
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

A business rule explanation system for web services
Keping, J.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=7e40b96c-59c8-450e-90ea-bfb1d127442f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7e40b96c-59c8-450e-90ea-bfb1d127442f



National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information  
 
 
 
 

 
 

A Business Rule Explanation System for Web  

Services * 

 
Keping, J. 
May 2003 
 
 
 
 
 
 
 
 
 
* published in MCS Thesis of University of New Brunswick. 96 pages.  Fredericton,  

New Brunswick, Canada. May 26, 2003. NRC 46527. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Copyright 2003 by 

National Research Council of Canada 

 

Permission is granted to quote short excerpts and to reproduce figures and tables from this report, 

provided that the source of such material is fully acknowledged. 

 

 



 

A Business Rule Explanation System 
for Web Services 

 
by 
 

Keping Jia 
 

MEng – Jilin University of Technology 
 
 

A Thesis Submitted in Partial Fulfilment of 
the Requirements for the Degree of 

Master of Computer Science 

in the 

Graduate Academic Unit of Computer Science 

 

 
 
Supervisor(s):  Bruce Spencer, Ph.D., Computer Science, University of New 

Brunswick & National Research Council 
    Ali A. Ghorbani, Ph.D., Computer Science, University of New 

Brunswick 
 
Examining Board: Harold Boley, Ph.D., Computer Science & National Research 

Council, Chair 
    Kirby Ward, Research Associate, Computer Science 
    Gregory J. Fleet, Ph.D., Faculty of Business 
 

 
 

This thesis is accepted. 
 
 

Dean of Graduate Studies 
 
 

THE UNIVERSITY OF NEW BRUNSWICK 
 

April, 2003 
 

© Keping Jia, 2003  



 ii

Abstract 

Electronic commerce has grown rapidly and brought about enormous change in 

business firms, markets and consumer behavior. To meet the increased demand, more 

and more business activities are moving to the World Wide Web because business 

activities can be reached everywhere and be performed more efficiently.   

Business rules technology is one of the most active research areas in e-commerce. 

It deals with representing and processing regulations and policies regarding how an 

enterprise conducts its business so that business activities can be carried out 

electronically. Abstracting business logic from the application procedures, business rule 

technology enables the fast development of applications that can be rapidly modified. 

Potentially e-business system based on business rules can explain themselves. The 

business rule explanation system of this thesis is a prototype system that provides a user 

with the justifications of the conclusions derived by a business rule system. The 

justifications are given in the form of the “explanation tree” that provides “how” 

dialogues to answer how a conclusion is derived, “why not” dialogues to identify the 

missing criteria for achieving a goal and “what if” dialogues to find out a complete set of 

preconditions that will be necessary to lead to the grant of a request. 

For e-business systems that deliver services over the Internet, a distributed 

architecture is required because a business activity sometimes needs to involve different 

partners under different contexts. The prototype is thus built upon the emerging Web 

Services standards. The next part of the thesis describes how business rules and Web 

Services technology work together to deliver a loosely coupled, distributed business rule 

system. 



 iii

Acknowledgements 

I would like to express my gratitude and sincere thanks to my supervisor Dr. 

Bruce Spencer who has been guiding me through the whole course of the research and 

spending valuable time in reviewing and editing this thesis.  I am also truly grateful to 

the other member of my supervisory committee, Dr. Ali A. Ghorbani, for his valuable 

suggestions and constructive criticism.  

I also wish to extend my thanks to the members of the Examining Board. They 

are Dr. Harold Boley, Kirby Ward and Dr. Gregory J. Fleet. Their comments greatly 

improved the final version of this thesis in many ways.  

 Thanks also to Scott Buffet, Sandy Liu and Fang Wang who have always been 

helpful and encouraging, and to National Research Council for the financial assistance to 

this research work. 

