| hd |

NRC Publications Archive
Archives des publications du CNRC

Programming support for a small research computer
Pulfer, J. K.; Wein, M.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOl ci-dessous.

Publisher’s version / Version de I'éditeur:

https://doi.org/10.4224/21277229

Report (National Research Council of Canada. Radio and Electrical Engineering
Division : ERB), 1968-11

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=6c587f47-26bb-4564-967e-b87ef720b4c1
https://publications-cnrc.canada.ca/fra/voir/objet/?id=6¢c587147-26bb-4564-967e-b87ef720b4c1

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research Conseil national de
Council Canada recherches Canada Canada

ERB-794 .

UNCLASSIFIED

ALz

PROGRAMMING SUPPORT FOR A SMALL RESEARCH COMPUTER

J. K. PULFER AND M. WEIN

CN L.OAM

frah .

National Regeanrch Courdl
Kadio & BB Divickn

Document Contol Seation

OTTAWA
NOVEMBER 1968

ABSTRACT

A set of programs is described which convert a
small process control computer into an instrument
for research in computer usage problems. The authors
attempt to give an over-all view of the programming
support which it is hoped will provide a background
to aid the understanding of the more complex pro-
grams used in man-machine communication research.

Wy

B

PREFACE

This report is one of a series describing programming support for a digital computer
used by the Radio and Electrical Engineering Division. The computer, Model 840A,
manufactured by Systems Engineering Laboratories Inc., is being employed as a tool for
research in computer usage problems. It is not used for computation or for scientific or
business data processing. Specific areas of interest include: man-machine communications
using graphical CRT displays, time sharing and multiprogramming problems on small com-
puters, analysis and synthesis of sound including speech and music, three-dimensional
graphic construction and manipulation, and the production of animated films.

The purpose of this report is to provide background to readers not familiar with
system software, to enable them to make the most use of the detailed program descriptions
available in other reports.

The programs described in this report were, for the most part, supplied by the computer
manufacturer.

CONTENTS

Page

Introduction L L L .. 1
Hardware. 2
IJOBus e e e e e e 2
BTCBus ¢ 5455 o5& s ¥ 5 3 35 33 53 2
Interrupt Bus & 2 % 3 w oW & % ¥ K 5 5 WoEm o 5 3 2
System Software 5
Load and Dump Programs 5
The Unit Record Programs 7
Programs to Convert from User Language to Machine Language 11
Supervisor Programs 13
Conclusion 16
Acknowledgment 16

FIGURES

1. Simplified block diagram of the 840A computer with its peripheral
equipment

2. Transfer of a program between the internal core memory and an
external storage medium

3. The paths along which control and data are transferred from the
main program to the desired device handlers

4. Successive steps required to translate a program on paper tape into
a running program in the core memory

PROGRAMMING SUPPORT FOR A SMALL RESEARCH COMPUTER

— J.K. Pulfer and M. Wein —

Introduction

A general purpose digital computer has often been called a universal machine because
its behaviour, or response to input stimuli, depends almost completely on the set of
instructions or program stored in its memory. It follows that without a stored program
the computer can do virtually nothing. Before a data processor can be used as a research
tool as described above, a number of programs must be available which will enable it to
perform the routine jobs of input and output, code translation, editing, and translation
from a user language into binary machine instructions. Programs of this type are often
referred to as SYSTEM programs and the total set of support programs is given the name
SYSTEM SOFTWARE.

As an example, a common type of system program, when stored in the memory of
the processor and executed, makes the computer behave like a data transmission machine.
Data may be transferred from some external storage medium such as paper tape into a
selected area of the central processing unit (CPU) core memory. Such a program is usually
called a LOADER.

A complementary program which makes the computer into a machine for transmitting
data from an area in internal core memory to an external storage medium is often called
a DUMP program,

Before going into a more thorough description of system software it will be instructive

to see what significant operations the computer can perform without a stored program.
These aspects of the performance of a data processor are often classified under the heading

of SYSTEM HARDWARE. We shall discuss only the hardware of the central processor and
the specific pieces of peripheral equipment used in this installation.

