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Abstract 
We present an algorithm for learning from unlabeled text, based on the Vector Space 
Model (VSM) of information retrieval, that can solve verbal analogy questions of the kind 
found in the Scholastic Aptitude Test (SAT). A verbal analogy has the form A:B::C:D, 
meaning “A is to B as C is to D”; for example, mason:stone::carpenter:wood. SAT 
analogy questions provide a word pair, A:B, and the problem is to select the most 
analogous word pair, C:D, from a set of five choices. The VSM algorithm correctly 
answers 47% of a collection of 374 college-level analogy questions (random guessing 
would yield 20% correct). We motivate this research by relating it to work in cognitive 
science and linguistics, and by applying it to a difficult problem in natural language 
processing, determining semantic relations in noun-modifier pairs. The problem is to 
classify a noun-modifier pair, such as “laser printer”, according to the semantic relation 
between the noun (printer) and the modifier (laser). We use a supervised nearest-
neighbour algorithm that assigns a class to a given noun-modifier pair by finding the 
most analogous noun-modifier pair in the training data. With 30 classes of semantic 
relations, on a collection of 600 labeled noun-modifier pairs, the learning algorithm 
attains an F value of 26.5% (random guessing: 3.3%). With 5 classes of semantic 
relations, the F value is 43.2% (random: 20%). The performance is state-of-the-art for 
these challenging problems. 

1 Introduction 
A verbal analogy has the form A:B::C:D, meaning “A is to B as C is to D”; for example, 
“mason is to stone as carpenter is to wood”. (A mason is an artisan who works with 
stone; a carpenter is an artisan who works with wood.) The Scholastic Aptitude Test 
(SAT) contains multiple-choice verbal analogy questions, in which there is a word pair, 
A:B, and five choices. The task is to select the most analogous word pair, C:D, from the 
set of five word pairs. Table 1 gives an example. In the educational testing literature, the 
first pair, A:B, is called the stem of the analogy. 

Table 1. A sample SAT question. 

Stem: mason:stone 

(a) teacher:chalk 
(b) carpenter:wood 
(c) soldier:gun 
(d) photograph:camera 

Choices: 

(e) book:word 

Solution: (b) carpenter:wood 

For multiple-choice analogy questions, the best choice is the word pair with the semantic 
relation that is most similar to the relation of the stem pair. Although there has been 
much research on measuring the similarity of individual concepts (Lesk, 1969; Church 
and Hanks, 1989; Dunning, 1993; Smadja, 1993; Resnik, 1995; Landauer and Dumais, 
1997; Turney, 2001; Pantel and Lin, 2002), there has been relatively little work on 
measuring the similarity of semantic relationships between concepts (Vanderwende, 
1994; Rosario and Hearst, 2001; Rosario et al., 2002; Nastase and Szpakowicz, 2003).  

In Section 2, we motivate research on verbal analogies by showing how everyday 
metaphorical expressions can be represented as verbal analogies of the form A:B::C:D. 
This connects our work to research on metaphor in cognitive linguistics. We also argue 
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that the meaning of many words has historically evolved by metaphor, and show how the 
etymology of some words can be expressed using verbal analogies.  

As an example of the practical application of this work to the problems of computational 
linguistics, we consider the task of classifying the semantic relations of noun-modifier 
pairs. Given a noun-modifier pair such as “laser printer”, the task is to classify the 
semantic relation between the noun (printer) and the modifier (laser). This task can be 
viewed as a type of verbal analogy question. Given an unclassified noun-modifier pair, 
we can search through a set of labeled training data for the most analogous noun-
modifier pair. The idea is that the class of the nearest neighbour in the training data will 
predict the class of the given noun-modifier pair. 

Our approach to verbal analogies is based on the Vector Space Model (VSM) of 
information retrieval (Salton and McGill, 1983; Salton, 1989). A vector of numbers 
represents the semantic relation between a pair of words. The similarity between two 
word pairs, A:B and C:D, is measured by the cosine of the angle between the vector that 
represents A:B and the vector that represents C:D. As we discuss in Section 3, the VSM 
was originally developed for use in search engines. Given a query, a set of documents 
can be ranked by the cosines of the angles between the query vector and each 
document vector. The VSM is the basis for most modern search engines (Baeza-Yates 
and Ribeiro-Neto, 1999).  

Section 3 also covers related work on analogy and metaphor and research on classifying 
semantic relations. Most of the related work has used manually constructed lexicons and 
knowledge bases. Our approach uses learning from unlabeled text, with a very large 
corpus of web pages (about one hundred billion words); we do not use a lexicon or 
knowledge base. 

We present the details of our learning algorithm in Section 4, including an experimental 
evaluation of the algorithm on 374 college-level SAT-style verbal analogy questions. The 
algorithm correctly answers 47% of the questions. Since there are five choices per 
analogy question, random guessing would be expected to result in 20% correctly 
answered. We also discuss how the algorithm might be extended from recognizing 
analogies to generating analogies. 