Finally, I will give my deepest love and thanks to my wife Qun. I will not 

accomplish anything without her love and support.  



 iv

Table of Contents 

Abstract ............................................................................................................................. ii 
Acknowledgements .......................................................................................................... iii 
1 Introduction................................................................................................................1 
2 Background ................................................................................................................7 

2.1 Business rules...................................................................................................7 
2.2 Theoretical foundation of business rules............................................................8 

2.2.1 Representation of knowledge.....................................................................9 
2.2.2 First order logic ........................................................................................10 
2.2.3 Reasoning.................................................................................................15 

2.3 Expert Systems.................................................................................................16 
2.3.1 The building blocks of Expert Systems ...................................................16 
2.3.2 Interaction with Expert Systems ..............................................................17 

2.4 Introduction to jDREW....................................................................................19 
2.5 Web Services....................................................................................................19 

2.5.1 What are Web Services? ..........................................................................20 
2.5.2 Web Service architecture .........................................................................21 
2.5.3 Enabling technologies of Web Services...................................................24 

3 Interactions with Business Rules .............................................................................27 
3.1 Question asked by the system ..........................................................................27 
3.2 Questions asked by the user .............................................................................43 
3.3 Summary ..........................................................................................................46 

4 A prototype of business rule explanation system for Web Services........................47 
4.1 The general design principles of the prototype system....................................47 
4.2 Dynamic binding of business rule explanation systems ..................................50 
4.3 Backup service and workload control ..............................................................57 
4.4 Summary ..........................................................................................................66 

5 Application example ................................................................................................67 
5.1 System overview -- a car dealership business rule system example................67 
5.2 Policies used by the system..............................................................................68 

5.2.1 Discount policies......................................................................................68 
5.2.2 Customer type policies.............................................................................70 
5.2.3 Payment type policies ..............................................................................71 
5.2.4 Facts .........................................................................................................72 
5.2.5 Logical relationships between predicates.................................................72 
5.2.6 Askability control of the predicates .........................................................72 
5.2.7 Configuring rules .....................................................................................73 

5.3 Interaction demo...............................................................................................74 
5.3.1 User interface and fundamental operations..............................................74 
5.3.2 User query demo. .....................................................................................76 

6 Conclusions and future work ...................................................................................86 
6.1 Conclusions......................................................................................................86 
6.2 Future work ......................................................................................................88 

Bibliography.....................................................................................................................91 
VITA 



 v

Table of Figures 

Figure 2-1 The Syntax Of The First-Order Logic ...........................................................12 
Figure 2-2 Web Services Components.............................................................................22 
Figure 3-1 Back-Chaining Using SLD-resolution ...........................................................32 
Figure 3-2 Partial Proofs Generated By The Proof Procedure.........................................34 
Figure 3-3 The Search Tree .............................................................................................35 
Figure 3-4 Example 1.......................................................................................................36 
Figure 3-5 Example 1 Of a General Case ........................................................................37 
Figure 3-6 Example 2 Of a General Case ........................................................................38 
Figure 3-7 The Factor Value of Figure 3-6......................................................................39 
Figure 3-8 An Example Of The Factor Value..................................................................41 
Figure 3-9 Search Tree Illustrating The Question Selection Strategy 2 ..........................42 
Figure 4-1 The Syntax Of Get_bindingDetail..................................................................52 
Figure 4-2 The Chart Flow Of Outsourcing.....................................................................53 
Figure 4-3 Back-Chaining With Outsource .....................................................................55 
Figure 4-4 The Architecture Overview............................................................................56 
Figure 4-5 The Back Up Web Services............................................................................58 
Figure 4-6 The Syntax Of BusinessService element .......................................................59 
Figure 4-7 The Syntax Of BindingTemplate ...................................................................60 
Figure 4-8 The Syntax Of tModel Element .....................................................................60 
Figure 4-9 The Syntax Of Find_service By tModel.........................................................61 
Figure 4-10 The Service Mapping ...................................................................................62 
Figure 4-11 The Workload Control .................................................................................64 
Figure 5-1 GUI Component .............................................................................................74 
Figure 5-2 The Rule Edit Window...................................................................................75 
Figure 5-3 Successful Upload ..........................................................................................76 
Figure 5-4 Error Detection ...............................................................................................76 
Figure 5-5 The Question (1) Initiated By The System.....................................................77 
Figure 5-6 The Question (2) Initiated By The System.....................................................77 
Figure 5-7 The Question (3) Initiated By The System.....................................................78 
Figure 5-8 The Question (4) Initiated By The System.....................................................78 
Figure 5-9 The Question (5) Initiated By The System.....................................................78 
Figure 5-10 The Result Of The Query .............................................................................78 
Figure 5-11 The Pre-conditions Window.........................................................................79 
Figure 5-12 The “How” Quesiton....................................................................................80 
Figure 5-13 The System Response On the “How” Question. ..........................................80 
Figure 5-14 The “Why not” Question..............................................................................81 
Figure 5-15 The Choice Dialog........................................................................................81 
Figure 5-16 The System Response On the “Why not” Question. ....................................82 
Figure 5-17 The “How” Question. ...................................................................................82 
Figure 5-18 The “Why not” Question..............................................................................83 
Figure 5-19 The Choice Dialog........................................................................................83 
Figure 5-20 The System Response On the “Why not” Question. ....................................84 
Figure 5-21 The “What if” Question................................................................................84 