Hardware

Figure 1 is a block diagrm of the computer with its peripheral equipment. Com-
munication between a particular peripheral unit and the central processor takes place via
three interconnecting cables. Because each cable is common to all peripheral devices, it
is called a BUS. The three busses are named the I/O or INPUT-OUTPUT BUS, the BTC or
BLOCK TRANSFER CONTROL BUS and the INTERRUPT BUS.

I/0 BUS

Data for all input and output operations are transferred in parallel, 24 bits at a time,
by the 1/0 bus. Control signals for a single word data transfer which takes place as the
result of executing a stored instruction are also transmitted by the 1/0 BUS.

BTC BUS

Control signals are transmitted by the BTC BUS for the transfer of a number of words
or block of data for which individual transfers are controlled by hardware rather than by
the execution of instructions. The hardware which controls the transfer is part of the
central processor and is called the BTC or BLOCK TRANSFER CONTROL UNIT.* A set of
locations in the CPU magnetic core memory (CORE) are permanently assigned to the
storage of quantities which define the beginning address and number of words in a block
transfer. For the machine described above, the addresses of the BTC dedicated locations
are 48 and 49. Addresses are more often given in octal numbers or radix 8 notation. Thus
48 and 49 are usually written in octal as 60, and 61;,. Sometimes the g 1s omitted and
octal arithmetic is implied by the context.

INTERRUPT BUS

Another important aspect of computer hardware is the INTERRUPT BUS. The interrupt
bus is used to transfer signals which are called INTERRUPT REQUESTS from peripheral
devices to the central processor. On receipt of an interrupt request, the central processor
will stop processing the current program (providing certain initialization procedures have
been performed) and transfer control to a second or interrupt program. The process of
recognizing an interrupt request, establishing its order of priority relative to other requests,
and transferring control from one program to another according to priorities is performed

*Up to eight BTC units can be installed in the processor.

by the INTERRUPT SYSTEM hardware in the central processing unit. Memory locations
from 1008 to 137, are assigned to the interrupt system as storage locations for the
instruction which will be executed by hardware when a corresponding request is
recognized. The instruction for the highest priority interrupt is stored at 100, and the
instruction for the lowest priority is stored at 137;. A subroutine call or a store-place-
and-branch instruction to the desired interrupt processing routine is the most common
type to be stored at the interrupt location.

The interrupt system hardware is initialized by executing instructions which enable
or disable any or all interrupt levels in each group of sixteen. Interrupt request lines
corresponding to the assigned memory addresses 1164 and 117, are carried by the 1/O
bus. These two interrupt lines are available to all 1/0 devices. Other interrupts to which
functions have been permanently assigned are: 100, for which a request is raised when
power fails, 114, for which a request is raised when a block transfer is complete, and
102, for which a request is raised when a program protect violation has occurred (as
explained below).

The central processor contains a feature which allows each core memory location to
be set to either a protected or unprotected state by setting or clearing the 25th bit
(protect bit) in the word. Special circuits check the status of the protect bit in memory
location before executing each instruction and make a decision as to whether or not the
instruction is to be allowed. If the action required by the instruction is not acceptable
(depending on the initialization of the system) a memory-protect violation interrupt is
requested. The hardware which performs these functions is called the PROGRAM PROTECT
SYSTEM. The program protect system is put into operation by switching a key on the
computer console to a position referred to as the PROTECTED MODE. When the central
processor is in the protected mode, an unprotected instruction will cause a violation if it
attempts either to modify a protected memory location, or to branch to a protected
memory area.

The 26th (and last) bit in each word is automatically set to either a one or a zero,
so that the total number of ones in the word is even. This additional bit is the PARITY
BIT and the memory word is said to have EVEN PARITY. The parity is checked on
reading from memory, and if an error results in odd parity in a word, a parity-error
interrupt is raised. More details of the PROGRAM PROTECT SYSTEM, the INTERRUPT
SYSTEM and the I/O SYSTEM can be obtained from the manufacturer’s manuals.

Discussion of the hardware will be concluded with a brief description of the central
processing unit. Data within the machine are manipulated in the following forms:

1) Words — which are 24 bits in length
2) Addresses — which are 15 bits in length

3) Operation codes — which are normally 6 bits in length.