The application of the VSM to classifying noun-modifier pairs is examined in Section 5. 
We apply a supervised nearest-neighbour learning algorithm, where the measure of 
distance (similarity) is the cosine of the vector angles. The data set for the experiments 
consists of 600 labeled noun-modifier pairs, from Nastase and Szpakowicz (2003). The 
learning algorithm attains an F value of 26.5% when given 30 different classes of 
semantic relations. Random guessing would be expected to result in an F value of 3.3%. 
We also consider a simpler form of the data, in which the 30 classes have been 
collapsed to 5 classes. The algorithm achieves an F value of 43.2% with the 5-class 
version of the data, where random guessing would be expected to yield 20%. 

Limitations and future work are covered in Section 6. The conclusion follows in 
Section 7. 

2 Motivation and Applications 
Section 2.1 argues that this research has relevance for computer understanding of 
everyday speech. Section 2.2 suggests that verbal analogies can shed light on the 
evolution of word meanings. Section 2.3 discusses the application to noun-modifier 
semantic relations. 
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2.1 Ubiquity of Metaphor 
Research in verbal analogies may contribute to enabling computers to process 
metaphorical text. Lakoff and Johnson (1980) argue persuasively that metaphor plays a 
central role in cognition and language. They give many examples of sentences in 
support of their claim that metaphorical language is very common in everyday speech. 
The metaphors in their sample sentences can be expressed using SAT-style verbal 
analogies of the form A:B::C:D.  

The first column in Table 2 is a list of sentences from Lakoff and Johnson (1980). The 
second column shows how the metaphor that is implicit in each sentence may be made 
explicit as a verbal analogy. The third column indicates the chapter in Lakoff and 
Johnson (1980) from which the sentence was taken.  

Table 2. Metaphorical sentences from Lakoff and Johnson (1980). 

 Metaphorical sentence SAT-style verbal analogy Chapter 

1 He shot down all of my arguments. aircraft:shoot_down::argument:criticize 1 

2 I demolished his argument. building:demolish::argument:criticize 1 

3 You need to budget your time. money:budget::time:schedule 2 

4 I’ve invested a lot of time in her. money:invest::time:allocate 2 

5 Your words seem hollow. object:hollow::word:meaningless 3 

6 When you have a good idea, try to capture it immediately in 
words. 

animal:capture::idea:express 3 

7 I gave you that idea. object:give::idea:communicate 3 

8 I couldn’t grasp his explanation. object:grasp::explanation:understand 4 

9 She fell in status. object:fall::status:decrease 4 

10 Inflation is rising. object:rise::inflation:increase 5 

11 My mind just isn’t operating today. machine:operate::mind:think 6 

12 The pressure of his responsibilities caused his breakdown. fluid:pressure::responsibility:anxiety 6 

13 This fact argues against the standard theories. debater:argue_against::fact:inconsistent_with 7 

14 Life has cheated me. charlatan:cheat::life:disappoint 7 

15 Inflation is eating up our profits. animal:eat::inflation:reduce 7 

16 His religion tells him that he cannot drink fine French wines. person:tell::religion:prescribe 7 

17 The Michelson-Morely experiment gave birth to a new 
physical theory. 

mother:give_birth::experiment:initiate 7 

18 Cancer finally caught up with him. person:catch::cancer:overcome 7 

19 This relationship is foundering. ship:founder::relationship:end 9 

20 That argument smells fishy. food:fishy::argument:fallacious 10 

21 His ideas have finally come to fruition. plants:fruition::ideas:realization 10 

22 The seeds of his great ideas were planted in his youth. plant:seed::idea:inspiration 10 

23 This is a sick relationship. person:sick::relationship:dysfunctional 10 

24 He prefers massive Gothic theories covered with gargoyles. architecture:Gothic::theory:intricate 11 

25 These facts are the bricks and mortar of my theory. bricks:house::facts:theory 11 

26 He hatched a clever scheme. baby_bird:hatch::scheme:create 14 

27 Do you follow my argument? path:follow::argument:understand_incrementally 16 

In most cases, the sentences only supply two of the terms (e.g., B and C) and the 
human reader is able to fill in the other two terms (A and D), generally without conscious 
thought. Given a partial analogy of the form A:B::?:?, our algorithm is able to select the 
missing word pair from a list of possibilities. We believe that this is a step towards 
computer processing of metaphorical sentences in everyday speech. 

Some of the sentences in Table 2 use metaphors that are so familiar that they might not 
even appear to be metaphorical. For example, responsibilities do not literally exert 
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pressure, in the sense that a gas or a fluid exerts a pressure (12). Responsibilities can 
make us feel anxious, and we use the metaphor of a fluid exerting a pressure as a way 
of understanding this. When anxiety leads to a mental breakdown, we understand this 
using the mental model of a pipe bursting under pressure.  

