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Abstract

We present optical, near-infrared, and mid-infrared imaging of the host galaxy of FRB 121102 with the Gemini
North telescope, the Hubble Space Telescope, and the Spitzer Space Telescope. The FRB 121102 host galaxy is
resolved, revealing a bright star-forming region located in the outskirts of the irregular, low-metallicity dwarf
galaxy. The star-forming region has a half-light radius of 0.68 kpc (0720), encompassing the projected location of
the compact (<0.7 pc), persistent radio source that is associated with FRB 121102. The half-light diameter of the
dwarf galaxy is 5-7 kpc, and broadband spectral energy distribution fitting indicates that it has a total stellar mass
of M, ~ 108 M. The properties of the host galaxy of FRB 121102 are comparable to those of extreme emission
line galaxies, also known as hosts to some hydrogen-poor superluminous supernovae and long-duration v-ray
bursts. The projected location of FRB 121102 within the star-forming region supports the proposed connection of

FRBs with newly born neutron stars or magnetars.

Key words: galaxies: dwarf — galaxies: star formation — gamma-ray burst: general — supernovae: general

1. Introduction

Over a decade ago, Lorimer et al. (2007) presented the
discovery of a millisecond-duration radio transient whose large
dispersion measure suggested an extragalactic origin. Since
then, the discovery of a population of fast radio burst (FRB)
sources (e.g., Thornton et al. 2013; Spitler et al. 2014; Masui
et al. 2015) has fueled questions pertaining to both their
physical origin and whether they can be used as probes of the
intervening (inter-)galactic material. Many theoretical models
have been proposed, including those that invoke a cataclysmic
event, and those in which repeated bursts from the same source
are possible. Regardless, the FRB phenomenon has generated
great interest because the short durations and cosmological
distances necessarily imply sites of extreme energy density.

The detection of polarization, Faraday rotation, and
scintillation in some FRBs has given clues about their origin
—in some cases suggesting that they originate from dense and
highly magnetized environments like those of a supernova
remnant (Masui et al. 2015). The discovery of repeated radio
bursts from FRB 121102 immediately ruled out cataclysmic
progenitor models—at least for this particular source (Scholz
et al. 2016; Spitler et al. 2016). However, deep campaigns to
search for repeat bursts from other known FRB positions have
thus far detected no other repeaters (Petroff et al. 2015),
suggesting perhaps that there is more than one class of FRB

progenitor within the sample of 22 known sources (Petroff
et al. 2016).

In a practical sense, the repetition of FRB 121102 greatly
facilitates follow-up and precision localization. Monitoring of
the FRB 121102 field using the Very Large Array in a fast-
dump recording mode (Law et al. 2015) led to a sub-arcsecond
localization of the radio bursts and the discovery of the optical
host galaxy and a persistent radio counterpart (Chatterjee et al.
2017). Very long baseline interferometry (VLBI) using Arecibo
and the European VLBI Network (EVN) constrained the source
of the FRB 121102 bursts and the position of the persistent
radio source to be within 12 mas from each other (Marcote
et al. 2017). This led to the conclusion that the source of the
FRB 121102 bursts has a direct physical link to the source of
the persistent radio emission, e.g., the burst source could be
embedded in a radio-bright nebula. Spectroscopy of the optical
host galaxy identified it as a low-mass, low-metallicity dwarf
galaxy at redshift z = 0.193 (Tendulkar et al. 2017), constitut-
ing the first unambiguous identification of an FRB host and its
precise distance.

A tantalizing clue resulting from the identification of the host
galaxy of FRB 121102 is that similar dwarf galaxies are known
to host some long-duration 7-ray bursts (LGRBs; Modjaz et al.
2008) and hydrogen-poor superluminous supernovae (SLSN-I;
Lunnan et al. 2014). This could suggest an evolutionary link, in
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which the sources of FRB events are born at the times of
LGRBs and SLSN-I, with FRBs originating from young
neutron stars or magnetars resulting from these explosions
(Piro 2016; Beloborodov 2017; Kashiyama & Murase 2017;
Metzger et al. 2017).

In this Letter, we present multi-band optical and infrared (IR)
imaging of the host galaxy of FRB 121102 with the Gemini
North telescope, the Hubble Space Telescope (HST), and the
Spitzer Space Telescope. Results from these observations
improve upon the properties of the FRB 121102 host galaxy
that we presented in Tendulkar et al. (2017). In Section 2, we
report on the observations and analysis. The morphology,
environment, and properties of the host galaxy are presented in
Section 3. We discuss our results in Section 4.

