parameters. The advantage of this
approach is that a fairly simple adaptive controller may give results
which are equal or even superior to those obtained with a complex non-
adaptive controller. On the other hand, the combination of control,
estimation, and identification usually yields a problem which is,
theoretically at least, greater than the sum of the three sub-problems

because of interaction between the system cost functions and the
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estimation strategy.

5, Learning Control

The concept of "learning', as applied to control systems,
comprises an ill-defined area usually taken to be more general in
nature than adaptive control. Here the emphasis is on the evolution of
a desirable pattern of behaviour (on the part of the controller) through
generalization of the results of experiments on the system. Mathematical
techniques used include stochastic approximation, decision theory,

automata theory, and pattern recognition methods.
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