 vi

Figure 5-22 The System Response On the “What if” Question (1). ................................85 
Figure 5-23 The System Response On the “What if” Question (2). ................................85 

 



 1

1 Introduction 

In past few years, electronic commerce has grown rapidly and brought about enormous 

change in business firms, markets and consumer behavior. The rapid movement towards 

an e-commerce economy and society is being led by both established business firms and 

new entrepreneurial firms. More and more B2B (Business to Business) and B2C 

(Business to Customer) systems are established to facilitate the online businesses and 

transactions.  

Generally speaking, a business system is a software system that is used to help 

organize a business’s data and manage a business’s daily activities. Hence, the function 

of a business system must comply with the business knowledge of the area in which the 

system is used. For example, before being used by a car dealership company, the 

business system needs to be first customized to adopt that company’s conventions of 

doing business (e.g. An elite customer can get 5% discount on buying a car), regulatory 

policies of the industry to which that company is belonged (e.g. A 5 year warranty is 

mandatory for every new car) and other policies that may change with the marketplace 

(e.g. policies about financial assistance and auto loans).   

In a traditional business system, the knowledge about the business behaviors and 

policies are embedded in software codes, DBMS (Data Base Management Systems) 

triggers, stored procedures and database objects. These different approaches inevitably 

scatter the business knowledge throughout the program and mix the processing of the 

business policies with other programming functions. As changing business policies and 

environment cause applications to evolve, it becomes harder and harder to modify these 



 2

applications. Moreover, as these applications increase in size, the time needed to modify 

and maintain increases disproportionately [21].  

The business rule technology is a new approach of embedding business knowledge 

into business systems that attracts the attention of current researchers. The main 

characteristic of the business rule technology is to have the business knowledge formally 

represented as rules and independently maintained in a knowledge base so that the 

business rules and the remainder of application functionality are completely separated. 

In this approach, the rule engine will carry out all the functions by choosing and 

executing the right rules at the right time in the right order. Abstracting the policies and 

knowledge of the business from the application procedures, business rules can be 

maintained and validated without affecting the rest of the application code. This makes 

business rule technology a perfect solution for fast development of applications that can 

be rapidly modified. It provides companies with a powerful competitive advantage, as 

they can be more responsive to changes within the company (internal policy changes), 

within the marketplace (products and pricing can be changed in response to customer 

demand and competitive pressures), and the industry (external changes in regulatory 

policies) [22].  

 Despite of the numerous research activities in this area [6, 9, 22, 29], none of 

them have given enough emphasis on the explanation part of the business rule system. 

However, the demand from the user for the explanation of the conclusions derived from 

the system is high in online businesses. The system needs to tell a client whether he/she 

satisfies all the relevant conditions to obtain a service. If a service is denied, it also needs 

to tell the user why it is denied by showing the user the rule(s) he/she failed to satisfy 



 3

and how they could be satisfied. Developed from the business rules technology’s unique 

way of managing and processing policies, the business rule explanation system greatly 

enhances the maintenance and validation of the business rules. By providing both 

conclusion and justification, this explanation system also forms the basis of several 

features that are valuable in the e-business world. For example, a business system can 

guide prospective partners through interactions that allow them to establish credentials 

and meet eligibility criteria set by other partners [45] or provide interactions for a user to 

negotiate exchanges of information for service eligibility [23].  

