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Abstract

Automated 3D object reconstruction or inspection us-
ing a range camera requires a positioning system to
con�gure sensor-object relative geometry in a sequence
of poses de�ned by a computed view plan. Discrepan-
cies between commanded and actual poses can result
in serious scanning de�ciencies. This paper examines
the view planning impact of positioning system error
on a single view. Counter-measures are suggested to
contain data acquisition errors.

1 Introduction

The growing demand for high quality 3D virtual ob-
ject models has led to a need to automate or semi-
automate the model acquisition process. As illustrated
at Figure 1, the imaging environment comprises three
main elements: object, active range camera [2] and
sensor-object positioning system. The model acqui-
sition process typically involves an iterative cycle of
view planning, sensing, registration and integration.
View planning is the task of determining an optimal
set of sensor views or poses. Executing the view plan
requires physically altering the sensor-object relative
pose by means of a positioning system. Without loss
of generality, we can consider the object as �xed and
the sensor as mobile. Whenever positioning system
accuracy falls below that of the sensor, it is necessary
to employ image-based registration1 to bring images
into a common reference frame with a precision com-
parable to that of surface measurements. The major
remaining hurdle to automated model acquisition is
achieving an e�cient, accurate and robust solution to
the view planning component of the data acquisition
cycle.
Traditional view planning methods use a variety of

non-model-based heuristic techniques relying on sur-
face ([9], [13], [23]), volume ([5], [14], [1], [11], [21], [8])

1Such as the standard Iterative Closest Point (ICP) algo-

rithm [3] and its more recent enhancements.
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Figure 1: The Geometric Imaging Environment

or global ([24], [12], [7]) scene attributes. A less well-
known technique developed by Tarbox and Gottschlich
[22] introduced the concept of model-based view plan-
ning through the use of measurability matrices. All of
these traditional view planning methods have a com-
mon attribute. They focus on a single view planning
criteria - obtaining complete object coverage. In some
cases quality factors are introduced ([8], [22]), but
these are subjective in that low grazing angle rays are
preferred over high grazing angles rather than evaluat-
ing the objective e�ects of grazing angle on measure-
ment quality.

This work concerns performance-oriented recon-
struction [15] which is de�ned as model acquisition
based on a set of explicit quality requirements ex-
pressed in a model speci�cation. In addition to all-
aspect coverage, measurement quality is speci�ed in
terms of precision, sampling density and perhaps other
quality factors. Performance-oriented view planning
requires suitable models of both sensor and position-
ing system performance. Speci�cally, it requires:

� a sensor model to include a description of the frus-
tum and characterization of measurement perfor-
mance within the calibrated region, and
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� a positioning system model describing the degrees
of freedom, range of motion and positioning ac-
curacy within the movement envelope.

In [18], we described a �rst-order sensor model suit-
able for view planning and examined performance
trade-o�s between the scene exploration and precision
measurement phases of view planning.
In this paper, we address the e�ects on a single

planned view of pose error resulting from position-
ing system inaccuracies. While the focus of the cur-
rent work is on model building, the analysis is equally
applicable to the inspection application. The per-
formance of the positioning system impacts the view
planning process, regardless of whether a traditional or
performance-oriented view planning algorithm is uti-
lized. For the purposes of this analysis, pose errors
are broken down into position error, sensor boresight
pointing error (axis error) and rotation error about the
sensor boresight (twist error). For each error type, we
examine its impact on measurement precision, sam-
pling density, visibility and frustum occupancy. Pose
error e�ects are analyzed in detail for one speci�c,
common sensor con�guration, the line-scan range cam-
era. Results are generalizable to other range camera
geometries. Input and output parameters in the prob-
lem description are normalized and the results quan-
ti�ed, where possible.
An outline of the paper is as follows. We begin

in section 2 by de�ning performance criteria, briey
examine the overall e�ect of pose error on view plan-
ning, provide an overview of positioning systems, de-
�ne a simple pose error model and de�ne sensor geom-
etry. Section 3 examines in detail the e�ects of each
pose error component on each view planning perfor-
mance variable. The statistical analysis computes the
expected value and variance of each performance vari-
able for each error type. Section 4 concludes with a
summary of the results in tabular and graphical form,
an analysis of the issues and a discussion of means to
mitigate the e�ects of pose error on view planning.
It is anticipated that the analysis may be bene�-

cial in imaging system design (specifying compatible
sensor and positioning system performance) and view
planning algorithm design (compensating for position-
ing system inaccuracy).

2 The View Planning Context

2.1 Performance Criteria

Performance-oriented view planning incorporates two
inputs not found in traditional view planning ap-
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Figure 2: View Planning with Pose Uncertainty

proaches - a model speci�cation and an imaging en-
vironment speci�cation. The model speci�cation de-
�nes reconstruction goals, such as measurement pre-
cision and sampling density, which may be �xed or
variable over the object surface. The imaging environ-
ment speci�cation de�nes key sensor and positioning
system model parameters.
For a surface point to be declared measurable, all

model speci�cation requirements must be met at that
surface point for that viewpoint. Speci�cally, the fol-
lowing tests must be passed:

� frustum occupancy - the surface point must fall
within the sensor frustum for that viewpoint,

� visibility - the surface point must be locally visi-
ble from the optical source and receiver positions
de�ned by that viewpoint, and

� sampling precision and density - the estimated
sampling precision and sampling density at the
surface point for that viewpoint must meet the
speci�ed requirements.

2.2 Pose Uncertainty E�ects

Unfortunately, positioning system errors negatively
impact all of these requirements. View planning is
a computationally-intensive task with the objective of
arriving at a small set of optimal or near-optimal view-
points, the next-best-view (NBV) list. When the NBV
list is sent to a positioning system whose position and
orientation accuracy is inferior to that of the sensor,
the coverage of individual viewpoints and of the NBV
list as a whole is compromised. Individual viewpoint
positions and orientations are corrupted. Orientation
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error is particularly troublesome as e�ects are ampli-
�ed by range. As illustrated in Figure 2, image cover-
age (frustum occupancy), measurement precision and
sampling density will all be e�ected. Visibility can
also be e�ected by the altered viewing geometry.

We can recover a re�ned pose estimate post-facto
by employing suitable registration techniques and sub-
sequently re-estimate measurement quality within the
acquired image. However, we are still left with data ac-
quisition di�ering from that which had been planned.
As pose error deteriorates, the computationally inten-
sive view planning phase is progressively compromised
- ultimately to be rendered futile. Consequently, there
is a need to make the view planning process robust
with respect to pose uncertainty resulting from posi-
tioning system errors.

Before we can devise compensatory measures, it is
necessary to quantify and qualify the various e�ects.
We begin our analysis by presenting a generalized
model for positioning system error.

2.3 Positioning Systems

A variety of positioning systems are in common us-
age, covering a wide range of accuracy. These include
co-ordinate measuring machines (CMMs), translation
stages, turntables and other rotary joints as well as
robot arms and similar devices2. At the top end,
CMMs o�er accuracy superior to the best range cam-
era. At the other extreme, robot arms and similar
devices provide good repeatability but comparatively
poor accuracy relative to high quality range cameras.

In addition to positioning and orienting the sensor
in space, positioning systems are often used to pro-
vide one dimension of the sensor scan. For example, a
laser scan in the camera x-z plane may be swept along
the camera y-axis ( line-scan mode ) or rotated about
an axis parallel to the camera x-axis ( cylindrical-scan
mode ). In such cases, positioning system performance
directly e�ects not only what is scanned (by setting
the camera pose) but also the quality of measurement
within the range image (by the degree of mechanical
jitter). For the present work, we assume that optical
and mechanical system components have compatible
performance at the image pixel level and restrict our
examination to the e�ects of pose error on overall im-
age coverage and measurement quality.

2A good tutorial on positioning system error mechanisms can

be found at [10].

2.4 Positioning System Error Model

In general, it is di�cult to characterize the accuracy
of positioning systems with multiple degrees of free-
dom [19], [20], [4]. Accuracy can also be highly vari-
able over the movement envelope for a given machine.
For the purposes of analysis, therefore, we adopt the
following simpli�ed but general purpose pose error
model. First, we assume that calibration has iden-
ti�ed, measured and removed from further considera-
tion all systematic error components, leaving only the
residual stochastic errors.
Errors in sensor position, boresight axis and rota-

tion about the boresight (twist) are considered to be
independent random processes. Position error is mod-
eled as a zero-mean Gaussian process with standard
deviation �p uniformly distributed in o�-set direction.
Axis error is modeled by a unit vector uniformly dis-
tributed on the surface of a cone centered on the cam-
era boresight where the cone half-angle is a zero-mean
Gaussian process with standard deviation �a. Twist
error is modeled as a zero-mean Gaussian process with
standard deviation �t. In order to gain an apprecia-
tion of the mechanisms involved and their relative im-
portance, we will separately examine each pose error
e�ect in isolation.
While the model just described is a suitable general

purpose framework for analyzing the e�ects of posi-
tioning system error, in practice it will be necessary
to develop and apply a speci�c error model tailored
to the type, con�guration and movement envelope of
each unique positioning system in actual usage.