Chapter 7 of Lakoff and Johnson (1980) is concerned with personification – treating an 
abstract concept as if it were a person. For example, facts cannot literally argue (13); 
only people can argue. A fact can be inconsistent with a theory, but only a person can 
use this inconsistency to make an argument against the theory. For more discussion of 
the examples in Table 2, see the corresponding chapters in Lakoff and Johnson (1980). 

2.2 Evolution of Language 
Research in verbal analogies may contribute to understanding how language evolves. 
Lakoff (1987) contends that language evolution is frequently a metaphorical process. We 
show in Table 3 that the metaphors implicit in etymology can be represented using 
verbal analogies. The first column is a list of words, with definitions extracted from 
WordNet (Fellbaum, 1998) and etymology based on Skeat (1963). In each case, the 
modern use of a word appears to be derived from the original meaning by analogy. The 
second column makes each analogy explicit, using the form A:B::C:D. 

Table 3. Etymology rendered as SAT-style verbal analogies. 

 Definition and etymology SAT-style verbal analogy 

1 Accurate: conforming exactly or almost exactly to fact or to a standard. 
From the Latin accurare, to take pains with; from cura, care. 

accurate:result::careful:process 

2 Bias: a partiality that prevents objective consideration of an issue or 
situation. From the French biais, a slant, slope; hence, inclination to one 
side. 

bias:person::slant:line 

3 Dismantle: take apart into its constituent pieces. From the French 
desmanteller, to take a man’s cloak off his back. 

dismantle:structure::remove:clothing 

4 Disseminate: cause to become widely known. From the Latin 
disseminare, to scatter seed. 

disseminate:information::scatter:seed 

5 Fascinate: cause to be interested or curious. From the Latin fascinare, 
to enchant. 

fascinate:item::enchant:sorcerer 

6 Insult: treat, mention, or speak to rudely. From the Latin insultare, to 
leap upon. 

insult:character::leap_upon:body 

7 Interruption: a time interval during which there is a temporary cessation 
of something. From the Latin interruptionem, a breaking into. 

interruption:activity::breaking_into:container 

8 Plan: a series of steps to be carried out or goals to be accomplished. 
From the Latin planum, accusative case of planus, flat. Properly, a 
drawing (for a building) on a flat surface. 

plan:goal::blueprint:building 

9 Quick: accomplished rapidly and without delay. Originally, living, lively.  quick:slow::living:dead 

10 Ramification: a development that complicates a situation; “the court’s 
decision had many unforeseen ramifications”. From the French ramifier, 
to put forth branches. 

ramification:decision::branch:tree 

11 Snub: reject outright and bluntly. Originally, to “snip off” the end of a 
thing. 

snub:person::prune:object 

12 Volatile: evaporating readily at normal temperatures and pressures. 
From the French volatil, flying. 

volatile:substance::flying:bird 

2.3 Noun-Modifier Semantic Relations 
An algorithm for solving SAT-style verbal analogies could be applied to classification of 
noun-modifier semantic relations, which would be useful in machine translation, 
information extraction, and word sense disambiguation. We illustrate this with examples 
taken from the collection of 600 labeled noun-modifier pairs used in our experiments. 
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Machine translation: A noun-modifier pair such as “electron microscope” might not have 
a direct translation into an equivalent noun-modifier pair in another language. In the 
translation process, it may be necessary to expand the noun-modifier pair into a longer 
phrase, explicitly stating the implicit semantic relation. Is the semantic relation purpose 
(a microscope for viewing electrons) or instrument (a microscope that uses electrons)? 
The answer to this question may be necessary for correct translation. 

Information extraction: A typical information extraction task would be to process news 
stories for information about wars. The task may require finding information about the 
parties involved in the conflict. It would be important to know that the semantic relation in 
the noun-modifier pair “cigarette war” is topic (a war about cigarettes), not agent 
(cigarettes are fighting the war). 

Word sense disambiguation: The word “plant” might refer to an industrial plant or a living 
organism. If a document contains the noun-modifier pair “plant food”, a word sense 
disambiguation algorithm can take advantage of the information that the semantic 
relation involved is beneficiary (the plant benefits from the food), rather than source (the 
plant is the source of the food). 

3 Related Work 
In this section, we consider related work on metaphorical and analogical reasoning 
(Section 3.1), applications of the Vector Space Model (Section 3.2), and research on 
classifying noun-modifier pairs according to their semantic relations (Section 3.3). 

3.1 Metaphor and Analogy 
Turney et al. (2003) presented an ensemble approach to solving verbal analogies. 
Thirteen independent modules were combined using three different merging rules. One 
of the thirteen modules was the VSM module, exactly as presented here in Section 4.2. 
However, the focus of Turney et al. (2003) was on the merging rules; the individual 
modules were only briefly outlined. Therefore it is worthwhile to focus here on the VSM 
module alone, especially since it is the most accurate of the thirteen modules. By itself, 
on a test set of 100 SAT-style questions, the VSM module attained an accuracy of 
38.2% (Turney et al., 2003). The second best module, by itself, had an accuracy of 
29.4%. All thirteen modules together, combined with the product merging rule, had an 
accuracy of 45%. Excluding the VSM module, the other twelve modules, combined with 
the product merging rule, had an accuracy of 37.0%. These figures suggest that the 
VSM module made the largest contribution to the accuracy of the ensemble. The present 
paper goes beyond Turney et al. (2003) by giving a more detailed description of the 
VSM module, by showing how to adjust the balance of precision and recall, and by 
examining the application of the VSM to the classification of noun-modifier relations. 