As part of this thesis, an explanation prototype system is implemented which is 

built on the technologies of the business rules and knowledge-based systems. The 

interactions between the user and the explanation system take the form of questions. The 

user first initiates the interaction by submitting a request to the system asking for a 

service that the system provides. Then, a series of questions will be arranged in order to 

evaluate the user’s request. The system picks questions based on the following three 

criteria: 

1. The question is relevant to the user’s request. 

2. The question belongs to the user’s domain of knowledge. 

3. The question is relevant to the current context. In particular, the arrangement of 

the questions is also based on how the previous questions are answered. 

The sequence in which the questions are asked is chosen according to their impact 

on the solution or reducing the search space of the task so that the interactions of this 

phase are kept to the minimum. Finally a conclusion of whether the request will be 

granted or not will be given. From this point, the user can ask for justifications of the 



 4

conclusion through “how”, “why not” and “what if” questions. As to the “why not” 

question on a negative conclusion (the request is not granted), an explanation tree will be 

returned showing the preconditions on which the request can be granted. Some of these 

preconditions might have been met while the others were not. These preconditions (also 

called goals) form the nodes of the explanation tree. The user can ask “how” questions 

on the satisfied nodes to see what goals were achieved through achieving certain 

subgoals. The user can repeatedly ask how these subgoals were achieved. The user can 

also ask “why not” questions on any unsatisfied goals to find out what prevents such a 

goal from being derived. This interactive and repetitive process offers the user all the 

relevant situations and explanations on demand. During the interaction, a “what if” 

question could be asked at any time to see how other outcomes are affected if some 

unsatisfied conditions are assumed to be satisfied. 

For example, suppose the user is interacting with a car dealership where the sales 

policy is governed by rules like 

1. An elite customer can get 5% discount on decent or better cars if his payment 

type is “silver”. 

2. “Silver” payment type is pay by 2 year installments with financial assistance of 

less than $10000. 

3. “Silver” payment type is pay by 3 year installments with financial assistance of 

less than  $7000. 

4. The preferred customer who is insurance affiliated automatically becomes an 

elite customer. 

5. The customer who buys car insurance in First Rate Co. is insurance affiliated. 



 5

If a user is not offered the discount she asks for, she can ask why not, and be given 

the entire list of rules that could, in principle, allow her to get this discount and be shown 

the conditions she does not meet. She could ask what would occur if some of these 

conditions were met, and so could interactively determine the complete list of what she 

needs to do to achieve her goal. A full interaction demo of this example will be given in 

Chapter 5. 

The architectural aspect of the prototype design deals with problems of how to 

integrate the business rules technology into the surrounding e-commerce systems. Most 

of the current software practice for business rule system inherits the idea of component-

oriented software design (e.g. COM, DCOM, J2EE) under a 3-tier or N-tier architecture. 

Because any system built on these protocols heavily depends on a particular language 

specification or a single vendor’s implementation, it is not a perfect solution for business 

rule systems that may be deployed in a distributed environment and be shared by 

heterogeneous business applications. In this thesis, a service-oriented architecture – Web 

Services is discussed. Built on technologies and protocols such as HTTP, SOAP, UDDI 

and WSDL, Web Services architecture promises more flexibility and interoperability 

among distributed software components over the web.  

In order to build a highly reusable and service-oriented prototype of the business 

rule explanation system, the architecture design will focus on the following aspects: 

1. Design an architectural model to incorporate the business rule explanation 

system into Web Services architecture. This part deals with how to design the 

business rule explanation system under the Web Services framework and deploy 



 6

it as services that can be shared. In particular, the dual services design and the 

workload control will be discussed in detail. 