2.5 Range Camera Geometry

To illustrate pose error e�ects, we examine the case
of a line-scan range camera, a common con�guration
whose imaging geometry is shown at Figure 3. Follow-
ing the convention in the �eld, the camera axis de�nes
the negative z-axis. The negative sign is dropped when
referring to range along the z-axis, provided the situa-
tion is clear. The frustum is de�ned by �x (the sensor
angular �eld of view in the x-z plane), Ly (the lin-
ear scan length in the y-z plane) and Rmin and Rmax

(the minimum and maximum scanning ranges along
the z-axis). The optical transmitter (laser) and op-
tical receiver (detector) are separated by a distance
equal to the optical baseline b along the y-axis. In
our convention, the origin of the sensor frame of ref-
erence is located half way along the linear scan and
de�nes the nominal rest position of the laser. Pose er-
ror e�ects with other imaging con�gurations depend
on the measurement geometry but are similar to those
presented here for the line-scan range camera case.
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Figure 3: Line-scan Range Camera Geometry

Position Axis Twist

Measurement Precision - - -

Sampling Density - - -

Visibility - - -

Frustum Occupancy - - -

Table 1: Pose Error E�ects

3 Pose Error with a Single View

This section analyzes the e�ects of pose error on a
single view. We separately consider errors in position
and orientation ( camera axis and twist about the cam-
era axis). For each of these, we examine the impact
on measurement precision, sampling density, visibility
and frustum occupancy to complete a table of pose
pose error e�ects as illustrated at Table 1. Results are
summarized at the end of the paper.

3.1 Performance Models

We begin by de�ning models for relative measurement
precision, sampling density and frustum occupancy.
Visibility will be addressed in the next section.

3.1.1 Measurement Precision

In [17], we derived the following model of sensor mea-
surement precision �̂z -

�̂z =
Czz

2

cos �yz Ui(�yz � tyz) Ui(�xz � txz)
: (1)

In the foregoing, the x,y,z axes de�ne the sensor
coordinate frame, �xz and �yz are the inclination an-

gles of the surface element with respect to the laser in
the x-z and y-z planes, txz and tyz are inclination an-

gle thresholds, Ui(�) is the inverse unit step function
and Cz is the z-axis geometric noise coe�cient derived
from sensor calibration.
An inherent feature of optimal candidate viewpoint

generation is that inclination angles are zero for the
targeted surface point and are small for its immedi-
ate surrounding region. Additionally, the level of pose
error under consideration results in only small pertur-
bations to observed inclination angles. Therefore, we
are justi�ed in removing inclination angle threshold
e�ects from Equation 1 to get the following simpli�ed
expression for the standard deviation of the estimated
geometric noise component along the sensor z-axis:

�̂z =
Czz

2

cos �yz
: (2)

To consider the relative impact of pose error on mea-
surement precision, it is convenient to de�ne relative
precision Prel as the ratio of estimated precision in
the case of pose error to estimated precision in the
error-free case. Then,

Prel =
�̂z0

�̂z
(3)

which reduces to

Prel =
z02

z2
cos �yz
cos �0

yz
(4)

where z0 and �0
yz are the range and y-z incidence angle

as perturbed by pose error.

3.1.2 Sampling Density

The imaging geometry of a line-scan range camera was
shown in Figure 3. In addition to variables previously
de�ned, �xz is the instantaneous laser scan angle in
the x-z plane. We use a conservative chord-based es-
timate for sampling density �̂z where �x and �y are
the estimated sampling intervals along the sensor x-
and y-axes and �c is the estimated inter-sample chord
length. Then,

�̂z =
1

�x2 + �y2
=

1

�c2
(5)

where

�x = Rxz
�x

Nx � 1

1

cos �xz
(6)

and
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Figure 4: Scanning Geometry X-Z Plane

�y =
Ly

Ny � 1

1

cos �yz
: (7)

In Equation 6, Rxz = z= cos�xz is the slant range,
�x=(Nx � 1) is the angular sampling interval in the
x-z plane and 1= cos�xz is the inclination e�ect in the
x-z plane. Similarly, in Equation 7, Ly=(Ny�1) is the

linear sampling interval in the y-z plane and 1= cos�yz
is the inclination e�ect in the y-z plane. Image size
is Nx-by-Ny samples. For simplicity, we adopt the
abbreviated notation S� = sin �, etc. Then, the esti-
mated sampling density is

�̂z =
(Nx � 1)2(Ny � 1)2C2�xzC

2�yz

Rxz
2�x

2(Ny � 1)2C2�yz + Ly
2(Nx � 1)2C2�xz

:

(8)
In most cases, Equation 8 can be simpli�ed for sym-

metric range images by setting N = Nx = Ny, giving

�̂z =
(N � 1)2C2�xzC

2�yz

Rxz
2�x

2C2�yz + Ly
2C2�xz

: (9)

Further, a well-designed viewpoint will set �x = �y
for the optimal sampling geometry. This sets stand-
o� range z = fdRo (where Ro is the optimum sen-
sor scanning range and fd is a stando� distance factor
fd = 1+�; � � 1), scanning angle �xz = 0 and inclina-
tion angles �xz = �yz = 0. This is achieved by adjust-
ing the linear scan length Ly such that Ly = fdRo�x.
Consequently, for an optimized viewpoint, Equation 9
becomes

�̂z =
(N � 1)2C2�xzC

2�yz

�x
2[Rxz

2C2�yz + fd
2Ro

2C2�xz]
: (10)

A
A
A
A
A

Position Uncertainty Axis Uncertainty Twist Uncertainty

Figure 5: Frustum Erosion with Pose Uncertainty

As before, to consider the relative impact of the po-
sition component of pose error on sampling density, it
is convenient to de�ne relative sampling density Drel

as

Drel =
�̂z0

�̂z
: (11)

Then,

Drel =
C2�0

xzC
2�0

yz

C2�xzC
2�yz

Rxz
2C2�yz + fd

2Ro
2C2�xz

R0
xz

2
C2�0

yz + fd
2Ro

2C2�0
xz

:

(12)

3.1.3 Frustum Occupancy

Frustum Erosion As illustrated in Figure 5, pose
uncertainty reduces the portion of the frustum that
will con�dently image a given spatial volume. Con-
versely, if we consider the frustum as a spatial prob-
ability density function (pdf) representing the prob-
ability of the sensor sampling a given spatial region,
then positioning system uncertainty has the e�ect of
blurring the otherwise crisp pdf shape and narrowing
the high con�dence sampling zone. The actual frus-
tum remains unchanged, of course. Pose position error
impacts both the e�ective depth of �eld and e�ective
�eld of view. Pointing uncertainty mainly impacts the
e�ective �eld of view. Twist error only impacts the
e�ective �eld of view.
Frustum erosion e�ects are non-linear and involve

interaction between the frustum shape (related to sen-
sor type) and positioning system characteristics. The
illustration at Figure 5 depicts a line-scan range cam-
era in a robotic \eye-in-hand" positioning system con-
�guration. Each imaging environment is unique and
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must be separately modeled. However, all share the
common characteristic of erosion of the frustum con-
�dence zone.

Field of View Erosion We de�ne a viewpoint's
targeted footprint TF as the frustum cross-sectional
area at the stand-o� range for that viewpoint. The
sensor footprint remains unchanged with viewpoint
perturbation but pose error will cause it to cover some
unplanned regions while losing some planned coverage.
The unplanned coverage gain is of no direct bene�t
in planning a single view while the unplanned cover-
age loss erodes view planning e�ectiveness. Thus, for
view planning purposes, pose error always reduces and
never increases e�ective coverage.
For a line-scan sensor, the targeted footprint is

TF = (2fdRoT�2)| {z }
width

(Ly)|{z}
length

(13)

where �2 = �x=2, that is - half the �eld of view in the
x-z plane.
To consider the relative impact of the position com-

ponent of pose error on e�ective frustum �eld of view,
it is convenient to de�ne the relative targeted footprint
TFrel as

TFrel =
TF 0

TF
(14)

where TF 0 is the portion of the sensor footprint dis-
turbed by pose error which overlaps the targeted foot-
print.

Depth of Field Erosion In considering depth of
�eld, for all practical purposes, only erosion of the
e�ective near-�eld range limit is of concern. For op-
timum measurement performance, the stand-o� range
is set at z = fdRo = fdRmin. Pose error will result in
erosion whenever the z-component of frustum change
�z > (fd � 1)Ro. Therefore, the statistic of inter-
est relative to depth of �eld erosion is the probability
P [�z > (fd � 1)Ro].

3.2 Position Error

The next three sections analyze the e�ects of each
component of pose error on each quality factor as illus-
trated in Table 1, beginning with pose position error.
As a consequence of changing the location of the

entire optical baseline, position error potentially im-
pacts all model speci�cation factors: frustum occu-
pancy, visibility, measurement precision and sampling
density.

N
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θyz

ξyz

pyz

z

θyz

N
z'

Figure 6: Scanning Geometry Y-Z Plane

3.2.1 Measurement Precision Impact

This section considers the e�ect of pose position error
on measurement precision estimation.