2. Observations and Analysis
2.1. Hubble Space Telescope

We acquired HST imaging observations of the FRB 121102
field on 2017 February 23 using the WFC3/UVIS and WFC3/
IR cameras (data sets IDE601010, IDE601020, IDE601030,
and IDE601040). We chose the F763M and F845M filters to
cover the redshifted Ha emission line and the continuum
redward of Ha. In the near-IR we used the F110W and F160W
filters, which are comparable to the J (1.1 um) and H (1.6 pm)
bands. The exposure times were 1940s (F763M), 2560 s
(F845M), 1797 s (F110W), and 1197 s (F160W). We used
4-point dither patterns appropriate for the UVIS and IR
cameras to improve the sampling of the point-spread function
(PSF) and to mitigate cosmic rays and hot pixel issues.

The data were processed through STScI’s drizzlepac
package (Gonzaga et al. 2012; Avila et al. 2015) to drizzle and
mosaic the images. The final resolution was chosen to include
2.5 drizzled pixels in the FWHM of the PSF appropriate for
each wavelength. The images were combined with optimal
weighting proportional to inverse of the pixel variance (i.e.,
IVM weighting). The drizzlepac pipeline also produced
pixel weight images for each filter. Each drizzled and
mosaicked image was astrometrically matched to the Gaia
DRI1 catalog (Gaia Collaboration et al. 2016). The rms
residuals of the astrometric calibration were 8-9 mas for each
image, using of order 50 (80) Gaia standards for the IR (UVIS)
images. We performed photometry on the reduced images
using the Source Extractor package (Bertin & Arnouts
1996), generating isophotal aperture magnitudes, corrected for
blending. We used AB magnitude zero-points for each filter as
defined by STScL.'® The Source Extractor catalogs were
then merged with photometry in other filters.

2.2. Spitzer Space Telescope

We acquired Spitzer IRAC (Fazio et al. 2004) observations
of FRB 121102 on 2017 January 4 with the 3.6 and 4.5 um
bands (Obs ID 62322432). The observation was split into 100
dithered exposures of 100s for each band. The data were
processed through the MOPEX software using the mosaicking
and the multi-frame point-source extraction pipeline. We used
the detected source catalog from the HST F160W image as
input to the pixel response function fitting photometry and

1% hitp: / /www.stsci.edu /hst/wic3 /analysis /uvis_zpts for UVIS and hitp://
www.stsci.edu/hst/wfc3/ir_phot_zpt for IR.
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source extraction routine. The positions of the sources were
held fixed while the fluxes were fit.

2.3. Gemini

Imaging observations of the host galaxy of FRB 121102 were
obtained with the Gemini Multi-Object Spectrograph (GMOS) on
the 8m Gemini North telescope atop Mauna Kea, Hawai’i
(program GN-2016B-DD-2). On 2016 December 29 we obtained
deep exposures in g’ (12 x 300s) and in #' (6 x 2505s). The
conditions during these observations were photometric, with the
seeing varying between 076 and 0”8. The GMOS images were
read out with 2 x 2 binning, yielding a pixel scale of 0”146.
These observations are in addition to the deep r/, i/, and z’
imaging presented in Tendulkar et al. (2017), and were bias-
corrected, flat-fielded, registered, and co-added in an identical
manner.

All co-added GMOS images were astrometrically calibrated
against Gaia standards, using 40-50 unblended stars and
yielding rms residuals of 9—10 mas. Instrumental magnitudes of
objects on the co-added GMOS images were determined
through isophotal aperture photometry with Source
Extractor (Bertin & Arnouts 1996). The instrumental
magnitudes were calibrated directly to the AB system with
photometry from Pan-STARRS 1 DR1 (Chambers et al. 2016;
Magnier et al. 2016). Due to the similarity between the GMOS
and Pan-STARRS filters, no color terms were required, and we
fitted only zero-point offsets.

