

NRC Publications Archive Archives des publications du CNRC

Monte Carlo investigation of refractive index gas thermometry uncertainties

Rourke, Patrick M.C.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23002736

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=552f6682-a6ea-41df-97ca-9cac4e9af953 https://publications-cnrc.canada.ca/fra/voir/objet/?id=552f6682-a6ea-41df-97ca-9cac4e9af953

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

NRC CNRC

Monte Carlo Investigation of Refractive Index Gas Thermometry Uncertainties

ABSTRACT

Refractive Index Gas Thermometry (RIGT) is a primary thermometry technique whereby the thermodynamic temperature of a working gas is determined via measurements of the refractive index of the gas. Monte Carlo calculations are presented for a microwave resonancebased RIGT arrangement under development at NRC, employing a quasi-spherical copper resonator and helium as the working gas.

Results indicate that RIGT could be a useful primary thermometry technique to supplement Acoustic Gas Thermometry (AGT) and Dielectric Constant Gas Thermometry (DCGT) thermodynamic temperature measurements between 25 K and 150 K.

Figure 1. Quasi-spherical microwave resonator & gas pressure vessel From Rourke (2014) [1]

INTRODUCTION

- Consultative Committee for Thermometry Working Group 4 (WG4) published consensus estimate of ITS-90 temperature deviation from thermodynamic temperature – Fischer (2011) [2]
- 24.5 K 77 K region: special interest
 - \succ Gap in AGT results of Pitre (2006) [3] Disagreement between AGT results of Pitre (2006) [3] and DCGT results of Gaiser (2010) [4]
- RIGT: similarities to both AGT & DCGT \Rightarrow tie-breaker?
- RIGT uncertainties: low enough to contribute meaningfully to $T T_{90}$? Treated at 1 standard deviation level in present work

Figure 2. Consensus estimate of ITS-90 temperature T_{90} deviation from thermodynamic temperature T From Fischer (2011) [2]

MAIN EQUATIONS

• Gas refractive index n_{expt} obtained experimentally, in which c_0 is the speed of light in vacuum and $<\xi_{corr}>$ is the average corrected microwave eigenvalue, as per Rourke (2014) [1]

$$n_{\text{expt}}^2 - 1 = \left\{ \frac{c_0}{2\pi \cdot \langle f + g \rangle(T)} \cdot \frac{\langle \xi_{\text{corr}} \rangle}{a_0(T) \cdot \left[1 - \frac{\kappa_{\text{T}}(T) \cdot p}{3}\right]} \right\}^2 -$$

• Copper isothermal compressibility κ_{T}

$$\kappa_{\mathrm{T}} = \frac{1}{B_{\mathrm{S}}} + \frac{9 \cdot \alpha_{\mathrm{L}}^{2}(\mathbf{T}) \cdot \mathbf{T} \cdot a_{0}^{3}(\mathbf{T})}{\rho_{\mathrm{Cu}}(\mathbf{T} = 293 \text{ K}) \cdot c_{\mathrm{p}}(\mathbf{T}) \cdot a_{0}^{3} (\mathbf{T} = 293 \text{ K})}$$

Gas pressure p virial equation in terms of the molar gas density ρ

$$\boldsymbol{p} \approx RT \cdot \left[\rho + B_{\rho}(\boldsymbol{T}) \cdot \rho^{2} + C_{\rho}(\boldsymbol{T}) \cdot \rho^{3} + D_{\rho}(\boldsymbol{T}) \cdot \rho^{4} \right]$$

• Gas pressure virial equation inverted by iterative substitution, as per Moldover (1998) [5], to get the molar gas density ρ in terms of the gas pressure p

$$\rho \approx p \left/ \left\{ RT + \frac{B_{\rho}(T) \cdot p}{\left[1 + \frac{B_{\rho}(T) \cdot p}{RT + B_{\rho}(T) \cdot p} + \frac{C_{\rho}(T) \cdot p^2}{RT(RT + 2B_{\rho}(T) \cdot p)} \right]} + \frac{C_{\rho}(T) \cdot p^2}{RT + 2B_{\rho}(T) \cdot p} + \frac{D_{\rho}(T) \cdot p^3}{R^2 T^2} \right\} \right)$$