2. Design an architectural model for the integration of rule-based Web Services. In 

some applications, a business rule system needs to be partitioned into several 

separate parts each of which is an autonomous service that maintains and 

processes its local rules. In this case, a universal mechanism is needed to link 

several rule services (when necessary) together for the purpose of query 

processing. In this thesis, we use predefined “configuration” rules to indicate the 

linkage between a particular goal and its processing rule service. 

   

The next chapter is a background study of business rules, Expert Systems and Web 

Services, followed by Chapter 3, which discusses some concerns in designing the 

interaction modes between the user and the system. Chapter 4 emphasizes the 

architectural aspect of the prototype system. Chapter 5 presents an application example 

to illustrate how the explanation system works with the business rule system to provide 

explanations about the conclusions derived from the system. Conclusions and future 

work are discussed in Chapter 6.  

 

 



 7

2 Background 

 

2.1 Business rules 

Business rules are "statements that define or constrain some aspect of the business. They 

are intended to assert business structure or to control or influence the behaviour of the 

business" [21]. Business rules cover most of business activities that are regulated or 

guided by business strategy, tradition, culture, policy, and pragmatic experience. For a 

corporate computer system, business rules are the expression of business knowledge in a 

formal, accurate as well as computer- and human-understandable format. In traditional 

software practices, business rules are “buried in application program code, embedded in 

database structures, and coded as DBMS triggers and stored procedures” [21]. This type 

of approach entails a lot of problems in the software development and maintenance for 

two reasons. First, the system developers usually do not have expertise in the 

management and administration of a particular business. A huge amount of 

communication is needed between the business people, administrators and the system 

developers so that the architectural design can be carried out; many changes are also 

expected during the developing phase. Second, this approach causes costly maintenance 

later. It is hard to make any changes in the business rules if they are hard coded into the 

programs and interweaved with controls for other purposes like interface, data flow, data 

backup and error control. The maintenance problem of the traditional approach becomes 

more serious because businesses need to change their policy more frequently to cater for 

the ever-changing demand of customers. 



 8

Business rule technology provides a formal and general approach that separates 

business rules management from the overall control system and makes it possible for 

business people who have no technical expertise to create, maintain and modify business 

rules independently.  

Business rule languages and rule management are two key elements of business 

rule technology. A business rule language should be concise and very readable so that 

statements are understandable, precise, unambiguous and can be managed 

systematically. The language should be expressive enough so that business rules can be 

easily described by it. Rule management deals with problems of how to manage and 

process business rules in a uniform way as well as to integrate them into core business 

systems. 

A good business rule language and management system could greatly simplify the 

development of the overall system, shorten marketing time, and facilitate instant 

modification and rule sharing across enterprises.  

 

2.2 Theoretical foundation of business rules 

The fields of business rules and Expert Systems do overlap. Because “[r]ules have been 

used extensively as a way to represent knowledge” [20], the technology underlying 

Expert Systems is widely employed to automate business rules. These are two kinds of 

applications of logical reasoning systems, which are built on the theories of 

representation and reasoning [17]. 



 9

2.2.1 Representation of knowledge 

The object of knowledge representation is to express knowledge in a computer-

processable form [37]. A representation of knowledge is defined by two aspects: a 

language and a semantics for this language. 

Taking the diversity of the human’s knowledge into consideration, it is natural to 

think of making the representation language as expressive as natural languages (e.g. 

English). But natural languages will not work for a machine proving system. The reason 

is that a natural language is so rich that it is impossible to be described in a formal way, 

which means that natural language is not “machine understandable”. So, the syntax of 

the representation language has to meet the following criteria: 

1. It must be expressive enough so that human knowledge can be represented with 

reasonable ease.   

2. It must be unambiguous and context independent so that the knowledge is 

guaranteed to be exactly the same knowledge at anytime. 

3. It must be concise in the sense that there should be an effective inference 

procedure that can respond within a reasonable time. 

Provided the syntax and semantics are defined precisely enough that an inference 

scheme can be given, the language, together with its inference scheme, are called logic. 