French (2002) surveyed the literature on computational modeling of analogy-making. 
The earliest work was a system called Argus, which could solve a few simple verbal 
analogy problems (Reitman, 1965). Argus used a small hand-built semantic network and 
could only solve the limited set of analogy questions that its programmer had 
anticipated. All of the systems surveyed by French used hand-coded knowledge-bases; 
none of them can learn from data, such as a corpus of text. These systems have only 
been tested on small sets of hand-coded problems, created by the system authors 
themselves.  
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Dolan (1995) described a system for extracting semantic information from machine-
readable dictionaries. Parsing and semantic analysis were used to convert the Longman 
Dictionary of Contemporary English (LDOCE) into a large Lexical Knowledge Base 
(LKB). The semantic analysis recognized twenty-five different classes of semantic 
relations, such as hypernym (is_a), part_of, typical_object, means_of, and location_of. 
Dolan (1995) outlined an algorithm for identifying “conventional” metaphors in the LKB. A 
conventional metaphor is a metaphor that is familiar to a native speaker and has 
become part of the standard meaning of the words involved (Lakoff and Johnson, 1980). 
For example, English speakers are familiar with the metaphorical links between 
(sporting) games and (verbal) arguments. Dolan’s algorithm can identify this 
metaphorical connection between “game” and “argument” by observing the similarity in 
the LKB of the graph structure in the neighbourhood of “game” to the graph structure in 
the neighbourhood of “argument”. The examples of metaphors identified by the algorithm 
look promising, but the performance of the algorithm has not been objectively measured 
in any way (e.g., by SAT questions). Unfortunately, the LKB and the algorithms for 
parsing and semantic analysis are proprietary.  

The VSM algorithm is not limited to conventional metaphors. For example, the VSM 
approach can discover tourniquet:bleeding::antidote:poisoning (see Section 4.3.2).  

3.2 Vector Space Model 
In information retrieval, it is common to measure the similarity between a query and a 
document using the cosine of the angle between their vectors (Salton and McGill, 1983; 
Salton, 1989). Almost all modern search engines use the VSM to rank documents by 
relevance for a given query.  

The VSM approach has also been used to measure the semantic similarity of words 
(Lesk, 1969; Ruge, 1992; Pantel and Lin, 2002). Pantel and Lin (2002) clustered words 
according to their similarity, as measured by a VSM. Their algorithm is able to discover 
the different senses of a word, using unsupervised learning. They achieved impressive 
results on this ambitious task. 

The novelty in this paper is the application of the VSM approach to measuring the 
similarity of semantic relationships. The vectors characterize the semantic relationship 
between a pair of words, rather than the meaning of a single word (Lesk, 1969; Ruge, 
1992; Pantel and Lin, 2002) or the topic of a document (Salton and McGill, 1983; Salton, 
1989). 

3.3 Noun-Modifier Semantic Relations 
Nastase and Szpakowicz (2003) used supervised learning to classifying noun-modifier 
relations. To evaluate their approach, they created a set of 600 noun-modifier pairs, 
which they hand-labeled with 30 different classes of semantic relations. (We use this 
data set in our own experiments, in Section 5.) Each noun-modifier word pair was 
represented by a feature vector, where the features were derived from the ontological 
hierarchy in a lexicon (WordNet or Roget’s Thesaurus). Standard machine learning tools 
(MBL, C5.0, RIPPER, and FOIL) were used to induce a classification model from the 
labeled feature vectors. Nastase and Szpakowicz (2003) described their work as 
exploratory; the results they presented were qualitative, rather than quantitative. Their 
approach seems promising, but it is not yet ready for a full quantitative evaluation. 

Rosario and Hearst (2001) used supervised learning to classifying noun-modifier 
relations in the medical domain, using MeSH (Medical Subject Headings) and UMLS 
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(Unified Medical Language System) as lexical resources for representing each noun-
modifier relation with a feature vector. They achieved good results using a neural 
network model to distinguish 13 classes of semantic relations. In an extension of this 
work, Rosario et al. (2002) used hand-crafted rules and features derived from MeSH to 
classify noun-modifier pairs that were extracted from biomedical journal articles. Our 
work differs from Rosario and Hearst (2001) and Rosario et al. (2002), in that we do not 
use a lexicon and we do not restrict the domain of the noun-modifier pairs. 

In work that is related to Dolan (1995), Vanderwende (1994) used hand-built rules, 
together with the LKB derived from LDOCE, to classify noun-modifier pairs. Tested with 
97 pairs extracted from the Brown corpus, the rules had an accuracy of 52%.  