Gas relative magnetic permeability μ_r virial equation

$$(\mu_{\rm r}-1)/(\mu_{\rm r}+2) \approx A_{\mu}\rho$$

• Gas relative dielectric permittivity ε_r virial equation

$$(\varepsilon_{\rm r} - 1)/(\varepsilon_{\rm r} + 2) \approx A_{\varepsilon}\rho + B_{\varepsilon}(T) \cdot \rho^2 + C_{\varepsilon}\rho^3$$

• Gas refractive index n_{calc} obtained theoretically

 $n_{\text{calc}}^2 - 1 = (\mu_{\Gamma} \varepsilon_{\Gamma}) - 1$

PARAMETER VALUES AND UNCERTAINTIES

- Input temperature *T* uncertainty (temperature stability & ITS-90) realization) set to 0.2 mK
- Pressure *p* uncertainties from NRC's CMCs (k = 1)
 - \succ 5 kPa 350 kPa: 1.00 × 10⁻⁵ relative uncertainty
 - \geq 350 kPa 1750 kPa: 1.80 \times 10⁻⁵ relative uncertainty
 - \succ 1750 kPa 7000 kPa: 2.50 \times 10⁻⁵ relative uncertainty
- Average half-width-corrected microwave frequency < f + g >uncertainty and resonator vacuum radius $a_0(T)$ values & uncertainties from cubic spline interpolation of Rourke (2014) [1] experimental measurements
- OFHC copper material parameters contributing to the r isothermal compressibility κ_{T} : adiabatic bulk modulus B_{s} , linear thermal expansion coefficient $\alpha_{\rm L}$, specific heat at constant pressure $c_{\rm p}$, and density at 293 K $\rho_{\rm Cu}(T = 293 \text{ K})$ – values & uncertainties from Simon (1992) [6]
- $\succ \kappa_{\rm T}$ uncertainty dominated by uncertainty in $B_{\rm s}$
- Molar gas constant R = 8.3144621(75) J mol⁻¹ K⁻¹ from CODATA (2010)
- Helium gas density virial coefficients $B_0(T)$, $C_0(T)$, $D_0(T)$ values & uncertainties from cubic spline interpolation of Shaul (2012) [7]
- Helium gas diamagnetic virial coefficient $A_{\mu} = 4\pi \chi_0 / 3 = -0.000007921(4) \text{ cm}^3 \text{ mol}^{-1} \text{ from Bruch (2000) [8]},$
- following treatment of Moldover (2014) [9]
- Helium gas molar polarizability in the limit of zero density $A_{c} = 0.51725419(10) \text{ cm}^{3} \text{ mol}^{-1}$ from Lach (2004) [10], following treatment of Moldover (2014) [9]
- Helium gas dielectric virial coefficient $B_{\epsilon}(T)$ from 5th-order polynomial fit Rizzo (2002) [11] calculated table values; uncertainties are quadrature combinations of 3 sources
 - \blacktriangleright Rizzo's expectation of convergence to within 0.1%
 - Digital display uncertainty for Rizzo table values printed to 4 decimal places without printed uncertainties
 - $> 5.4 \times 10^{-5}$ cm⁶ mol⁻² standard deviation of 5th-order polynomial fit residuals
- Helium gas dielectric virial coefficient $C_c = -0.6(4)$ cm⁹ mol⁻³ from averaging several experimental [12-15] and calculated [16] values at different temperatures; uncertainty from standard deviation of these values

 \succ Roughly *T*-independent, at least within published uncertainties

Figure 3. Relational diagram of RIGT equation parameters Parameters with yellow backgrounds are sampled via Monte Carlo trials