Precision Estimation Model From Equation 4,
our model of relative measurement precision is

Prel =
z02

z2
cos �yz
cos �0

yz
: (15)

Assume the viewpoint is optimally positioned at a
stando� distance slightly beyond the sensor minimum
range i.e. z = fdRo, fd = 1 + �, where � � 1. Sensor
position is corrupted by position error ~p = (px; py; pz).
Then, as shown in Figure 3, z-axis range to the surface
element is perturbed to z0 = z+pz, that is z

0 = fdRo+
pz.
With a line-scan camera subject to pose position er-

ror, the inclination angle in the y-z plane with respect
to the laser source is unchanged - that is, �yz = �yz

0.
The scanning geometry is ampli�ed at Figure 6 for

clarity. Consequently, Prel simply becomes z02=z2

from which we get

Prel =
(fdRo + pz)

2

(fdRo)2

= (1 +
1

fd
(
pz
Ro

))2

= 1 +
2

fd
(
pz
Ro

) +
1

fd
2 (

pz
Ro

)2: (16)

We wish to estimate the statistics of the relative
precision Prel which is a function of the random vari-
able pz. From our positioning system error model, the
expected value and variance of pz are as follows.
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E[pz] = 0

E[pz
2] = �pz

2

= �p
2=3: (17)

Statistics of Prel Consequently,

E[Prel] = �Prel

= 1 +
2

fdRo
E[pz ] +

1

fd
2Ro

2
E[pz

2]

= 1 +
�p

2

3fd
2Ro

2
: (18)

To compute the variance of Prel,

E[(Prel � �Prel
)2] = �Prel

2

= E[Prel
2]� (�Prel

)2: (19)

Then,

E[Prel
2] = E[(1 + 2

fd
(
pz
Ro

) + 1

fd
2 (
pz
Ro

)2)2] (20)

and, discarding terms over quadratic,

E[Prel
2] � E[1 + 4

fd
pz
Ro

+ 6

fd
2

pz2

Ro
2 ]

= 1 +
2�p

2

fd
2Ro

2
: (21)

so, substituting Equations 21 and 16 in Equation
19, we have

�Prel

2 =
4

3fd
2

�p
2

Ro
2 : (22)

Therefore, the relative impact of the position com-
ponent of pose error on measurement precision esti-
mation is approximately

�Prel
= 1 +

1

3fd
2

�p
2

Ro
2 ; (23)

�Prel
=

2p
3fd

�p
Ro

: (24)

Precision Impact Interpretation In Figure
10(a), relative precision Prel computed from Equa-
tions 23 and 24 is plotted against normalized position
error �p=Ro. The latter will typically be very small

i.e. �p=Ro � 1. Figure 10(a) can be interpreted as
follows. One- and two-sigma curves for relative pre-
cision are displayed bracketing the nominal value of
1.0. Precision improves for values Prel < 1 and deteri-
orates for values Prel > 1. Any vertical slice through
these curves de�nes the shape of the probability den-
sity function for relative precision for a given normal-
ized position error. Horizontal lines at Prel = 1:1
and Prel = 0:961 indicate boundary conditions beyond
which measurements will be rejected due to pose posi-
tion error. The upper limit represents an example of a
speci�ed measurement precision limit from the model
speci�cation. It has been arbitrarily set at 1:1 in Fig-
ure 10(a) for illustration purposes. The lower limit,

easily shown to be 1=fd
2, de�nes the point at which

measurements are rejected as falling outside the sen-
sor near-range limit. The limit is illustrated here for a
value of fd = 1:02, meaning viewpoints are optimized
for a stando� distance of 2% beyond the optimal sen-
sor range Ro. The lower limit cut-o� is one manifesta-
tion of frustum erosion, a topic treated later in more
detail.
Examining this error component in isolation, it is

apparent from the foregoing that pose position error
has a low to moderate impact on measurement preci-
sion. The speci�cation clipping e�ect can be mitigated
by selecting suitably conservative model speci�cation
limits relative to sensor and positioning system capa-
bilities. Means to mitigate frustum erosion e�ects will
be addressed later.

3.2.2 Sampling Density Impact

Sampling Density Estimation Model This sec-
tion considers the e�ect of pose position error on
sampling density estimation. From Equation 12, our
model for sampling density estimation is

Drel =
C2�0

xzC
2�0

yz

C2�xzC
2�yz

Rxz
2C2�yz + fd

2Ro
2C2�xz

R0
xz

2
C2�0

yz + fd
2Ro

2C2�0
xz

:

(25)
However, as �0

yz = �yz, Equation 25 reduces to

Drel =
C2�0

xz

C2�xz

Rxz
2C2�yz + fd

2Ro
2C2�xz

R0
xz

2
C2�yz + fd

2Ro
2C2�0

xz

: (26)

Key Geometric Parameters We now wish to
compute the statistics of Drel which is a function of
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the random variables pxz and �xz , the magnitude and
angle of position error in the scanning plane, respec-
tively. It is useful to �rst compute simple expressions
for the key geometric parameters. From Figure 4, we
note that

Rxz
2 = fd

2Ro
2 + x2 (27)

R0
xz

2
= (fdRo + pz)

2 + (x� px)2 (28)

and

pxz
Rxz

=
S��xz

S[(�xz � �xz) + ��xz]
: (29)

De�ning r = pxz=Rxz = (pxzC�xz)=(fdRo) and set-
ting  xz = �xz � �xz, we have the relationship

cot ��xz =
1� rC xz
rS xz

(30)

from which we can determine

S��xz =
rS xzp

1 + r2 � 2rC xz
; (31)

C��xz =
1� rC xzp

1 + r2 � 2rC xz
: (32)

Noting that r � 1, the foregoing expressions for
S��xz and C��xz can be written as follows, where we
ignore terms in r above quadratic

S��xz � rS xz + r2S xzC xz ; (33)

C��xz � 1 +
r2

2
(C2 xz � 1): (34)

As an additional precursor to computing the statis-
tics of Drel, we next compute the statistics of �xz,
r and ��xz. We again only consider terms up to
quadratic in r.

Statistics of �xz

E[S xz] = E[C xz] = E[S xzC xz] = 0 (35)

E[S2 xz] = E[C2 xz] = 1=2 (36)

Statistics of r

E[r] =
C�xz
fdRo

E[pxz] = 0 (37)

E[r2] =
C2�xz

fd
2Ro

2E[pxz
2] =

2C2�xz

3fd
2

�p
2

Ro
2 (38)

Statistics of ��xz

E[S��xz] = E[rS xz + r2S xzC xz ] = 0 (39)

E[C��xz] = E[1 + r2

2 (C
2 xz � 1)]

= 1� C2�xz

6fd
2

�p
2

Ro
2 (40)

E[S2��xz] = E[r2S2 xz]

=
C2�xz

3fd
2

�p
2

Ro
2 (41)

E[C2��xz] = E[1 + r2(C2 xz � 1)]

= 1� C2�xz

3fd
2

�p
2

Ro
2 (42)

E[S��xzC��xz] = E[rS xz + r2S xzC xz ] = 0 (43)

Simpli�cation of Drel We now have most of the in-
gredients to calculate the statistics of the relative sam-
pling density Drel. First, it is convenient to rewrite
Equation 26 as the product of a constant term T1 and
a variable term T2.

Drel =

Rxz
2

fd
2Ro

2C
2�yz + C2�xz

C2�xz| {z }
T1

C2�0
xz

(R0
xz)

2

fd
2Ro

2C
2�yz + C2�0

xz| {z }
T2

(44)
Consider T1. As Rxz=(fdRo) = 1=C�xz, T1 reduces

to

T1 =
C2�yz + C2�xzC

2�xz
C2�xzC

2�xz
: (45)

Let T2 = N2=D2. Then,

D2 =
R0
xz

2

fd
2Ro

2C
2�yz + C2�0

xz: (46)

Considering the �rst term in 46 and using Equation
28, we have

R0
xz

2

fd
2Ro

2 = 1 +
2

fd

pz
Ro

+
1

fd
2

pz
2

Ro
2 + T 2�xz

�2T�xz
fd

px
Ro

+
1

fd
2

px
2

Ro
2

=
1

C2�xz
(1 + tr) (47)
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where tr is

tr =
2C2�xz
fd

pz
Ro

+
C2�xz

fd
2

pz
2

Ro
2

�2S�xzC�xz
fd

px
Ro

+
C2�xz

fd
2

px
2

Ro
2 : (48)

Considering the term C2�0
xz in 46

C2�0
xz = C2(�xz + ��xz)

= (C�xzC��xz � S�xzS��xz)
2

= C2�xzC
2��xz � 2S�xzC�xzS��xzC��xz

+S2�xzS
2��xz: (49)

Then, using the relationships from 33 and 34,

S2��xz � r2S2 xz (50)

C2��xz � 1 + r2(C2 xz � 1) (51)

S��xzC��xz � rS xz + r2S xzC xz (52)

so that we have

C2�0
xz � C2�xz[1 + r2(C2 xz � 1)]

�2S�xzC�xz[rS xz + r2S xzC xz ]

+S2�xzr
2S2 xz

= C2�xz[1 + t�] (53)

where

t� = �2rT�xzS xz + r2(C2 xz � 1)

�2r2T�xzS xzC xz + r2T 2�xzS
2 xz:(54)

Now, combining the expressions for R0
xz

2
=(fd

2Ro
2)

and C2�0
xz with Equation 46, we have

D2 =
R0
xz

2

fd
2Ro

2
C2�yz + C2�0

xz

=
C2�yz
C2�xz

[1 + tr] + C2�xz[1 + t�]

=
C2�yz + C2�xzC

2�xz
C2�xz

[1

+
C2�yz

C2�yz + C2�xzC
2�xz

tr

+
C2�xzC

2�xz
C2�yz + C2�xzC

2�xz
t�]

=
C2�yz + C2�xzC

2�xz
C2�xz

[1 + t] (55)

where

t =
C2�yz

C2�yz + C2�xzC
2�xz

tr

+
C2�xzC

2�xz
C2�yz + C2�xzC

2�xz
t�: (56)

Now, the expression for T2 from Equation 46 can
be simpli�ed to

T2 =
C2�xzC

2�xz
C2�yz + C2�xzC

2�xz

[1 + t�]

[1 + t]
: (57)

Statistics of Drel Finally, combining 45 and 57, we
have the following expression for Drel:

Drel =
[1 + t�]

[1 + t]
: (58)