Barker and Szpakowicz (1998) used memory based learning (MBL) for classifying 
semantic relations. The memory base stored triples, consisting of a noun, its modifier, 
and (if available) a marker. The marker was either a preposition or an appositive marker, 
when the noun-modifier pair was found in text next to a preposition or an apposition. A 
new noun-modifier pair was classified by looking for the nearest neighbours in the 
memory base. The distance (similarity) measure was based on literal matches between 
the elements in the triples, which constrained the algorithm’s ability to generalize from 
past examples. 

Some research has concentrated on learning particular semantic relations, such as 
part_of (Berland and Charniak, 1999) or type_of (Hearst, 1992). These are specific 
instances of the more general problem considered here (see Table 12). 

In this paper, we apply a measure of analogical similarity to classifying noun-modifier 
relations, but, in principle, this could work the other way around; an algorithm for 
classifying noun-modifier relations could be used to solve SAT-style verbal analogy 
problems. The stem pair and each of the choice pairs could be classified according to 
their semantic relations. Ideally, the stem and the correct choice would be classified as 
having the same semantic relation, whereas the incorrect choices would have different 
semantic relations. We have done some preliminary experiments with this approach, but 
have not yet had any success. 

4 Solving Verbal Analogy Problems 
In Section 4.1, we examine the task of solving verbal analogies. Section 4.2 outlines the 
application of the Vector Space Model to this task. The experimental results are 
presented in Section 4.3 and discussed in Sections 4.4 and 4.5.  

4.1 Analogy Problems 
The semantic relation between a pair of words may have no direct, obvious connection 
to the individual words themselves. In an analogy A:B::C:D, there is not necessarily 
much in common between A and C or between B and D. For example, consider the 
analogy “traffic:street::water:riverbed” (one of our SAT questions). Traffic flows down a 
street; water flows down a riverbed. A street carries traffic; a riverbed carries water. This 
analogy is not superficial; there is a relatively large body of work on the mathematics of 
hydrodynamics applied to modeling automobile traffic flow (Daganzo, 1994; Zhang, 
2003; Yi et al., 2003). Yet, if we look at the positions of these four words in the WordNet 
hierarchy (Fellbaum, 1998), it appears that they have little in common (see Table 4). 
“Traffic” and “water” belong to different hierarchies (the former is a “group” and the latter 
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is a “physical thing”). “Street” and “riverbed” are both “physical objects”, but it takes 
several steps up the hierarchy to find the abstract class to which they both belong. 

Table 4. Location of the four words in the WordNet hierarchy. 

traffic � collection � group, grouping 
water � liquid � fluid � substance, matter �  

entity, physical thing 
street � thoroughfare � road, route � way �  

artifact � physical object �  
entity, physical thing 

riverbed � bed, bottom � natural depression �  

geological formation � natural object �  

physical object � entity, physical thing 

This example illustrates that the similarity of semantic relations between words is not 
directly reducible to the semantic similarity of individual words. Algorithms that have 
been successful for individual words (Lesk, 1969; Church and Hanks, 1989; Dunning, 
1993; Smadja, 1993; Resnik, 1995; Landauer and Dumais, 1997; Turney, 2001; Pantel 
and Lin, 2002) will not work for semantic relations without significant modification. 

4.2 VSM Approach 
Given candidate analogies of the form A:B::C:D, we wish to assign scores to the 
candidates and select the highest scoring candidate. The quality of a candidate analogy 
depends on the similarity of the semantic relation R1 between A and B to the semantic 
relation R2 between C and D. The relations R1 and R2 are not given to us; the task is to 
infer these relations automatically. Our approach to this task, inspired by the Vector 
Space Model of information retrieval (Salton and McGill, 1983; Salton, 1989), is to create 
vectors, r1 and r2, that represent features of R1 and R2, and then measure the similarity 
of R1 and R2 by the cosine of the angle 
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We create a vector, r, to characterize the relationship between two words, X and Y, by 
counting the frequencies of various short phrases containing X and Y. We use a list of 
64 joining terms (see Table 5), such as “of”, “for”, and “to”, to form 128 phrases that 
contain X and Y, such as “X of Y”, “Y of X”, “X for Y”, “Y for X”, “X to Y”, and “Y to X”. We 
then use these phrases as queries for a search engine and record the number of hits 
(matching documents) for each query. This process yields a vector of 128 numbers. 
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Table 5. The 64 joining terms. 