Two 24-bit registers, called the A and B accumulators are available to the pro-
grammer for arithmetic operations and three 15-bit registers called index registers 1,
2, and 3 are available for address modification. In the machine being described, core
memory consists of 8192 twenty-four bit words.*

All registers and any memory location may be observed using lights, or modified
by switches, at the control console when the computer is halted. The contents of any
combination of 24 console switches may be transferred to the A accumulator under
program control. The switches are called CONTROL SWITCHES. Four of these switches
may also be used to define conditions for skip instructions. When used for the latter
purpose, they are referred to as SENSE SWITCHES. **

INPUT OUTPUT BUS

B840 A
CENTRAL
PROCESSOR

BLOCK
TRANSFER
CONTROL

[y

l

INTERRUPT
HARDWARE

TYPEWRITER ANALOG TO
AND HIGH SPEED MAGNETIC DIGITAL AND
LOW SPEED PAPER TAPE UGl pigITAL 1O
PAPER TAPE UNITS ANALO
CONVERTERS
OFF-LINE Disc
TYPEWRITERS DIGITAL MEMORY
DISPLAY
A
4K X 26
INCREMENTA
KEYBOARD CORE i °T$N L
MEMORY LOTTER
- LIGHT PEN

Fig. 1 Simplified block diagram of the 840A computer with its peripheral equipment

* Additional memory blocks can be added to expand the capacity to 32,768 words.

%k
Circuits can be added to make all 24 console switches into sense switches.

The various items of peripheral equipment which are shown in Fig. 1 are self-
explanatory. Typewriters and paper-tape punches and readers are character-oriented
devices which communicate with the central processor by means of 8-bit ASCII
characters. The magnetic tape control unit converts the 6-bit-plus-parity characters
stored on the 7-track magnetic tape to 24-bit words for transmission to the CPU,
The digital display, disc memory system, and external core memory operate at the
full 24-bit level. More detailed information about individual peripheral units will be
given if necessary when describing programs designed to service them.

System Software

LOAD and DUMP Programs

In order for the computer to perform useful functions a program must be resident
in its memory. A simple loader program which will bring other programs into core
memory from external storage media such as paper tape, magnetic tape, or a disc storage
file, is often called a BOOTSTRAP LOADER. To use the 840A computer when no programs
exist in core, it is necessary to load the bootstrap loader instructions into consecutive
memory locations using the console switches. The program is, therefore, as short as
practicable. We will begin by describing the paper tape bootstrap loader which makes the
computer behave like a simple machine for transmitting data from paper tape via the
paper-tape reader into preassigned locations in core memory. The functions performed
by the loader are:

1) Commands the paper-tape reader to read characters and transmit them
to the computer on request.

2) Reads characters and checks if they are all zero. Continues until a non-
zero character is found, thereby advancing the paper tape through the
leader to the first character.

3) Assembles three successive 8-bit characters into a 24-bit word and stores
it in memory. Continues to read, assemble, and store words until three
successive zero characters are detected.

4) Either halts or branches to the first instruction of the program just
loaded.

Notice that the format of the characters on paper tape consisted of three characters
for each word in memory. In other words the data on tape are an exact replica of the
data in core. Such a format is often called ABSOLUTE or CORE IMAGE format. A
system program which loads and dumps in core image format is called an ABSOLUTE
LOADER or an ABSOLUTE DUMP (Fig. 2). It is customary to distinguish between ABSOLUTE
PAPER TAPE LOADER program and a BOOTSTRAP PAPER TAPE LOADER even though both

RUNNING

INPUT PROGRAM oOUTPUT

PROGRAM PROGRAM
ABSOLUTE

IN CORE AND oune ABSOLUTE FORMAT

LINKED ON EXTERNAL MEDIUM

PROGRAM PROGRAM
ABSOLUTE

ABSOLUTE FORMAT IN CORE AND
LOAD
ON EXTERNAL MEDIUM LINKED

Fig. 2 Transfer of a program between the internal core memory and an external storage medium

use the same absolute format. The term ABSOLUTE LOADER is reserved for a program
which, in addition to performing the functions of the bootstrap loader, also

1) Reads an initial block which contains the starting address and the word
count indicating the size of the core area into which the transfer is to
be made, and performs the storage function accordingly.

2) Reads paper-tape blocks of a fixed number of characters. For purposes
of verification, each block contains the arithmetic sum (ignoring overflow)
of all the words in the block. This CHECKSUM word is recomputed on
loading and compared with the one read from the paper tape.