As jtj < 1, the denominator of 58 can be expressed
as a series expansion. After expansion and collecting
terms up to quadratic in t� and t, we have the following

second order approximations for Drel and Drel
2:

Drel � 1� t+ t2 + t� � tt�; (59)

Drel
2 � 1� 2t+ 3t2 + 2t� � 4tt� + t�

2: (60)

Using the interim results previously developed, the
statistics of terms in t� and t can be expressed as fol-
lows:

E[t�] =
C2�xz

3fd
2

�p
2

Ro
2 (T

2�xz � 1) (61)

E[t�
2] =

4T 2�xzC
2�xz

3fd
2

�p
2

Ro
2 (62)

E[tr] =
2C2�xz

3fd
2

�p
2

Ro
2 (63)

E[tr
2] =

8C2�xz

3fd
2

�p
2

Ro
2 (64)

E[t] =
C2�xz

3fd
2

�p
2

Ro
2

[2C2�yz + C2�xz(S
2�xz � C2�xz)]

C2�yz + C2�xzC
2�xz

(65)
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E[t2] =
4C2�xz

3fd
2

�p
2

Ro
2

[2C4�yz + C4�xzS
2�xzC

2�xz]

(C2�yz + C2�xzC
2�xz)2

(66)

E[t�tr] = 0 (67)

E[tt�] =
4S2�xzC

4�xz

3fd
2

�p
2

Ro
2

1

[C2�yz + C2�xzC
2�xz]

(68)
After these laborious calculations, we can �nally ex-

press the statistics of Drel from 59 and 60 as follows
after collecting terms up to quadratic in �p=Ro and
simplifying:

E[Drel] = �Drel

= 1 +
C2�yzC

2�xz

3C2�xzfd
2

�p
2

Ro
2

4C2�xzC
2�yz � 3C2�xzC

2�xz + C2�yz
(C2�yz + C2�xzC

2�xz)2

(69)

E[Drel
2] = 1 +

2C2�yzC
2�xz

C2�xzfd
2

�p
2

Ro
2

2C2�xzC
2�yz � C2�xzC

2�xz + C2�yz
(C2�yz + C2�xzC

2�xz)2

(70)

so the variance and standard deviation of Drel are

�Drel

2 =
4C4�yzC

2�xz(C
2�xz + 1)

3C2�xzfd
2(C2�yz + C2�xzC

2�xz)2
�p

2

Ro
2 ;

(71)

�Drel
=

2C2�yzC�xz
p
C2�xz + 1p

3C�xzfd(C
2�yz + C2�xzC

2�xz)

�p
Ro

:

(72)

In summary, the relative impact of pose position
error on sampling density estimation is approximately

�Drel

= 1 +
C2�yzC

2�xz

3C2�xzfd
2

�p
2

Ro
2

4C2�xzC
2�yz � 3C2�xzC

2�xz + C2�yz
(C2�yz + C2�xzC

2�xz)2
;

(73)

�Drel
=

2C2�yzC�xz
p
C2�xz + 1p

3C�xzfd(C
2�yz + C2�xzC

2�xz)

�p
Ro

:

(74)

For an optimum scanning geometry such that �xz =
�xz = �yz = 0, the statistics of relative sampling den-
sity Drel reduce to the following:

�Drel
= 1 +

1

3fd
2

�p
2

Ro
2 ; (75)

�Drel
=

p
2p
3fd

�p
Ro

: (76)

Sampling Density Impact Interpretation The
impact of pose position error on sampling density es-
timation calculated at Equations 75 and 76 is shown
in Figure 10(c) for the optimum scanning geometry.
Sampling density improves for values Drel > 1 and
deteriorates for values Drel < 1. The e�ects will be
seen to very close to those for measurement precision
as shown at Figure 10(a) and can be interpreted in
a similar manner. As was the case for measurement
precision, it is apparent from the foregoing that pose
position error has a low to moderate impact on sam-
pling density.

3.2.3 Visibility Impact

Visibility or occlusion e�ects depend on object shape,
optical baseline length and sensor-object relative pose.
The optical baseline is �xed and camera pose has been
optimized in the viewpoint generation process. Rela-
tive visibility e�ects therefore depend mainly on object
geometry. They cannot be quanti�ed in the absence
of a speci�c object shape. However, from the previ-
ous analysis, we can observe that the visibility impact
of pose position error will be nil to low. This is due
to the very small changes in observation geometry be-
tween surface points, laser source and optical receiver
as a consequence of the low normalized position error
�p=Ro anticipated for most imaging environments.

10



3.2.4 Frustum Occupancy Impact

This section considers the e�ect of pose position error
on frustum occupancy.

Frustum Erosion From Equation 13, the targeted
footprint is

TF = (2fdRoT�2)| {z }
width

(Ly)|{z}
length

: (77)

Pose error ~p = (px; py; pz) erodes coverage as fol-

lows. px reduces the width by jpxj, py reduces the

length by jpyj while pz reduces the width by T�2jpzj.
The later relationship can be seen from the following.
For pz < 0, width is reduced by 2T�2jpzj. For pz > 0,
width is increased by 2T�2jpzj. However, the increase
for pz > 0 is of no bene�t. The net e�ect of z-axis
pose error is a coverage reduction of T�2jpzj. Conse-
quently, the portion of the targeted footprint covered
by the viewpoint subject to pose position error is

TF 0 = (2fdRoT�2� T�2jpzj � jpxj)(Ly � jpyj): (78)

Then, the TFrel is

TFrel =
TF 0

TF

=
(2fdRoT�2 � T�2jpzj � jpxj)

2fdRoT�2

(Ly � jpyj)
Ly

:

(79)

As before, we optimize the viewpoint by setting Ly =
fdRo�x which gives us

TFrel =
(2fdRoT�2 � T�2jpzj � jpxj)

2fdRoT�2

(fdRo�x � jpyj)
fdRo�x

:

(80)
We now wish to compute the statistics of TFrel

which is a function of the random variables px; py; pz.

First, we need the statistics of jpxj; jpyj; jpzj. It is read-
ily shown that

E[jpxj] = �p

r
2

3�
; (81)

E[jpxj2] = �p
2

3
; (82)

E[jpxjjpyj] = 2�p
2

3�
: (83)

Given our model of pose error, the statistics of px,
py and pz are identical. Therefore, 80 can be written
as

TFrel = 1� ajpxj+ bjpxjjpyj (84)

where

a =
(�xT�2 +�x + 2T�2)

2fdRo�xT�2
(85)

and

b =
(T�2 + 1)

2fd
2Ro

2�xT�2

: (86)

Thus,

E[TFrel] = �TFrel

= 1� a�p

r
2

3�
+

2b�p
2

3�
: (87)

Considering only terms up to quadratic

�TFrel
2 � 1 +

2a2�p
2

3�
� 2a�p

r
2

3�
+

4b�p
2

3�
(88)

and from Equation 84

TFrel
2 � 1 + a2jpxj2 � 2ajpxj+ 2bjpxjjpyj; (89)

E[TFrel
2] = 1 +

a2�p
2

3
� 2a�p

r
2

3�
+

4b�p
2

3�
: (90)

Therefore,

�TFrel
2 = E[TFrel

2]� �TFrel
2

=
a2�p

2(� � 2)

3�
: (91)

In summary, the relative impact of pose position
error on �eld of view erosion is approximately

�TFrel = 1� (�xT�2 +�x + 2T�2)

2fd�xT�2

r
2

3�

�p
Ro

+
(T�2 + 1)

3�fd
2�xT�2

�p
2

Ro
2 ; (92)
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�TFrel
=

(�xT�2 +�x + 2T�2)

2fd�xT�2

r
� � 2

3�

�p
Ro

: (93)

The impact of pose position error on viewpoint cov-
erage calculated from Equations 92 and 93 is shown
at Figure 10(e) for a line-scan sensor with �x = 30�,
fd = 1:02 and the optimum scanning geometry. View-
point coverage and e�ective �eld of view deteriorates
for TFrel < 1. By de�nition, TFrel never exceeds one.
One- and two-sigma curves for relative targeted foot-
print are displayed bracketing the average value. We
observe that there is moderate frustum erosion with
pose position error. Hence, it is an important factor
in view planning.

Depth of Field Erosion As previously noted, pose
error will result in erosion whenever �z > (fd � 1)Ro.
With pose position error, such an event is catastrophic
as the entire scan is compromised at the targeted
stando� distance. Therefore, the only statistic of in-
terest relative to depth of �eld erosion is the probabil-
ity P [pz > (fd � 1)Ro]. Then,

P [pz > �] = 1��[
�� �
�z ] (94)

where �z = �p=
p
3, � = 0, � = (fd � 1)Ro and

�[z] =
1p
2�

Z z

�1
e�u

2=2 du: (95)

Then

P [pz > (fd � 1)Ro] = 1� �[
p
3(fd�1)

(�p=Ro)
]: (96)

The probability of depth of �eld erosion with pose
position error is shown at Figure 10(b), plotted on
a normalized logarithmic scale. These curves can be
used to select a suitable distance factor fd for a given
level of pose error and tolerance for depth of �eld ero-
sion.