1 “ ” 17 “ get* ” 33 “ like the ” 49 “ then ”  
2 “ * not ” 18 “ give* ” 34 “ make* ” 50 “ this ” 
3 “ * very ” 19 “ go ” 35 “ need* ” 51 “ to ” 
4 “ after ” 20 “ goes ” 36 “ not ” 52 “ to the ” 
5 “ and not ” 21 “ has ” 37 “ not the ” 53 “ turn* ” 
6 “ are ” 22 “ have ” 38 “ of ” 54 “ use* ” 
7 “ at ” 23 “ in ” 39 “ of the ” 55 “ when ” 
8 “ at the ” 24 “ in the ” 40 “ on ” 56 “ which ” 
9 “ become* ” 25 “ instead of ” 41 “ onto ” 57 “ will ” 

10 “ but not ” 26 “ into ” 42 “ or ” 58 “ with ” 
11 “ contain* ” 27 “ is ” 43 “ rather than ” 59 “ with the ” 
12 “ for ” 28 “ is * ” 44 “ such as ” 60 “ within ” 
13 “ for example ” 29 “ is the ” 45 “ than ” 61 “ without ” 
14 “ for the ” 30 “ lack* ” 46 “ that ” 62 “ yet ” 
15 “ from ” 31 “ like ” 47 “ the ” 63 “’s ” 
16 “ from the ” 32 “ like * ” 48 “ their ” 64 “’s * ” 

We have found that accuracy of this approach to scoring analogies improves when we 
use the logarithm of the frequency. That is, if x is the number of hits for a query, then the 
corresponding element in the vector r is log(x + 1).1 Ruge (1992) found that using the 
logarithm of the frequency also yields better results when measuring the semantic 
similarity of individual words. Logarithms are also commonly used in the VSM for 
information retrieval (Salton and Buckley, 1988). 

We used the AltaVista search engine (http://www.altavista.com/) in the following 
experiments. At the time our experiments were done, we estimate that AltaVista’s index 
contained about 350 million English web pages (about 1011 words). We chose AltaVista 
for its “*” operator, which serves two functions:  

1. Whole word matching: In a quoted phrase, an asterisk can match any whole word. 
The asterisk must not be the first or last character in the quoted phrase. The asterisk 
must have a blank space immediately before and after it. For example, the query 
“immaculate * very clean” will match “immaculate and very clean”, “immaculate is 
very clean”, “immaculate but very clean”, and so on. 

2. Substring matching: Embedded in a word, an asterisk can match zero to five 
characters. The asterisk must be preceded by at least three regular alphabetic 
characters. For example, “colo*r” will match “color” and “colour”. 

Some of the joining terms in Table 5 contain an asterisk, and we also use the asterisk for 
stemming, as specified in Table 6. For instance, consider the pair “restrained:limit” and 
the joining term “ * very ”. Since “restrained” is ten characters long, it is stemmed to 
“restrai*”. Since “limit” is five characters long, it is stemmed to “limit*”. Joining these 
stemmed words, we have the two queries “restrai* * very limit*” and “limit* * very 
restrai*”. The first query would match “restrained and very limited”, “restraints are very 
limiting”, and so on. The second query would match “limit is very restraining”, “limiting 
and very restraining”, and so on. 

                                                
1
 We add 1 to x because the logarithm of zero is undefined. The base of the logarithm does not 

matter, since all logarithms are equivalent up to a constant multiplicative factor. Any constant 
factor drops out when calculating the cosine. 
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Table 6. Stemming rules. 

 Stemming rule Example 
1 If 10 < length, then replace the last 4 characters with “*”. advertisement → advertise* 
2 If 8 < length ≤ 10, then replace the last 3 characters with “*”. compliance → complia* 
3 If 2 < length ≤ 8, then append “*” to the end. rhythm → rhythm* 
4 If length ≤ 2, then do nothing. up → up 

The vector r is a kind of signature of the semantic relationship between X and Y. For 
example, consider the analogy traffic:street::water:riverbed. The words “traffic” and 
“street” tend to appear together in phrases such as “traffic in the street” (544 hits on 
AltaVista) and “street with traffic” (460 hits), but not in phrases such as “street on traffic” 
(7 hits) or “street is traffic” (15 hits). Similarly, “water” and “riverbed” may appear 
together as “water in the riverbed” (77 hits), but “riverbed on water” (0 hits) would be 
unlikely. Therefore the angle 

�
 between the vector r1 for traffic:street and the vector r2 for 

water:riverbed tends to be relatively small, and hence cosine(
�
) is relatively large. 

To answer a SAT analogy question, we calculate the cosines of the angles between the 
vector for the stem pair and each of the vectors for the choice pairs. The algorithm 
guesses that the answer is the choice pair with the highest cosine. This is an 
unsupervised learning algorithm; it makes no use of labeled training data. 

4.3 Experiments 
In the following experiments, we evaluate the VSM approach to solving analogies using 
a set of 374 SAT-style verbal analogy problems. This is the same set of questions as 
was used in Turney et al. (2003), but the experimental setup is different. The ensemble 
merging rules of Turney et al. (2003) use supervised learning, so the 374 questions were 
separated there into 274 training questions and 100 testing questions. However, the 
VSM approach by itself needs no labeled training data, so we are able to test it here on 
the full set of 374 questions. 

Section 4.3.1 considers the task of recognizing analogies and Section 4.3.2 takes a step 
towards generating analogies. 