MONTE CARLO CALCULATION DETAILS

For each input parameter at a given (*T*, *p*, microwave mode) point: • Input parameter Gaussian distribution sampled 100,000 times • Resulting $n^2 - 1$ standard deviation translated to a thermodynamic temperature T_{therm} distribution to get δT_{therm} , using relationship between *T* distribution width and $n_{calc}^2 - 1$ distribution width

Calculated at various temperatures and gas pressures, for TM11 microwave mode

RESULTS

Tempe

CAVEATS

CONCLUSION

Microwave refractive index gas thermometry uncertainties within the current NRC approach, while not competitive with those of AGT [3], are likely to be small enough between 25 K – 150 K to allow useful measurements of thermodynamic temperature in this regime, to complement those made by AGT and DCGT.

REFERENCES

Dr. Patrick M.C. Rourke

National Research Council Canada Ottawa, Ontario, K1A 0R6, Canada

Measurement Science and Standards

 RIGT thermodynamic temperature uncertainties dominated by uncertainties in gas pressure p and, at higher temperatures, resonator compressibility KT

• Best overall uncertainties obtained when $p \le 350$ kPa

• Results for microwave modes TE11, TM12, TE12 and TM13 (not shown) similar to TM11, with increased uncertainty contributions from a_0 and < f + g >

ature	Gas pressure p	Gas density ρ	<i>δT</i> _{therm} quadrature sum
K	350 kPa	1700 mol/m ³	0.32 mK
K	350 kPa	840 mol/m ³	0.57 mK
K	350 kPa	560 mol/m ³	0.88 mK
K	350 kPa	280 mol/m ³	2.4 mK
K	350 kPa	190 mol/m ³	6.5 mK
K	350 kPa	140 mol/m ³	17 mK

Table 1. Best RIGT Monte Carlo quadrature sum thermodynamic temperature uncertainties

For TM11 microwave mode

• Gas composition impurities, pressure head, thermomolecular pressure correction, pressure gradients along gas flow path, resonator thermal gradients, or any other systematic effects not yet included in calculations \Rightarrow may increase the overall T_{therm} uncertainty • δT_{therm} calculated at a single (ρ , T, microwave mode) combination at a time \Rightarrow overall T_{therm} uncertainty may be reduced by averaging multiple measurements across modes, along isotherms, etc. • Special efforts to push p uncertainty below NRC CMCs may reduce overall T_{therm} uncertainty

[1] P.M.C. Rourke & K.D. Hill, Int. J. Thermophys. **36**, 205 (2014) [2] J. Fischer *et al.*, Int. J. Thermophys. **32**, 12 (2011) [3] L. Pitre *et al.*, Metrologia **43**, 142 (2006) [4] C. Gaiser *et al.*, Int. J. Thermophys. **31**, 1428 (2010) [5] M.R. Moldover, J. Res. Natl. Inst. Stand. Technol. **103**, 167 (1998) [6] N.J. Simon *et al.*, NIST Monograph 177 (1992) [7] K.R.S. Shaul *et al.*, J. Chem. Phys. **137**, 184101 (2012) [8] L.W. Bruch & F. Weinhold, J. Chem Phys. **113**, 8667 (2000) [9] M.R. Moldover *et al.*, Metrologia **51**, R1 (2014) [10] G. Lach *et al.*, Phys. Rev. Lett. **92**, 23301 (2004) [11] A. Rizzo *et al.*, J. Chem. Phys. **117**, 2609 (2002) [12] E.C. Kerr & R.H. Sherman, J. Low Temp. Phys. 3, 451 (1970) [13] S. Kirouac & T.K. Bose, J. Chem. Phys. **64**, 1580 (1976) [14] M. Lallemand & D. Vidal, J. Chem. Phys. 66, 4776 (1977) [15] M.P. White & D. Gugan, Metrologia **29**, 37 (1992) [16] D.F. Heller & W.M. Gelbart, Chem. Phys. Lett. 27, 359 (1974)