3.3 Axis Error

3.3.1 Measurement Precision Impact

Precision Estimation Model This section consid-
ers the e�ect of the axis component of pose orienta-
tion error on measurement precision estimation. For
the line-scan range camera examined here, we follow
the convention that the frustum origin (which coin-
cides with the laser rest position) falls half way along
the y-axis linear scan (Figure 3). The sensor boresight

is de�ned by the sensor negative z-axis. Axis error is
modeled by a unit vector uniformly distributed on the
surface of a cone centered on the camera boresight. Ef-
fectively, axis error involves rotations about the sensor
x and y axes. These can be combined into a single ro-
tation of angle � about an axis ~r in the xy-plane at
angle �. The axis error cone half-angle � is modeled
as a zero-mean Gaussian process with standard devi-
ation �a while �, the angle in the xy-plane at which
the axis error occurs, has a uniform distribution over
[��; �].
The corresponding rotation matrix Rr;� is as follows

[6], where V � is vers � = 1� cos�:

0
@ rx

2V �+ C� rxryV �� rzS� rxrzV �+ ryS�
rxryV �+ rzS� ry

2V �+ C� ryrzV �� rxS�
rxrzV �� ryS� ryrzV �+ rxS� rz

2V �+ C�

1
A

(97)
As the rotation vector ~r lies in the xy-plane, ~r =

(rx; ry ; rz) = (S�;C�; 0). We can therefore simplify
97 to

Rr;� =

0
@ S2�V �+ C� S�C�V � C�S�

S�C�V � C2�V �+ C� �S�S�
�C�S� S�S� C�

1
A

(98)
It is again convenient to deal with relative precision

Prel from 4

Prel =
z02 cos �yz
z2 cos �0yz

: (99)

We assume the sensor range has been optimally set
at z = fdRo. From 98,

z0 = �C�S� x+ S�S� y + C� z: (100)

Inclination angle �yz is the angle between the pro-
jection of the surface normal ~n on the y-z plane in
camera space in the absence of pose axis error - that
is, ~nyz = (0; ny; nz), and the negative of the camera

boresight ~uz = (0; 0; 1). Similarly, inclination angle
�0yz is the angle between the surface normal in cam-
era space in the y-z plane in the presence of pose axis

error ~nyz 0 = (0; ny
0; nz 0) and ~uz0 = (0; 0; 1).

Here,

ny
0 = S�C�V �nx + (C2�V �+ C�)ny � S�S�nz;

nz
0 = C�S�nx + S�S�ny + C�nz: (101)

Then,
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C�yz =
~nyz � ~uz

jj ~nyzjj jj ~uzjj ; (102)

C�0yz =
~nyz 0 � ~uz0

jj ~nyz 0jj jj ~uz0 jj : (103)

Let us consider the case where the sensor is op-
timally positioned such that the inclination angles
are zero. Therefore, �xz = �yz = 0 which implies

~n = (0; 0; 1). Additionally, we are concerned only with
points near the sensor boresight - that is, x = y = 0.

Then, ~nyz 0 = (0;�S�S�;C�), z02=z2 = C2� and

C�yz = 1; (104)

C�0yz =
C�p

S2�S2�+ C2�
: (105)

Then, the expression for relative precision Prel at
Equation 99 is

Prel = C2�

p
S2�S2�+ C2�

C�

= C2�
p
S2�T 2�+ 1: (106)

As T 2�� 1, 106 can be written as follows

Prel = C2�(1 +
S2�T 2�

2
� S4�T 4�

8
)

= C2�+
S2�S2�

2
� S4�T 2�S2�

8
: (107)

As a precursor to computing the statistics of Prel,
we next compute the statistics of � and �.

Statistics of � Recalling that � has a uniform dis-
tribution over [��; �], it can be shown that

E[S�] = E[C�] = E[S� C�] = 0 (108)

E[S2�] = E[C2�] = 1=2 (109)

E[S� C2�] = E[S2� C�] = E[S3�] = 0 (110)

E[S2� C2�] = 1=8 (111)

E[S4�] = 3=8 (112)

E[jS�j] = E[jC�j] = 2=� (113)

E[jS�C�j] = 1=� (114)

Statistics of � As � is a zero-mean Gaussian pro-
cess with standard deviation �a, it can be shown that

E[S�] = 0 (115)

E[C�] = e(�
�a2
2

) � 1� �a
2

2
(116)

E[T 2�] = E[S2�] � �a
2 (117)

E[C2�] � 1� �a
2 (118)

E[C4�] � 1� 2�a
2 (119)

E[S�T�] � �a
2 (120)

E[S�T 2�] = 0 (121)

E[S�T 3�] = E[S2�T 2�] = O(�a
4) (122)

E[jT�j] = �a

r
2

�
(123)

E[S�C�] = 0 (124)

E[S2�C2�] = �a
2 (125)

Statistics of Prel With the above results, we can
now compute the statistics of Prel. Applying the ex-
pected value operator to 107 and retaining terms up
to quadratic in �a, we get the following approximation

�Prel
= 1� 3�a

2

4
: (126)

Similarly, to compute the variance

(�Prel
)2 � 1� 3�a

2

2
; (127)

�Prel
2 = E[C4�+ S2�S2�C2�]

= 1� 3�a
2

2
: (128)

So, using terms up to quadratic in �a, the variance
�Prel

2 is

�Prel

2 = �Prel
2 � (�Prel

)2

= 0: (129)
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Precision Impact Interpretation In summary,
for the optimal viewing geometry (zero inclination
angle and measurements near the sensor boresight),

�Prel
and �Prel

2 are as follows. Average precision is

marginally improved while the variance is zero. The
�rst e�ect results from the small but consistent range
reduction with axis error, while the second is due to
the symmetrical viewing geometry under these condi-
tions.

�Prel
= 1� 3�a

2

4
; (130)

�Prel

2 = 0: (131)

3.3.2 Sampling Density Impact

Sampling Density Estimation Model This sec-
tion considers the e�ect of the axis component of
pose orientation error on sampling density estimation.
From Equation 12, our model for relative sampling
density Drel is

Drel =
C2�0

xzC
2�0

yz

C2�xzC
2�yz

Rxz
2C2�yz + fd

2Ro
2C2�xz

R0
xz

2
C2�0

yz + fd
2Ro

2C2�0
xz

:

(132)
For axis error angle � at angle � to the xy-plane

co-ordinate frame, we have the following geometric re-
lationships:

Rxz
2 = z2 + x2 = fd

2Ro
2 + x2; (133)

R0
xz

2
= z02 + x02; (134)

z0 = �C�S� x+ S�S� y + C� z; (135)

x0 = (S2�V �+C�) x+S�C�V � y+C�S� z: (136)

With the sensor in the optimal scanning con�gura-
tion, �xz = �yz = 0 and x = y = 0. Then, as shown in
the previous section

x0 = C�S�fdRo; (137)

z0 = C�fdRo; (138)

Rxz
2 = fd

2Ro
2; (139)

R0
xz

2
= (C2�S2�+ C2�)fd

2Ro
2; (140)

C�xz = C�yz = 1; (141)

C�0
xz =

C�p
C2�S2�+ C2�

; (142)

C�0
yz =

C�p
S2�S2�+ C2�

: (143)

Using the above relationships, Drel simpli�es to

Drel =
2C2�

(C2�S2�+ C2�)2 + (S2�S2�+ C2�)

=
2

1 + C2�+ S2�T 2�+ C4�S2�T 2�+ 2C2�S2�
:

(144)

The equation for Drel at 144 can be expressed in a
Maclaurin series expansion in terms of � about � = 0.
Retaining only terms up to quadratic as usual, Drel

becomes

Drel = 1 +
(1� 2C2� � S2�)�2

2
: (145)

Hence

�Drel
= 1� �a

2

4
: (146)

Then

(�Drel
)2 � 1� �a

2

2
: (147)

Similarly, a Maclaurin series expansion of Drel
2

gives

Drel
2 = 1 + (1� 2C2� � S2�)�2 (148)

from which

E[Drel
2] = 1� �a

2

2
(149)

so that

�Drel

2 = E[Drel
2]� (�Drel

)2 = 0: (150)

14



Figure 7: Field of View Erosion with Axis Error

Sampling Density Impact Interpretation In
summary, for the optimal viewing geometry (zero incli-
nation angle and measurements near the sensor bore-
sight), �Drel

and �Drel
2 are as follows:

�Drel
= 1� �a

2

4
; (151)

�Drel

2 = 0: (152)

Average sampling density is marginally reduced
while the variance is zero. In the �rst case, bene-
�ts from the small but consistent range reduction are
overpowered by the fact that all measurements under
pose axis error at made slightly o� boresight. As was
the case for measurement precision, the variance of the
sampling density is again zero due to the symmetrical
viewing geometry under these conditions.

3.3.3 Visibility Impact

The visibility impact of sensor axis orientation error
will depend on object shape, optical baseline length,
sensor-object relative pose and the magnitude of the
orientation error. Axis orientation error �a has the
e�ect of causing a wobble in the position of the opti-
cal transmitter and receiver. The degree of wobble is
determined by the orientation error, the length of the
optical baseline and the position of the scan along the
y-axis. E�ects are similar to those generated by pose
position error. Visibility impacts will generally be low
at small axis orientation error �a.