3) Performs some preassigned action such as typing an error message if a
CHECKSUM error is found.

An ABSOLUTE PAPER TAPE DUMP program performs all the functions necessary to
generate a paper tape which can be reloaded by the absolute loader.

Bootstrap loaders, absolute loaders, and absolute dump programs are also available
for transfers between core and disc and for transfers between core and magnetic tape. They
differ from the paper-tape programs basically only in the instructions which are concerned
with the details of operating the particular device, and with the storage format on the external
medium. The programs must also have the capability of locating the desired program on disc or

magnetic tape. Because of the high rate of transfer, both disc and magnetic tape
programs make use of the BTC (block transfer control) in transferring core image
blocks between the central processor and the peripheral unit.

The Unit Record Programs

The absolute load and dump programs described above define one format for
storing data on an external medium — the absolute or core-image format. A second
format which is also important is one which is suitable for storing alphanumeric
characters. Examples are the ASCII format on paper tape which is produced by a
standard ASR-33 teletypewriter, or the Hollerith format on punched cards produced
by keying in a string of alphanumeric characters on a key punch. A set of programs
which transmit data in this form is called the UNIT RECORD SYSTEM. Records which
contain textual data are called HOLLERITH RECORDS, while those that contain a
sequence of quarter-words in machine language form are called BINARY RECORDS.

The simplest example of a UNIT HOLLERITH RECORD is the record produced by
typing a sequence of characters on a teletype machine (TTY) followed by a carriage
return and line feed (CR/LF). The length of the record is not defined and may be one
or more characters. Of course, on a typewriter, a record is limited to one line or
approximately 72 characters. .

On a punched card, a unit record is one card containing up to 80 columns of
which each column represents one character.

On magnetic tape (7-track), a unit record is a block of characters stored in the
IBM-BCD code. Each character is 6 bits plus parity. The length of a record is not
restricted by hardware.

On disc, a unit record is one sector or 256 truncated ASCII characters. (A truncated
ASCII character is one consisting of the 6 least significant bits of an 8-bit full ASCII
character.)

In core memory as used by the 840A systems programs, a Hollerith record is a
block of one or more 24-bit words in which each word contains four truncated ASCII
characters.

A UNIT BINARY RECORD is a block of 24-bit words with no restriction on number
and content. The code format of the characters, and the means used to terminate a
block, of course depend on the storage medium as is the case for Hollerith records.

In core, a binary record consists of one or more computer words in sequential
locations.

On paper tape, a binary record consists of 6-bit quarter words expanded to 8 bits
so as to be acceptable ASCII characters. The only limitation on length is the require-
ment that each record must consist of a multiple of 4 characters so as to make up an
integral number of 24-bit words.

On magnetic tape, the record consists of a block of 6-bit characters in binary format.
On disc, a binary record consists of one or more sectors. Each sector contains 64

24-bit words. The record consists of one or more words, and the remaining words
necessary to complete the last sector are zeros.

MAIN PROGRAM
USER OR DATA

SYSTEM AREA
BUFFER

170 DRIVER DATA
ENTRY PATH
= T
- |
P - \ \
- !
- - 1
e S S \/
| 1 | ! 170
1] | !
| ' ! : HANDLER oevIce
:] I : (OUTPUT)
| S - L
L ~— —
OTHER\ HANDLERS |
-~ .
- .
=~ Y
170 DRIVER

RETURN PATH

Fig. 3 The paths along which control and data are transferred
from the main program to the desired device handlers

The unit record system is organized into a set of HANDLER subroutines and a
pointer or a DRIVER program. The use of the unit record system removes the need
for other programs to contain the detailed instructions necessary to transfer a unit
record to an I/O device. Other programs can initiate the transfer of a record by
executing a call to the driver which then selects the appropriate handler servicing the
desired device (as shown schematically in Fig. 3). The detailed instructions for operating
the devices and for code conversion (if necessary) are all contained in their respective
handlers, thus making other programs independent of these devices.

In general each peripheral device has its own handler subroutine although devices
with many functions in common such as high-speed paper-tape punch and reader and a
teletype paper-tape punch and reader may be serviced by a single handler. The following
functions are common to all handlers:

1) The ability to execute certain control tasks perfaining to the device
which it services. Examples are: to make leader on paper tape, to
rewind magnetic tape, to position heads on the disc, and to advance
one or two lines at the top of a page on the typewriter.