3. Results

The drizzled WFC3 images obtained in the F110W and
F160W bands show that the object identified by Chatterjee
et al. (2017) and Tendulkar et al. (2017) as the host galaxy of
FRB 121102 consists of a compact and bright knot, offset from
diffuse emission (Figure 1). We obtain isophotal aperture
magnitudes of the host galaxy (both the knot and diffuse
emission) of mgiow = 23.675(12) and mg 60w = 23.31(3) in
the AB system. In the lower-resolution GMOS images, these
two components are blended, yielding isophotal aperture
magnitudes (AB system) of g’ = 25.85(12), r’ = 25.46(14),
i" = 24.75(9), and z’ = 24.30(13). In the Spitzer images, the
host galaxy flux was measured to be 1.03 £ 0.19 pJy and <0.9
wJy (60) in the 3.6 pm and 4.5 pm bands, respectively.

Our r’- and i’-band magnitudes for the host galaxy of
FRB 121102 are fainter by 0.4 and 0.9 mag compared to what
we obtained in Tendulkar et al. (2017). We attribute this
difference to an error in the aperture photometry reported in
Tendulkar et al. (2017). As a result of the overestimated
brightness of the host, the WFC3 UVIS exposure times were
underestimated, unfortunately leading to low signal-to-noise
ratios in the F763M and F845M images. Only the knot is
detected at 5o in the F763M image. We note though that the
flux scale of the GMOS spectrum of the FRB 121102 host
galaxy of Tendulkar et al. (2017) is is correct, as this was
scaled to the i’-band magnitude of the reference star, which was
not affected by the error in the aperture photometry.

The high spatial resolution of the F110W and F160W images
allows us to confirm our hypothesis we suggested in Tendulkar
et al. (2017); we identify the knot as a star-forming region
responsible for the observed emission line spectrum, while
the diffuse emission corresponds to the underlying stellar
population of the FRB 121102 host galaxy. The flux from the
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(H) images (both 5" x 5") and the Spitzer 3.6 um image (20" x 20”, bottom row). North is to the top and east to the left. The GMOS images have been smoothed
with a Gaussian with a width of 07 1. We fit the centroid and half-light radius of both the bright knot and extended diffusing emission using the F110W image. These
centroids and half-light radii are denoted by the red circle and the large blue ellipse, respectively, in each frame. Contours are overlaid on the F110W and F160W
images to indicate the extent of the host galaxy. The white circle denotes the position of the reference star while the white cross in the GMOS and HST/WFC3 images
denotes the location of FRB 121102 and the associated persistent radio source by Marcote et al. (2017) at 5 GHz (0.6 mas uncertainty, smaller than the symbol).

star-forming knot in the r' and i’ bands is dominated by the
bright emission lines of Ho, HB, [O 1] A4959, and [O 1]
A5007. As a result, the position and extent of the host galaxy,
as we determined in Tendulkar et al. (2017), reflects the
differing contributions of the star-forming knot compared to
the rest of the host galaxy. The emission from the knot in the
F110W and F160W bands is expected to contain emission lines
of [S11] 0.907 pm, [S11] 0.953 pm, Hel 1.083 um, Pad, Pav,
and Paf (Martins et al. 2013; see also Figure 2), explaining its
brightness compared to the diffuse emission.

In the remainder of the Letter, we use cosmological parameters
from Planck Collaboration et al. (2016) as implemented in
astropy.cosmology (Astropy Collaboration et al. 2013).

3.1. Morphology

We determine the position and extent of the star-forming
complex (the knot) and the underlying stellar population in the
drizzled F110W image by modeling and jointly fitting them as
two-dimensional Gaussian or Moffat (Moffat 1969) profiles.
We find that the ellipticity of the knot is close to unity, so we fit
it with a circular Moffat function instead. The knot has a radius
of o = 0724(1), significantly larger than the radius of the
stellar PSF, for which a Moffat fit yields radii of o = 0”165.
The diffuse emission appears irregular in the near-IR images
(Figure 1). For simplicity, we fit the stellar population with a
Gaussian profile, which yields a semimajor axis of
o, = 0766(3) with b/a = 0.40(2), and a position angle of
66°. Transferring the position of the knot and the diffuse
emission to the F160W image and keeping the positions fixed,
we find comparable results for the position and size of the star-
forming region. The diffuse emission prefers a larger
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Figure 2. Spectral energy distribution (SED) for the host galaxy of
FRB 121102. Photometric measurements or upper limits from Gemini, HST,
and Spitzer are indicated with black dots or a downward arrow, with the
respective bandpasses indicated at the top. The stellar and nebular (from star
formation) components making up the total emission of the SED fit are shown
in different colors. The predicted model fluxes are shown with open squares.

semimajor axis of o, = 0785(3) and a smaller ellipticity
of b/a = 0.36(2).