3.3.4 Frustum Occupancy Impact

Field of View Erosion As illustrated in Figure
7, axis orientation error about the sensor boresight
changes the sensor aiming point and thus potentially
has a large impact on actual versus planned coverage.
At the speci�ed stand-o� range of fdRo, the

projection of the sensor boresight on the frustum

cross-section is o�-set by an amount (dx; dy) =

(fdRoT�C�; fdRoT�S�). Recall that we model axis
error with two components, � and �. The o�-boresight
angle error � is modeled as a zero-mean Gaussian pro-
cess with standard deviation �a while the angular lo-
cation around the boresight � has a uniform distribu-
tion over [��; �]. Then, the targeted sensor footprint
is reduced to the following, where the scan length has
again been optimally con�gured:

TF 0 = (2fdRoT�2 � jdxj)(fdRo�x � jdyj): (153)

Then, the relative targeted footprint is

TFrel =
(2fdRoT�2 � fdRojT�C�j)

2fdRoT�2

(fdRo�x � fdRojT�S�j)
fdRo�x

= 1� ajT�C�j � bjT�S�j
+cT 2�jC�S�j (154)

where a = 1=2T�2, b = 1=�x and c = 1=2T�2�x.
Then the average relative targeted footprint is

�TFrel = 1� �a(a+ b)
2

�

r
2

�

+c
�a

2

�
: (155)

To compute the variance, we have

(�TFrel)
2 � 1� �a(a+ b)

4

�

r
2

�

+2c
�a

2

�
+ �a

2(a+ b)2
8

�3
; (156)

E[TFrel
2] = 1� �a(a+ b)

4

�

r
2

�
+ 2c

�a
2

�

+2ab
�a

2

�
+
�a

2(a2 + b2)

2
: (157)

Thus

�TFrel
2 = �a2

2�3 [(a
2 + b2)(�3 � 16) + 4ab(�2 � 8)]:

(158)

In summary, the relative impact of the axis compo-
nent of pose orientation error on �eld of view erosion
is approximately

15



�TFrel
= 1� (�x + 2T�2)

�T�2�x

r
2

�
�a

+
�a

2

2�T�2�x
; (159)

�TFrel

2 =
�a

2

8�3T 2�2�x
2 [(4T

2�2 +�x
2)(�3 � 16)

+8T�2�x(�
2 � 8)]: (160)

The impact of the axis component of pose orien-
tation error on viewpoint coverage calculated from
Equations 159 and 160 is shown at Figure 10(d) for a
line-scan sensor with �x = 30� and the optimum scan-
ning geometry. One- and two-sigma curves for relative
targeted footprint are displayed bracketing the aver-
age value. We observe that there is a high level of
frustum erosion with pose axis orientation error and,
hence a serious impact on view planning.

Depth of Field Erosion Pose error produces frus-
tum erosion whenever �z > (fd�1)Ro. Unlike the case
of pose position error which results in catastrophic
frustum erosion of an entire scan, frustum erosion un-
der axis error is a slowly occurring phenomena, start-
ing at the far edges of the frustum cross-section and
gradually moving inward with increasing error.
It is easily shown that depth of �eld erosion from

axis error will begin to occur in the yz-plane when

S� >
fd � 1

fd�2
(161)

and in the xz-plane when

S� >
fd � 1

�2
: (162)

For small �, S� � �. Thus, using the most con-
servative test from 161 and 162, depth of �eld erosion
will begin to occur for

� >
fd � 1

fd�2
: (163)

Therefore, the statistic of interest is the probability
P [� > (fd � 1)=(fd�2)]. Then,

P [� >
(fd�1)

fd�2
] = 1� �[

(fd�1)

fd�2�a
]: (164)

The probability of depth of �eld erosion with pose
axis error is shown at Figure 8, plotted on a normalized
logarithmic scale. These curves can be compared with
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Figure 8: Axis Error Impact on Depth of Field

depth of �eld erosion with pose position error shown
at Figure 10(b). Recall, however, that frustum depth
of �eld erosion under axis error is gradual, whereas
it is abrupt and catastrophic with position error. In
summary, pose axis error results in only minor frus-
tum depth of �eld erosion under most practical system
con�gurations.

3.4 Twist Error

3.4.1 Measurement Precision Impact

Precision Estimation Model This section consid-
ers the e�ect of the twist component of pose orienta-
tion error on measurement precision estimation - that
is, rotation error about the sensor boresight. Twist
angle error � about the sensor z-axis is modeled as a
zero-mean Gaussian process with standard deviation
�t. The corresponding rotation matrix Rz;�is

Rz;� =

0
@ C� �S� 0

S� C� 0
0 0 1

1
A (165)

Range remains constant z0 = z = fdRo, so the rela-
tive measurement precision Prel is

Prel =
�̂z0

�̂z
=

cos �yz
cos �0yz

: (166)

Inclination angle �yz is the angle between the pro-
jection of the surface normal ~n in camera space on
the y-z plane ~nyz = (0; ny; nz) and the camera bore-

sight axis ~uz = (0; 0; 1). Similarly, inclination angle

16



�0yz is the angle between the perturbed surface nor-

mal ~nyz 0 = (0; ny
0; nz 0) = (0; S�nx + C�ny; nz) in

camera space and ~uz0 = (0; 0; 1). Then,

C�yz =
~nyz � ~uz

jj ~nyzjj jj ~uzjj =
nzp

ny2 + nz2
; (167)

C�0yz =
~nyz0 � ~uz0

jj ~nyz 0jj jj ~uz0 jj =
nzp

(S�nx + C�ny)2 + nz2
:

(168)
Consequently, as nx=nz = T�xz and ny=nz = T�yz

cos �yz
cos �0yz

=

s
(S�nx + C�ny)2 + nz2

ny2 + nz2

=

s
(S�T�xz + C�T�yz)2 + 1

T 2�yz + 1

= C�yz

q
1 + (S�T�xz + C�T�yz)2:

(169)

Then, the relative measurement precision Prel is

Prel = C�yz

q
1 + (S�T�xz + C�T�yz)2: (170)

Statistics of Prel Equation 170 can be rewritten as
follows, where a = (S�T�xz + C�T�yz)

2:

Prel = C�yz
p
1 + a: (171)

As T�xz <
p
3 and T�yz <

p
3 in the range of in-

terest and �� 1, 171 can be approximated as

Prel = C�yz[1 +
a

2
� a2

8
+
a3

16
� 5a4

128
+O(a5)]: (172)

Therefore, using Equations [115-125] and taking
terms up to quadratic in �t, we get the following:

E[a] = E[S2�T 2�xz + C2�T 2�yz

+2S�C�T�xzT�yz]

= �t
2T 2�xz + (1� �t

2)T 2�yz; (173)

E[a2] = 6�t
2T 2�xzT

2�yz + (1� 2�t
2)T 4�yz; (174)

E[a3] = 15�t
2T 2�xzT

4�yz + (1� 3�t
2)T 6�yz; (175)

E[a4] = 28�t
2T 2�xzT

6�yz + (1� 4�t
2)T 8�yz: (176)

Collecting terms, we get

�Prel
= C�yz[s1 � �t

2T 2�yz
2

s2

+
�t

2T 2�xz
2

s3] (177)

where

s1 = 1 +
1

2
T 2 � 1

8
T 4 +

1

16
T 6 � 5

128
T 8 + � � � ; (178)

s2 = 1� 1

2
T 2 +

3

8
T 4 � 5

16
T 6 +

35

128
T 8 + � � � ; (179)

s3 = 1� 3

2
T 2 +

15

8
T 4 � 35

16
T 6 +

315

128
T 8 + � � � (180)

and T = T�yz. Closed form solutions exist for these
in�nite series, as follows:

s1 = [1 + T 2]1=2 =
1

C�yz
; (181)

s2 = [1 + T 2]�1=2 = C�yz; (182)

s3 = [1 + T 2]�3=2 = C3�yz: (183)

So the average relative precision is

�Prel
= 1 +

�t
2

2
[T 2�xzC

4�yz � S2�yz]: (184)

To calculate the variance, we compute

E[Prel
2] = E[C2�yz(1 + a)]

= 1 + �t
2T 2�xzC

2�yz �
�t

2S2�yz (185)

�Prel

2 � 1 + �t
2T 2�xzC

4�yz � �t
2S2�yz (186)

from which the variance of Prel is

�Prel

2 = �t
2T 2�xzS

2�yzC
2�yz (187)

and the standard deviation is

�Prel
= �tT�xzS�yzC�yz : (188)
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Precision Impact Interpretation Considering
the behavior of relative precision Prel for optimal scan-
ning geometry of �xz = �yz = 0, we note from Equa-
tions 184 and 187 that its average is unchanged and
variance is zero. These statistics result from the sym-
metrical viewing geometry under these special circum-
stances:

Prel � 1; (189)

�Prel � 0: (190)

Even with non-optimal scanning geometry, it is evi-
dent that the e�ect of twist orientation error on pre-
cision estimation is marginal.