2) The ability to inform the calling program of the status of a device,
e.g. ‘end-of-file’ found on magnetic tape.

3) The ability to transfer, on call, a UNIT HOLLERITH RECORD between an
area in core (specified by its beginning address and word count) and the
storage medium used by the device serviced.

4) The ability to transfer on call a UNIT BINARY RECORD between an
area in core (specified by its beginning address and word count) and the
storage medium used by the device serviced.

In addition to these standard functions, handlers which service more than one
peripheral unit are capable of distinguishing between these units by means of an
identifying device number supplied by the calling program. This number is called the
LOGICAL DEVICE NUMBER, or LOGICAL DIRECTORY NUMBER. It is also used by the
DRIVER program to route calls to the appropriate handler as outlined below.

The main functions of the I/O DRIVER subroutine are to respond to calls for
input—output transfer of unit records and, depending on the name by which it is
called and logical device number supplied with the call, to route the request for a
binary or Hollerith transfer to the appropriate handler subroutine.

-10 -

The driver contains a table called the I/O DRIVER CALL TABLE which defines the
logical device number for each peripheral unit. Assignment of logical device numbers
is, therefore, merely a matter of making entries in the call table.

The type of record transferred is determined by the name by which the driver is
called.

CALL HSWR requests a Hollerith record transfer

CALL BSWR requests a binary record transfer

CALL HSWL is a special peripheral positioning call which prepares the
external device for the receipt or transmission of the first record.

The direction of transfer is determined by the sign of the logical device number.
A negative number specifies core-to-peripheral or OUTPUT transfer, while a positive
number specifies peripheral-to-core or INPUT transfer.

For some of the more complex peripheral devices such as magnetic tape or disc, a
fourth calling method is necessary to provide a means of commanding and testing special
functions of the device or its handler. A CALL H$WR, but with a negative integer in
place of the beginning address will perform a special function determined by the integer
supplied.

It is worthwhile at this point to discuss briefly mechanisms used to transfer infor-
mation from a calling program to a subroutine. One method is to store the data in the
arithmetic and/or index registers before calling the subroutine. A second method is to
store the data in memory locations which are immediately before or immediately after
the call instruction. The subroutine can then compute the addresses of the data with
reference to its return address, and therefore can obtain it as required. A third method
is to store all information to be transferred to subroutines in a preassigned common area
in core with addresses known to both calling program and subroutine.

Only the first two methods are used in the unit record system. As an example,
suppose it is desired to write on the high-speed paper-tape punch the contents of memory
locations 1000 to 1002. The logical device number of the punch is 3. The sequence of
instructions to call the driver subroutine (CALLING SEQUENCE) would be as follows:

LOAD A Accumulator with -3 (output logical device number)

CALL H§WR
1000 (beginning address)
3 (word count)

Next instruction

The I/O driver HSWR in turn generates a call to the paper-tape system handler and transmits
the two parameters. The paper-tape handler turns on the punch, fetches each of the three

- 11 -

words, breaks each word into four characters and expands each character to 8 bits
before causing it to be punched. After the 12 characters have been punched the carriage
return and the line-feed characters are punched. The punch is left turned on, because
further calls might follow and turning the punch on and off would cause unnecessary
delays.

Programs to Convert from User Language to Machine Language

We have now described the absolute load-dump programs and the unit record
programs. We have still not shown how a large program may have been generated and
stored in core or on an external storage medium. A program may be loaded directly
into core memory, one word at a time, by using the console switches. This method is
not convenient for preparation of programs consisting of more than a few instructions.
Apart from the clumsiness of entering sequences of machine words through switches,
preparation of programs is difficult. All memory addresses must be explicitly specified
by the programmer. Thus an address in a part of the program that has not yet been
written must be specified explicitly, when any reference to that address is made
(FORWARD REFERENCE).

A program written directly in machine language is ABSOLUTE. The program is
consistent only if it is loaded in core into the addresses specified by the programmer.
In order to relocate the program in core, it is necessary to modify the address portions
of instructions to maintain consistency.