We estimate the intrinsic radius of the knot as the quadratic
difference of the observed radius and that of the stellar PSF.
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The resulting half-light radius corresponds to an HWHM
(Gaussian HWHM, 1.17740) of 0720(1). At a redshift of
z = 0.193, an angle of 1” corresponds to a projected distance of
3.31 kpc, hence the half-light radius is 0.68(3) kpc. Under the
assumption that the diffuse emission due to the underlying
stellar population can be represented by a Gaussian (which,
given the irregular nature of dwarf galaxies may not be valid),
the knot is located 0”57 (1.9 kpc) from the nominal centroid of
the diffuse emission, which itself has a half-light diameter
(Gaussian FWHM) between 1”5 and 2”0 (5 to 7 kpc). The
higher spatial resolution and greater depth of the HST
observations improve upon the <4 kpc diameter we estimated
in Tendulkar et al. (2017). The centroid of the knot, as
measured in the drizzled F110W image, is located at
a0 = 05"31M5856980(8),  Syaoo0 = +33°08/527671(10).
This position is consistent with that determined from the 5S¢
detection of the knot in the F763M image, as well as the
F160W image. The milliarcsecond-precision location of the
persistent radio source at 5 GHz with the EVN, and with it
the source of the radio bursts (Marcote et al. 2017), is offset
from the center of the star-forming region by 07055(14) or
0.18(5) kpc, but located within the nominal half-light radius of
the star-forming region. The nearby reference star is located at
a0 = 05"31m5856180(8), dya000 = +33°087497831(1).

3.2. Spectral Energy Distribution (SED) Fitting

We use our multi-wavelength photometry to model the SED
of the host galaxy of FRB 121102 with the CIGALE'” software
(Noll et al. 2009; Serra et al. 2011). We fit an underlying older
stellar population with a recent burst of star formation. Figure 2
shows the resulting SED. One of the largest sources of
uncertainties is the foreground Galactic extinction. We used
both the Schlegel et al. (1998) and Schlafly & Finkbeiner
(2011) foreground extinction values and found no appreciable
differences in our best-fitting SED and derived parameters, and
we report results using the Schlegel et al. (1998) Galactic
extinction correction. We find that the host has negligible
internal dust extinction, as expected for a metal-poor dwarf
galaxy. Our best value for the recent star formation (averaged
over the last 10 Myr) is 0.13(4) M, yr'. This value does not
fully capture the current star formation as measured directly
from the Ha luminosity determined from spectroscopy
(0.23 M., yr' from Tendulkar et al. 2017, with no internal
extinction correction), but is roughly consistent. We find a
stellar mass of M, = (1.3 &= 0.4) x 108 M., which corre-
sponds to a mass-to-light ratio of ~0.6 in the ' band. The
stellar mass is dominated by the older stellar population and so
is insensitive to the exact details of the recent star formation.
However, we note that the inherent uncertainties in determining
the stellar mass from SED fitting are at least a factor of two
(Pforr et al. 2012). The stellar mass is somewhat larger, but is
consistent with the ~(4-7) x 10’ M, we estimated in
Tendulkar et al. (2017).

3.3. Metallicity

In Tendulkar et al. (2017) we placed rough constraints on the
metallicity of the host galaxy using the measured emission
lines. These constraints suffered from the fact that [O 1] \3727
and [O 1] A4363 were outside our wavelength coverage. Here

17" Available at http://cigale.lam.fr/.

Bassa et al.

we use the HIT-CHI-mistry'® software (Pérez-Montero
2014) to obtain a more robust constraint on the metallicity of
the host galaxy. This software uses grids of photoionization
models to derive abundances consistent with the direct method,
or T, method, wherein the electron temperature of the gas is
constrained by measuring the ratio between the [O III] A\4363
and [O 1] A5007 lines. By assuming empirical laws between
O/H, N/O, and the ionization parameter log U, it provides
reasonable metallicities even when the temperature sensitive
[O 1] A4363 line is not present, as is the case for our spectrum.
Using either the 30 upper limit for [N 1] A6584 or a tentative
~1.70 detection, we find 12 + log,,([O/H]) = 8.0 £ 0.1.
While there are inherent uncertainties in the metallicity of the
host galaxy without the measurement of more lines, we can
confirm it is a low-metallicity galaxy.