3.4.2 Sampling Density Impact

Sampling Density Estimation Model This sec-
tion considers the e�ect of the twist component of
pose orientation error on sampling density estimation.
From Equation 12, our model for relative sampling
density Drel is

Drel =
C2�0

xzC
2�0

yz

C2�xzC
2�yz

Rxz
2C2�yz + fd

2Ro
2C2�xz

R0
xz

2
C2�0

yz + fd
2Ro

2C2�0
xz

:

(191)
For rotation error angle � about the boresight, we

have the following geometric relationships

Rxz
2 = z2 + x2 = fd

2Ro
2 + x2; (192)

R0
xz

2
= z02 + x02; (193)

z0 = z = fdRo; (194)

x0 = C� x� S� y; (195)

C2�xz =
nz

2

nx2 + nz2
; (196)

C2�yz =
nz

2

ny2 + nz2
; (197)

C2�0
xz =

nz
2

(C�nx � S�ny)2 + nz2
; (198)

C2�0
yz =

nz
2

(S�nx + C�ny)2 + nz2
: (199)

From the above, 191 reduces to

Drel =
(1 + xr

2)(1 + T 2�xz) + (1 + T 2�yz)

(1 + t12)(1 + t22) + (1 + t32)

=
N

D
(200)

where xr = x=fdRo = tan�xz, yr = y=fdRo, t1 =
C�xr � S� yr, t2 = C�T�xz � S�T�yz, and t3 =
S�T�xz + C�T�yz.
The numerator of 200 reduces to

N =
(1 + xr

2)C2�yz + C2�xz
C2�xzC

2�yz

=
C2�yz + C2�xzC

2�yz
C2�yzC

2�xzC
2�yz

: (201)

As jt1j, jt2j and jt3j are all < 1 over the range of
interest, the denominator can be written as D = 2(1+

t) where t = (t12 + t22 + t32 + t12t22)=2. Then, the
relative sampling density Drel is

Drel =
N

2(1 + t)
(202)

which can be further written as

Drel =
N

2
(1� t+O(t2)): (203)

Statistics of Drel Considering only terms up to
quadratic in the key variables, the average relative
sampling density �Drel

is approximately

�Drel
= E[N2 (1� t)] (204)

where

E[t] =
1

2
fE[t12] +E[t22] +E[t32] +E[t12]E[t22]g;

(205)

E[t12] = E[C2�xr
2 + S2�yr

2 � 2S�C�xryr]

= (1� �t
2)xr

2 + �t
2yr

2; (206)

E[t22] = E[C2�T 2�xz + S2�T 2�yz

�2S�C�T�xzT�yz]

= (1� �t
2)T 2�xz + �t

2T 2�yz; (207)
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E[t32] = E[S2�T 2�xz + C2�T 2�yz

+2S�C�T�xzT�yz]

= �t
2T 2�xz + (1� �t

2)T 2�yz; (208)

E[t12t22] = E[(C2�xr
2 + S2� yr

2 � 2S�C�xryr)

(C2�T 2�xz + S2�T 2�yz

�2S�C�T�xzT�yz)]
= (1� 2�t

2)xr
2T 2�xz + �t

2yr
2T 2�xz

+�t
2xr

2T 2�yz + 4�t
2xryrT�xzT�yz;

(209)

E[t] =
1

2
fxr2(1 + T 2�xz) + T 2�xz + T 2�yz +

�t
2[�xr2(1 + 2T 2�xz) + yr

2(1 + T 2�xz) +

xr
2T 2�yz + 4xryrT�xzT�yz]g: (210)

Collecting terms, we get the following expression for
the average relative sampling density �Drel

where N

is de�ned at 201:

�Drel
� N

4
[2� xr

2(1 + T 2�xz)� T 2�xz � T 2�yz]

+
�t

2N

4
[xr

2(1 + 2T 2�xz)

�yr2(1 + T 2�xz)� xr
2T 2�yz

�4xryrT�xzT�yz]: (211)

For the variance, we have the following, considering
terms to O(t2)

�Drel
� N

2
(1�E[t] +E[t2]); (212)

�Drel

2 � N2

4
(1� 2E[t] + (E[t])2 + 2E[t2]); (213)

E[Drel
2] =

N2

4
(1� 2E[t] + 3E[t2]): (214)

Therefore, the variance �Drel
2 is

�Drel

2 � N2

4
(E[t2]� (E[t])2)

=
N2�t

2xr
2

4
[yr(1 + T 2�xz)

+xrT�xzT�yz)]
2: (215)

Hence, the standard deviation �Drel
is

�Drel
� N�txr

2
[yr(1 + T 2�xz)

+xrT�xzT�yz)]: (216)

Sampling Density Impact Interpretation Con-
sidering the behavior of relative sampling density for
optimal scanning geometry of �xz = �yz = 0, the coef-

�cient N reduces to (1+C2�xz)=C
2�xz and we obtain

the following simpli�ed expressions for the average and
variance of Drel from Equations 211 and 216:

�Drel
� N

4
[2� xr

2] +
�t

2N

4
[xr

2 � yr
2];(217)

�Drel
� N�txryr

2
: (218)

Furthermore, for measurements near the sensor
boresight (xr � 0 � yr), then

�Drel
� 1; (219)

�Drel
� 0: (220)

Even with non-optimal scanning geometry, it is ev-
ident that the e�ect of twist orientation error on sam-
pling density estimation is marginal.

3.4.3 Visibility Impact

The visibility impact of sensor twist orientation error
will depend on the object shape, sensor optical base-
line, sensor-object relative pose and the magnitude of
the orientation error. Visibility impacts will gener-
ally be low at small twist orientation error �t. How-
ever, occasionally even small orientation errors may
be su�cient to push the visibility of surface elements
near threshold into occlusion. Moderate to large twist
orientation errors will result in signi�cant unplanned
occlusions due to shadow e�ects arising from the non-
zero optical baseline.

3.4.4 Frustum Occupancy Impact

Field of View Erosion As illustrated in Figure 9,
twist orientation error about the sensor boresight re-
duces the e�ective coverage. It is readily shown that
coverage reduction �TF is as follows, where W and L
are the width and length of the frustum cross-section
at the desired stand-o� range:
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Figure 9: Field of View Erosion with Twist Error

�TF =
1� C�

2jS�jC� [L
2 +W 2 � 2LW jS�j]: (221)

As we are interested only in relatively small angle
errors, the absolute value operator need only be ap-
plied to the S� term. It is convenient to rewrite the
foregoing as

�TF =
LW (C�� 1)

C�
+
jS�j(L2 +W 2)

2C�(1 + C�)
: (222)

For small � and considering only terms up to
quadratic, Equation 222 can be approximated by the
following:

�TF � �LW�2

2
+
j�j(L2 +W 2)

4
: (223)

Consequently, the relative targeted footprint is

TFrel =
LW � �TF

LW

= 1� j�j(L2 +W 2)

4LW
+
�2

2
: (224)

As the frustum width at the optimum stand-o�
range isW = 2fdRoT�2 and the scan length has been
optimized to L = fdRo�x, 224 is

TFrel = 1� aj�j+ �2

2
(225)

where

a =
�x

2 + 4T 2�2

8�xT�2
: (226)

Then, the average relative targeted footprint is

�TFrel = 1� a�t

r
2

�
+
�t

2

2
: (227)

Similarly,

E[TFrel
2] = 1� 2a�t

r
2

�
+ (a2 + 1)�t

2: (228)

Consequently, the variance �TFrel is

�TFrel
2 = E[TFrel

2]� (�TFrel)
2

= a2�t
2 (� � 2)

�
: (229)

In summary, the relative impact of the twist com-
ponent of viewpoint orientation error on �eld of view
erosion is approximately

�TFrel = 1� �x
2 + 4T 2�2

8�xT�2

r
2

�
�t +

�t
2

2
; (230)

�TFrel =
�x

2 + 4T 2�2

8�xT�2

r
� � 2

�
�t: (231)

The impact of the twist component of pose orien-
tation error on viewpoint coverage calculated from
Equations 230 and 231 is shown at Figure 10(f) for
a line-scan sensor with �x = 30�. One- and two-
sigma curves for relative targeted footprint are dis-
played bracketing the average value. We observe that
pose twist orientation error results in low frustum ero-
sion and thus impacts view planning.

Depth of Field Erosion As twist orientation error
does not change the sensor stand-o� range, it does not
erode the sensor depth of �eld.

4 Summary and Conclusions

4.1 Overview

Table 2 provides a qualitative overview of pose error
e�ects on a single view. On a relative basis, e�ects are
broadly categorized in the range: high (H), moderate
(M), low (L) or nil. Analytical results in pose error
variables up to second order e�ects are presented at
Tables 3 and 4. Error e�ects with non-zero variance
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Position Axis Twist

Measurement Precision L-M L nil

Sampling Density L-M L nil

Visibility L L M

Frustum Occupancy M-H H L

Table 2: Qualitative Pose Error E�ects

are plotted at Figure 10, allowing a quantitative com-
parison. Table 6 summarizes key symbols and de�ni-
tions.
The e�ects of pose position and pose orientation

error are shown. The latter is broken down into sen-
sor boresight axis error and rotation error about the
sensor boresight (twist). In all cases, performance is
relative to the error-free case.
Finally, note that the foregoing results are based

on an optimized scanning con�guration of a line-scan
range camera, the conditions for which are summa-
rized at Table 5. Results for non-optimized scanning
con�gurations can be found in the appropriate sub-
sections to Section 3.

4.2 Pose Error Model Suitability

This analysis has employed a simple, general purpose
error model based on Gaussian statistics. The sta-
tistical behavior of real positioning systems is more
complex and highly variable between system type and
con�guration. Pose error is also very di�cult to char-
acterize and quantify in practice. Furthermore, each
type of pose error e�ect has been studied in isolation.
Multiple types of pose error in combination will inter-
act in a non-linear manner. Nevertheless, while its
limitations are acknowledged, the pose error model
employed here should form a suitable basis for un-
derstanding pose error e�ects and in selecting coun-
termeasures to deal with them.

4.3 Measurement Performance

The e�ects of pose error on measurement performance
(precision and sampling density) for a single viewpoint
are summarized at Table 3. Average measurement
performance is only slightly e�ected by second order
e�ects which will be small in most practical cases.
In the case of position error, average relative mea-

surement precision is slightly degraded due to the
quadratic variation of sensor precision with range.
On the other hand, average relative sampling den-
sity is slightly improved as the improvement at shorter

ranges slightly outweighs degradation at longer ranges.
However, the important statistic is measurement vari-
ance which is low to moderate. Unless taken into ac-
count, pose position error will degrade view planning
performance.

For axis orientation error, average relative measure-
ment precision is marginally improved as range to the
target is reduced. Average relative sampling density is
slightly degraded by o�-boresight and inclination an-
gle e�ects. Measurement variance is zero as a result
of symmetry. Thus, the net e�ect of axis orientation
error on measurement performance is low.

