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Uncovered
Aztec pyramid
Electrochemical etching of Te-doped
gallium arsenide structures
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1National Research Council of Canada, Canada
2University of Waterloo, Canada

Those with vivid imaginations might think that the image on

this issue’s cover is an aerial view of the Spanish conquistadors, on

horseback, preparing to assault the palace of the Aztec leader

Montezuma-II in 1520 CE. In reality it is the result of the electro-

chemical etching (ECE) [1] of a tellurium (Te) doped gallium

arsenide (GaAs) molecular beam epitaxy (MBE) structure. Te is

an n-type dopant in GaAs, and is incorporated on the As sites in the

crystal lattice. This dopant can be used controllably to produce

electrical carrier concentrations in the range 1E16 to >1E19/cm3.

The complete structure was a series of five �350 nm thick Te-GaAs

layers, in which the Te concentration was decreased stepwise from

�1E19/cm3 near the initial substrate to �1E17/cm3 at the final

growth surface. This was achieved by reducing the temperature of

the source of the Te atoms for each layer. By subsequent analysis

the temperature of the Te source can then be related to the amount

of Te incorporated in each layer. Once this calibration is complet-

ed complex structures can then be grown with the accurately

controlled carrier concentrations that are necessary for ‘state-of-

the-art’ device performance.

ECE was used, together with capacitance vs. voltage (CV) anal-

ysis, to measure the carrier concentration variation of the struc-

ture. This was carried out from the surface of the layer, as a

function of depth in 10 nm increments, to the underlying sub-

strate. The etching was performed using a WEP CVP21 ECV profiler

[2], with a 3 mm diameter sealing ring to define the etched area.

The electrolyte used was the traditional ammonium tartrate/am-

monia solution [3]. Optical illumination was used during etching

to generate electron/hole pairs, and the dissolution current was

controlled at 1 mA/cm2 (�70.7 mA). Using Faraday’s laws of elec-

trolysis, the time to remove 10 nm of GaAs was automatically

calculated, and the etch process was then stopped to enable a CV

measurement to be carried out, and a calculation of the carrier

concentration to be made. This was repeated one hundred and

seventy five times, until the etch depth was �1.75 mm, to generate

a graphical depth profile of the Te-doping variation.

Normally, if the final epitaxial surface is defect free, the etching

proceeds in a planar manner. However, this particular sample had

a large number of optically visible defects (�700/cm2), which

served as the nucleation sites for the features that were observed

at the termination of the ECV measurement sequence. The fea-

tures are etch pits, with overall dimensions �500 mm � 500 mm.

That they are pits can be seen in cleaved section, although they can

appear to the eye to be raised pyramid-like structures. Since the

GaAs substrate had a [1 0 0] crystal surface, the sides of the pyramid

are the slow etching {1 1 1} planes of the GaAs cubic crystal lattice,

aligned to the two mutually perpendicular (1 1 0) directions.

The formation of pits during etching is due to the presence

of crystalline defects, such as dislocations and/or stacking
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faults. Strain fields associated with the defective crystal lattice

accelerate the etch process relative to the initial planar surface.

In the case of ECE, the strain fields act as low resistance current

paths, which result in enhanced material removal. However it is

not clear as to why these particular pits formed with the wire-like

features regularly arranged around the central inverted stepped

pyramid.

Profiles at other locations on the wafer produced the same

features. So it is a reproducible, but inexplicable, phenomenon.

However, etching using an alternative electrolyte was more planar,

but did not produce similar features. So it would appear that these

pits are a peculiarity of the ammonium tartrate/ammonia electro-

lyte ECE process.

Further reading

[1] T. Ambridge, M.M. Faktor, J. Appl. Electrochem. 5 (1975) 319–328.

[2] http://wepcontrol.com/cv-profiler/index.htm.

[3] PN 4200 Polaron’s Semiconductor profiler, Instruction manual, Bio-Rad, Rich-

mond, CA.
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