The basic assembler program relieves the programmer of the need to specify
explicitly absolute addresses of core locations. Instructions written in the assembly
language are essentially symbolic representations of machine instructions.

The conversion of a program written in assembly language, to in-core instructions
is divided into two steps. In the first step, Hollerith records prepared manually by the
programmer, and describing the desired sequence of operations, are translated by the
symbolic assembler into unit binary records which contain the information on how the
program should be built up in core memory (Fig. 4, upper). At this stage the program is
RELOCATABLE, in that it can be loaded into any part of core.

In the second step the unit binary records (OBJECT form of the program) are accepted
by a second program, called the RELOCATING LOADER. The relocating loader interprets
the records as commands for building up instructions in core memory and generates
absolute addresses which are internally consistent (Fig. 4, center). The program is now
ready for execution (Fig. 4, lower).

Three basic facilities are provided by the symbolic assembler program:

1) The programmer may assign symbolic names to core locations and refer to
these locations elsewhere in the program by their symbolic names. During

INPUT

SOURCE PROGRAM
HOLLERITH RECORDS

- 12 -

RUNNING
PROGRAM

ASSEMBLER
PROGRAM

OUTPUT

OBJECT PROGRAM

BINARY RECORDS
ON TAPE

OUTPUT

PROGRAM LOADED
IN CORE, AND
LINKED

ON TAPE
y
SOURCE LISTING
OF USER'S PROGRAM
INPUT RUNNING
PROGRAM
OBJECT PROGRAM
BINARY RECORDS RELOCATING
ON TAPE LOADER
EXTERNAL
SUBROUTINES
OBJECT FORM
RUNNING
PROGRAM
| 1
| I
t INPUT DATA | R'S PROGRAM
—————
| IFREQUIRED | USERS
|
L 2 J

1 IF ANY

Fig, 4 Successive steps required to translate a program
on paper tape into a running program in the core memory

translation the assembler program assigns addresses to the symbolic names.
The addresses are made relative to the start of the program. The relocating
loader makes the addresses absolute by adding the RELOCATION CONSTANT

which is the starting address of the program being loaded.

2) The programmer can refer to an EXTERNAL address, that is, one which is not
contained in the program being written but which, instead, is contained in a

subroutine which is written and assembled separately.

-13-

The relocating loader program loads both the first program and the
subroutine in which the external address is defined, computes the absolute
value of the external address and inserts the correct value in the instruction
in which the external reference was made. This function of the loader is
called LINKING to subroutines. The reference to the external address may
be either a subroutine call or an access of a data word. As a special case of
the function of linking, the relocating loader links requests for input—output
transfers of unit records, to the /0 driver which is already resident in core.

3) In the assembly language the programmer can request the assignment of
core locations for data, and he can specify in several useful forms the initial
values to be stored in the data locations.

The desired contents of the reserved locations can be specified as octal
integers, decimal integers, fixed- or floating-point numbers, or sequences of
alphanumeric characters, stored in the core locations as four characters per
word, in the truncated ASCII code.

In addition to the object output, the assembler program generates and prints a
SOURCE LISTING of the program which consists of the instructions written by the pro-
grammer together with the octal equivalents of the machine instructions that the loader
will generate in core. Error messages are also shown on the listing. The addresses shown
in the machine instructions on the source listing are relative to the beginning of the
program just as they are on the object output.

A second programming language available on the 840A is the FORTRAN language.
Fortran is suitable mainly for scientific and engineering computation, because a mathe-
matical equation can be written with little change as one instruction or statement in
Fortran. Typically, a complex mathematical problem can be written in relatively few
statements. On translation by the COMPILER program, the few source statements result
in many machine instructions in object form. Thus, Fortran is an efficient language for
describing mathematical problems, without being concerned with the actual details of
the computer operation.

Because system programs are tightly coupled to the computer operation and its
structure, these programs are usually not written in Fortran, but rather in assembly
language.

Supervisor Programs
We now have described the means of generating programs and of loading them into

the core memory of the computer. Each step in the process has required the execution of
a SYSTEM program, which itself may have been loaded into core before execution.

-14-

In this section we describe part of the system software which is designed to help the
operator manipulate other programs. This software may be called a SUPERVISOR, or an
EXECUTIVE system. It may also be spoken of as a set of HIGHER LEVEL system programs,
because it is used to provide communication and control between the user and other
elements of the system software.