Among the various existing logics, first order logic is most widely used in practical 

reasoning systems because of its expressiveness, completeness, consistency and the 

elegance of its inference procedures. The prototype system of this thesis uses first-order 

logic as the representation language.  



 10

2.2.2 First order logic 

First order logic is one of the most important representation languages for automatic 

reasoning systems. It forms the basis of most representation schemes in Artificial 

Intelligence (AI). Just as any other language, first order logic is specified by its syntax 

and its semantics. 

 

• Syntax 

The syntax specifies the grammatical structure of the first order logic. It is composed of 

basic symbols and well-formed expressions. 

The basic symbols are: 

1. Constants: first order logic uses constants to represent a specific element in the 

domain of representation. In this thesis, it is represented by names beginning 

with lower case letters. 

2. Variables: a variable potentially represents any element from the domain of 

representation. In this thesis, it is represented by names beginning with upper 

case letters. 

3. connectives: connectives are predefined logical symbols that are used to 

construct complex sentences. Connectives used in first order logic are “¬”, “⇒”, 

“∧”, “∨”, “⇔”. 

4. Quantifiers: “∀” and “∃” are the only quantifiers defined in first order logic. 

While “∀” denotes the entire body of objects in the universe, “∃” denotes a non-

empty subset of it. 



 11

5. Predicate: the predicate is used to denote a relation on the domain. It could be 

proposition letters (nullary relations), properties (unary relations) or n-ary 

relations. 

6. Function: a function is a special kind of relation that relates or maps a tuple of 

elements to exactly one element in the domain. A function has one or more 

arguments.  

7. punctuation symbols: “(“, “)“, “,”. 

Well-formed expressions consist of terms, atoms and formulae defined here as follows: 

1. terms: variable and constant are terms; if f is a n-place function symbol and t1…tn 

are terms, then f(t1,…tn) is a term. 

2. Atomic formulae (Atoms): proposition letters are atomic formulae; if R is a n-

place relation symbol and t1…tn are terms, then R(t1,…tn) is an atomic formula.  

3. Formulae: All atomic formulae are formulae; if A and B are formulae, then so are 

¬A, A⇒B, A∧B, A∨B, A⇔B, ∀x A and ∃x A. A closed formula (also called 

sentence) is a formula that contains no free variables1. 

Using Backus-Naur Form, the syntax of first-order logic is shown in Figure 2-1. 

 

 

 

 

 

                                                 
1 An occurrence of a variable in a formula is said to be free if it is neither in the scope of a quantifier with 
the same variable name, nor is the variable name of a quantifier [12].  



 12

 

 

 

 

 

 

 

 

Figure 2-1 The Syntax Of The First-Order Logic [37] 

Substitution is the process of the binding of terms to variables. A substitution 

usually takes the forms of a finite set of ordered pairs: 

{ v1:=t1, v2:=t2,… vn:=tn} 

where t1,t2,…tn is a list of terms and v1,v2,…vn is a list of variables. The process of 

substitution will replace vi with ti in a formula or term in which vi appears. The result 

formula/term of a substitution is called an instance of the original formula/term. 

For most automatic reasoning systems, formulas are usually first converted into 

some kind of “normal form” so that they are easier to process mechanically. One of the 

normal forms of formulas is clause form. A clause takes the form of a disjunction of a 

finite set of atoms (positive literals) or negation of atoms (negative literals). The Horn 

clause format and the definite clause format are two very useful clause formats. A Horn 

clause is clause that has at most one positive literal. A definite clause is clause with 

exactly one positive literal. The Horn clause and the definite clause are widely used in 

the automatic reasoning systems because very effective proof methods can be applied.  