4.3.1 Recognizing Analogies 
Following standard practice in information retrieval (van Rijsbergen, 1979), we define 
precision, recall, and F as follows: 

precision = (number of correct guesses) / (total number of guesses made) 

recall = (number of correct guesses) / (maximum possible number correct) 

F = (2 × precision × recall) / (precision + recall) 

When any of the denominators are zero, we define the result to be zero. All three of 
these performance measures range from 0 to 1, and larger values are better than 
smaller values. 

Table 7 shows the experimental results for our set of 374 analogy questions. Five 
questions were skipped because the vector for the stem pair was entirely zeros. Since 
there are five choices for each question, random guessing would yield a recall of 20%. 
The algorithm is clearly performing much better than random guessing (p-value is less 
than 0.0001 according to Fisher’s Exact test).  
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Table 7. Experimental results for 374 SAT-style analogy questions. 

 Number Percent 

Correct 176 47.1% 

Incorrect 193 51.6% 

Skipped 5 1.3% 

Total 374 100.0% 

Precision 176 / 369 47.7% 

Recall 176 / 374 47.1% 

F  47.4% 

There is a well-known trade-off between precision and recall: By skipping hard 
questions, we can increase precision at the cost of decreased recall. By making multiple 
guesses for each question, we can increase recall at the cost of decreased precision. 
The F measure is the harmonic mean of precision and recall. It tends to be largest when 
precision and recall are balanced. 

For some applications, precision may be more important than recall, or vice versa. Thus 
it is useful to have a way of adjusting the balance between precision and recall. We 
observed that the difference between the cosine of the best choice and the cosine of the 
second best choice (the largest cosine minus the second largest) seems to be a good 
indicator of whether the guess is correct. We call this difference the margin. By setting a 
threshold on the margin, we can trade-off precision and recall. 

When the threshold on the margin is a positive number, we skip every question for which 
the margin is less than the threshold. This tends to increase precision and decrease 
recall. On the other hand, when the threshold on the margin is negative, we make two 
guesses (both the best and the second best choices) for every question for which the 
margin is less than the absolute value of the threshold. Ties are unlikely, but if they 
happen, we break them randomly.  

Consider the example in Table 8. The best choice is (e) and the second best choice is 
(c). (In this case, the best choice is correct.) The margin is 0.00508 (0.69265 minus 

0.68757). If the threshold is between −0.00508 and +0.00508, then the output is choice 
(e) alone. If the threshold is greater than +0.00508, then the question is skipped. If the 

threshold is less than −0.00508, then the output is both (e) and (c). 

Table 8. An example of an analogy question, taken from the set of 374 questions. 

Stem pair: traffic:street Cosine 

Choices: (a) ship:gangplank 0.31874 

 (b) crop:harvest 0.57234 

 (c) car:garage 0.68757 

 (d) pedestrians:feet 0.49725 

 (e) water:riverbed 0.69265 

Figure 1 shows precision, recall, and F as the threshold on the margin varies from −0.11 
to +0.11. The vertical line at the threshold zero corresponds to the situation in Table 7. 
With a threshold of +0.11, precision reaches 59.2% and recall drops to 11.2%. With a 

threshold of −0.11, recall reaches 61.5% and precision drops to 34.5%. These 
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precision-recall results compare favourably with typical results in information retrieval 
(Voorhees and Harman, 1997). 
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Figure 1. Precision and recall for 374 SAT-style analogy questions. 

In Figure 1, we see that the F value reaches its maximum when the threshold on the 
margin is near zero. This is expected, since F is intended to favour a balance between 
precision and recall.  

4.3.2 Generating Analogies 
The results so far suggest that our algorithm is capable of recognizing analogies with 
some degree of success, but an interesting question is whether it might be capable of 
generating analogies. That is, given a stem pair, the algorithm can often pick out the 
correct choice pair from a set of five choices, but generating a verbal analogy from 
scratch is a more difficult problem. One approach to the generation problem is to try to 
reduce it to the recognition problem, by randomly generating candidate analogies and 
then trying to recognize good analogies among the candidates.  

As a first step towards generating analogies, we expanded the number of choices for 
each stem pair. We dropped the five questions for which the stem vector was all zeros, 
leaving 369 questions. For each of the remaining questions, we combined the 369 
correct choice pairs. For each of the 369 stem pairs, the algorithm had to choose the 
correct word pair from among the 369 possible answers. 

For each of the 369 stem pairs, the 369 choice pairs were sorted in order of decreasing 
cosine. We then examined the top ten most highly ranked choices to see whether the 
correct choice was among them. Table 9 shows the result of this experiment. The first 
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row in the table shows that the first choice was correct for 31 of the 369 stems (8.4%). 
The last row shows that the correct choice appears somewhere among the top ten 
choices 29.5% of the time. With random guessing, the correct choice would appear 
among the top ten 2.7% of the time (10 / 369 = 0.027).  

Table 9. Selecting the correct word pair from a set of 369 choices. 