In the following paragraphs we will discuss the need for executive programs and
their important functions. It is desirable that some system programs which are used regularly
should remain in core at all times in order to avoid unnecessary loading (and by implication
requiring that the loader stay in core). Such programs are described as CORE RESIDENT
SYSTEM PROGRAMS. Other programs which may not be as important or which may be too
large to keep in core, may be stored on disc in absolute core-image form, so that they can
be transferred rapidly to core when needed. These programs are called DISC RESIDENT. Still
other programs of lower priority may be stored on paper tape or magnetic tape.

The decision as to how the storage of system programs should be allocated between
core, disc, magnetic tape, and paper tape depends on many factors.

Obviously, the more core memory available to the system, the more programs should
remain in core. The choice of core resident programs depends on how the system is being
used. If the primary use is program development, then assemblers, compilers, load and dump,
and debugging programs should be resident. If the primary use is computation, loaders
and diagnostic programs should be resident. If the use is industrial process control, business
data processing, or scientific data processing, then the most important programs are the
processing programs and the associated input—output data handlers.

In a research environment such as ours, the program development and input/output
programs are important.

At this point it is worthwhile to list briefly the steps which must be taken by a user
in a non-executive system in order to have his program executed. We will assume all
necessary system programs are core-resident. The user must:

1) Prepare SOURCE PROGRAMS or sequences of SOURCE STATEMENTS as
Hollerith records on cards or paper tape.

2) Place the source program medium (e.g., paper tape) in the input device.

3) Put the starting address of the assembler or compiler program in the program
counter of the CPU,

4) Supply (through control switches on the computer console) the logical
numbers of the devices to be used for source input, object output, and source
listing output.

5) Supply (through control switches) the operating parameters of the assembler
or compiler program (e.g., number of passes).

6)

7)

8)

9)

10)
11)

12)

13)

-15-

Start the computer running to execute the assembler or compiler
program,

Transfer the object programs produced by the above procedure to desired
input devices.

Load the starting address of the relocating loader into the CPU program
counter.

Supply through console control switches, the logical device numbers of the
input devices, and the starting address at which the programs are to be loaded.

Start the computer running to execute the relocating loader.

Set the program counter of the CPU to the starting address of the program
just loaded.

Supply the user program with any parameters it requires by presetting
registers and by setting control and/or sense switches.

Start the computer running to execute the user program.

Notice that the computer was halted between each processing operation to allow the
operator to prepare initial conditions and running conditions for the next phase. It is
often desirable that the computer run continuously so that it will be able to respond at
any time to ‘interrupt’ requests. This is particularly true if the computer is being shared
by several users whose programs are being interleaved by the priority interrupt hardware.

In the environment in which this computer operates, executive or supervisory pro-
grams are used to accomplish the following tasks.

1)
2)

3)

4)

5)
6)

7)

8)

To keep the computer running between each phase in the processing operation

To supply initial conditions and running conditions to each phase of the
operation without halting

To keep track of the core addresses and disc addresses of system programs so
that they may be loaded and executed without user intervention

To accept operator commands to transfer records or files between peripheral
devices or between peripheral devices and core

To accept operator commands to initialize or position peripheral devices

To ‘control’ automatically some peripheral devices after use (e.g., to turn off
a paper tape punch)

To accept operator commands defining the status of the interrupt system
hardware and the program protect hardware

To manage tables in the I/O driver which allocate peripheral devices to
specific tasks.

- 16 -

These functions are not all performed by a single program. Some are allocated to
the I/O driver because it is core resident, some are allocated to disc resident programs
which are only brought into core to control specific devices when required.

Conclusion

There are many types of system programs which are not discussed in this report.
Software associated with disc management, graphical display management, diagnostics,
debugging, and even details of the various executive programs, are included in a series of
reports which are being published separately. It has been our intention to provide back-
ground to readers not familiar with system software, to enable them to make the most
use of the detailed program descriptions available in other reports.

Acknowledgment
The authors would like to point out that, for the most part, the software described
in this report was supplied by the computer manufacturer — Systems Engineering Laboratories

Inc., of Fort Lauderdale, Florida, and that minor changes suggested by the company’s
representatives have been made in the report.

10-12-68