3.4. Star Formation Rate (SFR)

In Tendulkar et al. (2017), we use the Galactic extinction-
corrected Ho emission line flux to estimate an SFR of
0.23-0.4 M, yr ', with the lower value uncorrected for internal
extinction and the upper value with a correction applied. Due to
the negligible dust content of low-metallicity dwarf galaxies,
the internal extinction in the host galaxy of FRB 121102 is low
(Kokubo et al. 2017), and thus we adopt the uncorrected Ho
SFR of 0.23 M. yr ' as the best estimate. This value is also
more in line with the lower SFR derived from the SED fitting
of 0.12 M, yr .

This star formation will also be observable in the radio
continuum, which has the advantage of being unaffected by
dust obscuration from the Galactic plane. Using the relation
between SFR and 1.4 GHz radio luminosity from Murphy et al.
(2011), the Ha-derived SFR corresponds to 3 pJy. From
Chatterjee et al. (2017), the VLA 14GHz flux is
250 £ 39 pJy; however, this includes flux not only from star
formation, but also from the persistent radio source that is
embedded within the star-forming region. The HST imaging
shows the star-forming region confined to a region of ~072 in
radius, scales that are resolved out in the EVN observations
presented in Marcote et al. (2017). These EVN observations
show that the persistent radio source flux at 1.7 GHz varies
between 168 and 220 pJy, with flux calibration uncertainties of
the order of 20%. The VLA and EVN fluxes are compatible
within a few pJy of flux associated with star formation.

The star-forming knot is barely resolved in the HST images,
so we have no detailed information about its internal structure.
We expect the star-forming complex to be composed of a
number of individual, unresolved, star-forming regions. Giant
molecular clouds found in the LMC (Hughes et al. 2010) and
interacting Antennae galaxies (Zaragoza-Cardiel et al. 2014)
reach 100 pc or more in size. A few of such GMCs in close
proximity to each other would be sufficient to produce such a
star-forming region.

3.5. Environment of the FRB 121102 Host Galaxy

We have made a crude estimate of the environment of the
FRB host galaxy, using the HST F110W (J-band) image. First
we count the number of objects within a fixed-radius aperture
of 15”5, corresponding to a radius of 50 kpc at the redshift of
the host galaxy, centered on the location of the FRB. This is

'8 Available at http://www.iaa.es/~epm/HII-CHI-mistry.html.
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large enough to encompass the immediate and extended
environment of the FRB host galaxy.

As galaxy clustering strength is a function of galaxy mass,
with more massive galaxies being more strongly clustered than
low-mass galaxies (Zehavi et al. 2002), we select other objects
in the image within £0.15 mag of the FRB host magnitude, but
outside the FRB host aperture. At these faint magnitudes, the
objects will either be dwarf galaxies like the FRB host (albeit at
unknown redshifts), or very high redshift, more massive
galaxies. We place the same 15”5 aperture around each of
these magnitude-matched galaxies and count the number of
objects to use as control regions. No attempt to remove
foreground stars has been made, as it is assumed to be
qualitatively the same for every aperture and will thus
cancel out.

For the HST J-band image, there are 30 objects within the
15”5 aperture to J < 26.5 for both the FRB and 31 control
regions, but their distribution in radius is different. From the
cumulative number counts, the FRB region is more centrally
concentrated, with 18 objects within 10” compared to a median
value of 14 & 4 in the control regions. Beyond this radius, the
cumulative number count distributions are the same for the
FRB and control regions. Thus, on small (<50 kpc) scales,
there is a marginal hint of an overdensity centered on the FRB
host galaxy. On larger scales, the environment is typical of
other objects with the same apparent magnitude. The irregular
morphology of the host galaxy is consistent with past or
ongoing interactions.

4. Discussion and Conclusions

We present optical, near-IR, and mid-IR imaging that
improves on the ground-based imaging presented in Tendulkar
et al. (2017) and resolves the host galaxy of FRB 121102,
revealing a bright knot of star formation located in the outskirts
of an irregular (5-7kpc half-light diameter), low-mass
M, ~ 108M,), low-metallicity (12 + log,,([O/H]) = 8.0)
dwarf galaxy. The persistent radio source that is coincident
with the FRB (Chatterjee et al. 2017; Marcote et al. 2017) is
located within the 0.68 kpc half-light radius of the star-forming
region. Recent high spatial resolution Ha observations confirm
the coincidence of FRB 121102 with the star-forming region in
its host galaxy, and yield similar estimates of the size of the
star-forming region and the offset of the FRB with its centroid
(Kokubo et al. 2017).