Formula →AtomicFormula 
      |  Formula Connective Formula 
      |  Quantifier Variable Formula 

      |  ¬ Formula 
      |  (Formula) 

AtomicFormula → Predicate(Term, …) | Term = Term 

Term →Function(Term, …) 
             | Constant 
             | Variable 
 

Connective →  ⇒ | ∧ | ∨ | ⇔ 

Quantifier   →  ∀  | ∃ 

Constant     →  a   | b | john | … 

Variable     →  A | V | S | … 

Predicate    →before | hasColor | raining| … 

Function     →motherOf | leftLegOf | …    



 13

• Semantics 

The semantics of a logic gives meaning to any syntactically valid formula and relates the 

formulas to the domain. In order to describe the semantics of a formula, the notion of 

interpretation is introduced to denote the assignment of meanings to the symbols 

occurring in a formula. Every interpretation includes a non-empty set, D, which is called 

the domain of the interpretation. The elements in the domain are called values. An 

interpretation I of a language L is a mapping that makes following associations: 

1. Associate a value of D with each constant symbol c ∈ L. 

2. Associate a function fI : D
n
 → D with each n-ary function symbol f ∈ L.  

3. Associate a predicate PI  ⊆ D
n with each predicate symbol P ∈ L  

Based on above notions, the semantics of terms under an interpretation I can be 

defined as follows: 

1. constant symbol: the semantics of a constant symbol c is the value from D 

assigned to c, which is presented as I(c)=cI.  

2. variable: the semantics of a free variable v is different for different 

assignments 2  of values of D to it. We denote the semantics of v under 

assignment A as v[A]
. 

3. function: for the function that takes the form of f(t1,t2,…tk) where t1,t2,…tk  are 

terms, the semantics of the function I(f(t1,t2,…tk)
 [A]

)= 

fI(I(t1
[A]

),I(t2
[A]

),…I(tk
[A]

))  

                                                 
2 An assignment is a mapping from the variables of a formula to a set of the values in D. 



 14

Similarly, the semantics of formulae under an interpretation I is defined as follows: 

4. Atoms: for proposition letter P, I(P) is true iff PI is true; for the n-ary (n>0) 

predicate P(t1,t2,…tk), I(P(t1,t2,…tk)
[A]

) is true iff PI(I(t1
[A]

), I(t2
[A]

),… I(tk
[A]

)) 

is true. 

5. Formulae: If ∂ and β are formulae, then 

I((¬∂)
[A]

) = (I(∂[A]
))

c
; 

I((∂⇒B)
[A]

) = I(∂[A]
) ⊆ I(β[A]

); 

I((∂∧B)
[A]

) = I(∂[A]
) ∩ I(β[A]

); 

I((∂∨B)
[A]

) = I(∂[A]
) ∪ I(β[A]

); 

I((∂⇔B)
[A]

) = I(∂[A]
) ≡ I(β[A]

); 

I((∀x∂)
[A]

)  is true iff I(∂[A]
) is true for every assignment of the values from D 

to the free variable x. 

I((∃x∂)
[A]

) is true iff I(∂[A]
) is true for at least one assignment of the values 

from D to the free variable x. 

If formula ∂ is true in the interpretation I for every assignment of the values from 

D to the free variables of ∂, then ∂ is said to be valid in I and I is said to be a model of ∂. 

For a set of formulae S(∂1, ∂2,… ∂n) and a formula β, β is called a logical consequence of 

S if β is valid in every model of S. It is written S╞ ∂.  

It is worth noting that semantics of a language is not a necessary part for the 

inference procedure. In fact, an inference procedure can derive valid conclusions without 



 15

knowing the interpretation of the sentences. But only with the semantics can the derived 

conclusions make meaningful claims about the intended world. [37] 

2.2.3 Reasoning 

Reasoning or inference is the mechanical process operating on the syntax level by which 

conclusions are reached. This process is carried out by a computer to implement the 

entailment relation between sentences. The most essential part of a reasoning process is 

the inference rules that decide how an inference procedure can be carried out 

mechanically.  

For example, the inference rule unit resolution “∂∨β, ¬β ├ ∂”allows the inference 

system to derive ∂ as long as “either ∂ or β is true” and “β is false” are held to be true. 

An inference procedure derives new formulae from a given set of formulae 

according to inference rules. Let ∂ be the derived formula, S be the given formulae set 

and r be the inference rules, this could be written S├r ∂. If all the formulae that are 

derived from the inference procedure are logical consequence of the original formulae 

set, the inference rules will be called sound. An inference rule is complete if for all ∂ 

that S╞ ∂, S├r ∂. 