For twist orientation error, both average relative
measurement precision and average relative sampling
density are unchanged and the measurement variance
is zero due to symmetry. Considered in isolation, twist
orientation error has negligible e�ect on measurement
performance. However, note comments under visibil-
ity.

4.4 Visibility

Visibility or occlusion e�ects depend on several vari-
ables, only a few of which are restricted to the sensor
or positioning system. The most important sensor pa-
rameter is the length of the optical baseline. Fixed
for any given sensor, this parameter directly inu-
ences measurement performance, shadow e�ects and
the ability to observe the interior of cavities. It is
important to select a range camera with an optical
baseline appropriate to the modeling task.

Two other major factors impacting visibility are ob-
ject shape and relative sensor-object pose. The former
cannot be altered and varies from task to task. Se-
lecting appropriate sensor poses is the essence of view
planning.

Once a pose has been generated, selected and in-
cluded in the next-best-view list, pose error induced
by the positioning system will inuence actual visibil-
ity. In the case of pose position error, the visibility
impact will be low to nil. The exception could be the
case of surface regions being viewed at incidence an-
gles near threshold or close to occlusion. This e�ect
can be reduced by using conservative visibility tests in
measurability calculations.

Axis orientation error has the e�ect of causing a
wobble in the position of the optical transmitter and
receiver. The degree of wobble is determined by the
orientation error, the length of the optical baseline and
the position of the scan along the y-axis. E�ects are
similar to those generated by pose position error. Vis-
ibility impacts will generally be low for small axis ori-
entation error.
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On the other hand, twist orientation error has the
potential to signi�cantly degrade the reliability of vis-
ibility predictions as it results in leveraged movement
of the laser source and optical detector in a plane tan-
gential to the targeted object region. Very small twist
errors will have a minor impact in most imaging situ-
ations. However, moderate twist error can introduce
signi�cant occlusion problems with convoluted object
shapes. This is also the reason why optimizing the
twist component of pose is so important during gen-
eration of candidate viewpoints.

4.5 Sensor Coverage

The third component of pose error is its e�ect on sen-
sor coverage. This is particularly problematic as the
whole point of view planning is to generate an optimal
set of NBVs with speci�c coverage and measurability.
If actual viewpoint coverage is signi�cantly altered,
the entire view planning process is undermined and
can be rendered futile.

Pose error erodes the reliable coverage zone i.e. the
�eld of view and depth of view. The e�ects of pose
error on �eld of view erosion for a single viewpoint are
summarized at Table 4. Recall that �x is the sensor
�eld of view in the x-z plane and �2 = �x=2. Field
of view erosion e�ects are shown at Figure 10(e),(d)
and (f) for pose position, axis and twist error, respec-
tively. From these curves, we observe that all three
error components have a non-negligible impact on sen-
sor coverage. We can characterize the e�ects as low for
twist error, high for axis error and moderate-to-high
for position error. As expected, axis error is particu-
larly troublesome as the abbe e�ect ampli�es coverage
perturbations with stando� range.

Some depth-of-�eld erosion occurs with pose posi-
tion error. This is easily dealt with by a careful choice
of the stand-o� distance factor fd. Depth-of-�eld ero-
sion is negligible for pose orientation error.

4.6 Multiple Views

While the focus of this paper is on the e�ect of pose er-
ror on a single view, it is appropriate to briey address
the rami�cations of pose error on view plans consisting
of multiple views.

In most practical imaging situations, multiple view
plans involve a great deal of redundant coverage for a
variety of reasons:

� Shape-driven image overlap - The more complex
the geometry, the greater the number of views re-
quired to capture the shape. This naturally leads

to considerable image overlap around regions of
high shape complexity.

� Image-based registration overlap - Pose uncer-
tainty su�ciently large to require image-based
registration inherently requires image overlap and
therefore builds in redundancy.

� Non-optimal set covering algorithms - The set
covering problem is known to be NP-complete
[16]. Thus, any practical set covering algorithm is
sub-optimal, resulting in a view plan longer than
the theoretical lower bound. Longer view plans
equate to redundancy. Ironically, e�cient view
plans are more vulnerable to pose error e�ects.

� Coverage gain from pose error - This analysis has
focussed on coverage loss due to pose error with
a single view. However, where there is loss, there
is gain. With multiple views, some coverage gain
may partially o�-set coverage losses.

The advantage of the redundancy phenomena is that
it can mask most e�ects of low levels of pose error in
some cases. The phenomena is not amenable to easy
analytical treatment due to the large role played by
object shape and the fact that NBV sets are typically
small, such that composite coverage statistics are not
well behaved. Initial experimental results with mul-
tiple view sets show partial-to-complete masking of
pose error e�ects at low pose error levels, followed by
a rapid decrease in average coverage and rapid increase
in coverage variance as pose error further deteriorates.

The hidden problem with redundancy is that cover-
age results can be quite unpredictable. As the penalty
for coverage failure is typically high for object recon-
struction tasks3, the coverage unpredictability of pose
error on multiple view sets can be unacceptable.

4.7 Pose Error Countermeasures

A variety of countermeasures are available to deal with
positioning system error. The quantitative analysis of
this paper may assist in setting key parameters.

� Avoid the problem - Pose error e�ects are su�-
ciently deleterious that they are best avoided by
using the highest quality positioning system af-
fordable. A CMM or other high accuracy posi-
tioning system avoids many problems.

3The imaging team may have left the site or the object may
no longer be readily available by the time coverage gaps or mea-

surability de�ciencies are discovered.
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� Compatible system design - The speci�cation
and design of an object reconstruction system
should treat the camera and positioning system
as equally important components of an integrated
system. Trade-o�s in one impact the other.

� System modeling and calibration - Both the range
camera and positioning system must be regularly
calibrated. Good quality system models are es-
sential and parameters should be updated after
each calibration.

� Optimize stando� range selection - The stando�
range can be selected to avoid depth of �eld ero-
sion while optimizing measurement performance.

� Detune viewpoint generation - Detuning the phys-
ical dimensions of the sensor frustum during mea-
surability calculations decreases the probability of
measurability or coverage failure.

� Add image-based registration constraint [16] -
This has similar e�ects to frustum detuning. The
two constraints can be combined.

� Use conservative viewpoint testing - Make view-
point testing tolerant with respect to pose error
e�ects on occlusion and proximity to incidence
angle thresholds.

� Feed back control loop - Most positioning systems
are open loop - that is, they are commanded to
move to a speci�c pose and there is no control
mechanism to con�rm the �delity with which the
command was executed. It may be appropriate
to consider a closed loop control system to reduce
residual pose errors, perhaps through the use of
machine vision or photogrammetric adjuncts to
the positioning system.

Many of the foregoing countermeasures result in
lengthened view plans. This has associated costs in
scanning, registration and integration time and re-
sources. Consequently, there are further trade-o�s to
be made between all phases of the object reconstruc-
tion process.

4.8 Conclusions

Performance-oriented view planning commences with
a model speci�cation requiring views (range images)
to pass speci�c criteria for sampling precision and
density, visibility and frustum occupancy. Unfortu-
nately, positioning system errors negatively impact
all of these requirements, with the severity generally

being in the order of frustum occupancy, measure-
ment variation and occlusion. Additionally, pose error
imposes image-based registration constraints on view
plan generation. In turn, this increases the length of
the view plan and the time span of all associated model
reconstruction steps. Finally, collision avoidance plan-
ning is exacerbated by pose uncertainty.
Consequently, during view planning, we need to take

both sensor and positioning system error models into
account. It is clearly pointless to attempt subtle view
planning optimization beyond the precision of the po-
sitioning system. This paper has provided a qualita-
tive and quantitative analysis of pose error e�ects on a
common type of range camera. Based on this analysis,
countermeasures have been identi�ed to mitigate pose
error e�ects on object reconstruction.
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Measurement Pose Position Error Pose Axis Error Pose Twist Error
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Table 3: Single View Pose Error Measurability E�ects: Line-scan Sensor
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Table 4: Single View Pose Error Coverage E�ects: Line-scan Sensor

Condition

1 Symmetric image: Nx = Ny = N

2 Scan length optimized for even sampling in x and y: Ly = fdRo�x

3 Optimal stand-o� distance: z = fdRo

4 Measurements normal to the surface: �xz = �yz = 0

5 Measurements near sensor boresight: �xz = 0, x = y = 0

Table 5: Optimal Scanning Conditions: Line-scan Sensor
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Symbol De�nition

Prel Relative measurement precision (error vs. error-free)

Drel Relative sampling density (error vs. error-free)

TFrel Relative targeted footprint (error vs. error-free)

�p Pose position uncertainty standard deviation

�a Pose axis angle uncertainty standard deviation

�t Pose twist angle uncertainty standard deviation

Ro Optimum sensor scanning range

fd Sensor stando� distance factor fd = 1 + �, � � 1

�x Sensor �eld of view in the scanning plane

�2 �2 = �x=2

T�2 tan�2

Ly Sensor linear scan length along y-axis

Nx, Ny Number of range image samples in x- and y-axes

�xz Scan angle in sensor xz-plane

�xz, �yz Laser scanning ray incidence angles in xz- and yz-planes

px, py, pz Pose position error in x-, y- and z-axes

� Pose axis error cone half-angle

�[z] Normal distribution function �[z] = 1p
2�

R z

�1 e�u
2=2 du

Table 6: Key Symbols and De�nitions
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Figure 10: Pose Error E�ects
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