The separation of the underlying stellar population of the
FRB 121102 host galaxy from the star-forming region allows
us to update our estimate of the dispersion measure (DM) that
can be attributed to the Ha emitting gas. Following our
derivation in Section 4.3 of Tendulkar et al. (2017), the smaller
size of the star-forming region increases the Ha surface density
by a factor of 3.3. As a result, the maximum host DM depth
increases by a factor of 1.8 to DMy < 589 pe cm 3 Lﬁp/f
(with Lrrp < Lipc), consistent with the estimate derived by
Kokubo et al. (2017).

As we already noted in Tendulkar et al. (2017), with its low
mass, low metallicity, and strong emission lines, the host
galaxy of FRB 121102 shows many similarities with a class of
star-forming galaxies known as extreme emission line galaxies
(EELGs; Atek et al. 2011; van der Wel et al. 2011). The HST
imaging reveals that the morphology of the host galaxy, an
underlying disturbed stellar population dominated by a
compact star-forming region, is consistent with the cometary
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or tadpole shapes of EELGs (Amorin et al. 2015). The one
possible contrasting metric is that we find the FRB host to be in
a region of average or slightly high density, whereas EELGs
are generally found in underdensities (Amorin et al. 2015).

The EELG galaxy classification encompasses several sub-
classes of galaxies found in the literature. At the low-mass end
of the EELG population are compact and ultracompact blue
dwarf galaxies (CBDs, UCBDs; Thuan & Martin 1981; Corbin
et al. 2006). HST imaging of a sample of very low redshift
UCBDs reveals remarkable similarities to the FRB host galaxy,
showing objects with diffuse, irregular structure, punctuated by
compact regions of intense star formation spanning tens to
hundreds of parsecs, offset from the galaxy center (Corbin et al.
2006). We note that the specific SFR (sSFR; SFR divided by
stellar mass) and metallicity of the FRB host are comparable to
those of high-redshift (z ~ 5) Lyman break galaxies (LBGs;
Greis et al. 2016). This indicates that galaxies similar to the
repeating FRB host were common in the early universe, so we
might expect similar FRBs at higher redshifts.

Of particular interest are the hydrogen-poor superluminous
supernovae (SLSN-I), which preferably occur in EELGs
(Leloudas et al. 2015; Perley et al. 2016). There is some
disagreement as to whether the SLSN-I hosts are also drawn
from the same galaxy pool as the hosts of long-duration ~-ray
bursts (LGRBs), with some authors finding the hosts similar
(Lunnan et al. 2014) and others finding differences (Angus
et al. 2016). In general, the half-light radius and SFR of the
knot appears more in line with those of SLSN-I than perhaps
LGRBs, as the latter tend to be larger in size and have higher
star formation (Lunnan et al. 2015; Angus et al. 2016).

The locations of SLSN-I are found to trace the UV light of
their host galaxies (Lunnan et al. 2015), though less so than
LGRBs, which strongly prefer the bright, inner regions of their
hosts (Blanchard et al. 2016). The coincidence of FRB 121102
with the star formation complex, which is the brightest part of
its host galaxy, further strengthens the resemblance between
FRBs and SLSN-I/LGRBs. It is not yet clear whether the
resemblance is one of low-metallicity star-forming environ-
ment or from the sources born from that environment.
Regardless, this observed coincidence is supported by models
of magnetar birth (Kasen & Bildsten 2010; Woosley 2010),
which are believed to be born in the collapse of massive stars.
This could suggest an evolutionary link, in which neutron stars
or magnetars are born as LGRB or SLSN-I and evolve into
FRB-emitting sources (Piro 2016; Beloborodov 2017;
Kashiyama & Murase 2017; Metzger et al. 2017; Omand
et al. 2017). Volumetric rate estimates of star-forming dwarf
galaxies, along with SLSN-I, LGRB, and FRB rates by Nicholl
et al. (2017) and Law et al. (2017), indicate broad consistency.

The coincidence of FRB 121102 with a star-forming region
—in a host galaxy that is similar in type to those preferentially
hosting SLSN-I and LGRBs—suggests that targeted searches
for radio bursts or compact persistent radio counterparts,
similar to that of FRB 121102, can be a valuable new approach
to complement ongoing, wide-field searches for FRBs. The
discovery of even a single FRB source in such a targeted search
would greatly strengthen the evolutionary connection already
suggested by FRB 121102.
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