In 1930 and 1931, Kurt GÖdel proved for first order logic (defined in section 

2.2.2) that we can find inference rules that allow a complete proof procedure [37,12].  In 

1965, Robinson published the first single inference rule that by itself is complete – 

resolution, which gave the hope of building practical inference procedures [37]. There is 

very likely no polynomial-time complete inference procedure for first-order logic even 

when constrained to variable-free formulas. To create practical systems, people usually 



 16

add some extra constraints on the formulas in order to achieve better inference speed. 

Horn clauses form a useful class of formulae for which a linear inference procedure 

exists when constrained to variable-free formula.  

Another constituent element of an inference procedure is proof strategy. There are 

several aspects to this. For instance, for a particular query on the clausal formulae, an 

inference procedure may choose forward chaining, backward chaining or a combination 

of both. Other strategies like unit preference, set of support and input resolution are used 

to reduce the search space of the resolution system.  

 

2.3 Expert Systems  

Expert Systems (or Knowledge-based systems) are computer programs that are 

concerned with the concepts and methods of symbolic inference, or reasoning, by a 

computer, and how the knowledge used to make those inferences will be represented 

inside the machine.  

2.3.1 The building blocks of Expert Systems 

In most knowledge-based engineering practices, Expert Systems are composed of five 

functional components: 

• Knowledge base: A store of declarative representation of the expertise. One or 

more knowledge representation schemes are provided for expressing knowledge 

about the application domains.  



 17

• Reasoning engine: Implementation of logical inference mechanisms. It 

manipulates the symbolic information and knowledge in the knowledge base and 

applies them to the deduction rules3 so that conclusions can be reached.  

• Knowledge editing and debugging subsystem: This subsystem helps experts to 

build knowledge bases. It provides a way to input a user’s knowledge to the 

system as well as debug and modify them.  

• Explanation subsystem: A subsystem that explains the system's actions. The 

explanation can range from how the final or intermediate solutions were arrived 

at to justifying the need for additional data.  

• User interface: The means of communication with the user. The user interface is 

generally not a part of the Expert System technology, and was not given much 

attention in the past. However, it is now widely accepted that the user interface 

can make a critical difference in the perceived utility of a system regardless of 

the system's performance [29].  

2.3.2 Interaction with Expert Systems 

The design of interactions between the user and the Expert System (rule-based system) 

is important. A rule-based system design tends to provide a general interaction mode to 

apply to any arbitrary rule base that is used by the system.  Typically, the interaction is 

in the form of queries that are asked by the system and answered by the user or asked by 

the user and answered by the system.  

                                                 
3 Deduction rules are a set of rules for deducing the logical consequences of a set of sentences [37]. 



 18

2.3.2.1 Questions asked by the system  

A typical rule base only holds the general knowledge of a domain and the logical 

relations between each element of the knowledge. This general information and logical 

structure serves well to give the system a clear direction and criteria to make any 

decisions for a given task. Yet it lacks the knowledge that is particular to any given task. 

For example, a bank business rule system may know almost everything about the 

mortgage policies such as the kinds of mortgages available, the interest rate on each kind 

of mortgage and their terms, but it has no idea about the customer’s choice (preference) 

and financial information. Information of this kind is usually provided by the user. 

Because users are not expected to have any expert knowledge or know anything about 

how the system works, they can only provide whatever information the system needs in 

a reactive way. So it is important that the system is able to ask user relevant questions at 

appropriate times.  

2.3.2.2 Questions asked by the user 

It is often claimed that an important aspect of Expert Systems is their ability to explain 

themselves [1]. This means the user can ask the system for justification of conclusions or 

questions at any point in a consultation with an Expert System. On the other hand, by 

looking at explanations, knowledge engineers can see how the system is behaving, and 

how the rules and data are interacting. They serve as the “logical traces for knowledge 

bases just like program tracing for conventional programs” [37]. Given that the system 

knows which rules were used during the inference process, it is possible for the system 

to provide those rules to the user as a means for explaining the results [29]. In fact, most 
































































































































