Rank Matches Matches Cumulative Cumulative 
# # % # % 
1 31 8.4% 31 8.4% 

2 19 5.1% 50 13.6% 

3 13 3.5% 63 17.1% 

4 11 3.0% 74 20.1% 

5 6 1.6% 80 21.7% 

6 7 1.9% 87 23.6% 

7 9 2.4% 96 26.0% 

8 5 1.4% 101 27.4% 

9 5 1.4% 106 28.7% 

10 3 0.8% 109 29.5% 

This experiment actually underestimates the quality of the output. Table 10 shows the 
top ten choices for two stem pairs. For the first stem pair, barley:grain, the correct 
choice, according to the original formulation of the test, is pine:tree, which is the third 
choice here. The semantic relation between barley and grain is type_of (hyponym), so 
the first two choices, aluminum:metal and beagle:dog, are perfectly acceptable 
alternatives. In fact, it could be argued that aluminum:metal is a better choice, because 
aluminum and barley are mass nouns (i.e., they do not form plurals), but pine is a count 
noun (e.g., “I have two pines in my yard.”).  

For the second stem pair in Table 10, tourniquet:bleeding, the original correct choice, 
splint:movement, is not among the top ten choices. However, the first choice, 
antidote:poisoning, is a good alternative. (A tourniquet is used to treat bleeding; an 
antidote is used to treat poisoning.) The seventh choice, assurance:uncertainty, also 
seems reasonable. (Assurance puts an end to uncertainty; a tourniquet puts an end to 
bleeding.)  

The experiments presented here required 287,232 queries to AltaVista (374 analogy 
questions × 6 word pairs per question × 128 queries per word pair). Although AltaVista is 
willing to support automated queries of the kind described here, as a courtesy, we 
inserted a five second delay between each query. Thus processing the 287,232 queries 
took about seventeen days.  
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Table 10. Two examples of stem pairs and the top ten choices. 

Rank Word pair Cosine Question number 
Stem barley:grain  33 

1 aluminum:metal 0.8928 198 
2 beagle:dog 0.8458 190 
3 pine:tree 0.8451 33 
4 emerald:gem 0.8424 215 
5 sugar:sweet 0.8240 327 
6 pseudonym:name 0.8151 240 
7 mile:distance  0.8142 21 
8 oil:lubricate  0.8133 313 
9 novel:book 0.8117 182 
10 minnow:fish 0.8111 193 

Stem tourniquet:bleeding  46 

1 antidote:poisoning 0.7540 308 
2 belligerent:fight 0.7482 84 
3 chair:furniture  0.7481 107 
4 mural:wall  0.7430 302 
5 reciprocate:favor  0.7429 151 
6 menu:diner  0.7421 284 
7 assurance:uncertainty  0.7287 8 
8 beagle:dog  0.7210 19 
9 canvas:painting  0.7205 5 
10 ewe:sheep  0.7148 261 

4.4 Human SAT Scores 
Our analogy question set (Turney et al., 2003) was constructed from books and web 
sites intended for students preparing for the Scholastic Aptitude Test (SAT), including 90 
questions from unofficial SAT preparation web sites, 14 questions from the Educational 
Testing Service (ETS) web site (http://www.ets.org/), 190 questions scanned in from a 
book with actual SAT exams (Claman, 2000), and 80 questions typed from SAT 
guidebooks.  

The SAT I test consists of 78 verbal questions and 60 math questions (there is also a 
SAT II test, covering specific subjects, such as chemistry). The questions are multiple 
choice, with five choices per question. The verbal and math scores are reported 
separately. The raw SAT I score is calculated by giving one point for each correct 
answer, zero points for skipped questions, and subtracting one quarter point for each 
incorrect answer. The quarter point penalty for incorrect answers is chosen so that the 
expected raw score for random guessing is zero points. The raw score is then converted 
to a scaled score that ranges from 200 to 800.2 The College Board publishes information 
about the percentile rank of college-bound senior high school students for the SAT I 
verbal and math questions.3 On the verbal SAT test, the mean scaled score for 2002 
was 504. We used information from the College Board to make Table 11. 

                                                
2
 http://www.collegeboard.com/prod_downloads/about/news_info/cbsenior/yr2002/pdf/two.pdf 

3
 http://www.collegeboard.com/prod_downloads/about/news_info/cbsenior/yr2002/pdf/threeA.pdf 
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Table 11. Verbal SAT scores. 

Note 

Percent 
correct 

(no skipping) 

SAT I 
raw score 

verbal 

SAT I 
scaled score 

verbal 
Percentile 

rank 
 100% 78 800 ±10 100.0 ±0.5 

 97% 75 790 ±10 99.5 ±0.5 

 92% 70 740 ±20 98.0 ±1.0 

 87% 65 690 ±20 94.0 ±2.0 

 82% 60 645 ±15 88.5 ±2.5 

 76% 55 615 ±15 82.5 ±3.5 

 71% 50 580 ±10 74.0 ±3.0 

 66% 45 555 ±15 66.0 ±5.0 

 61% 40 525 ±15 55.5 ±5.5 

College-bound mean 57% 36 504 ±10 48.0 ±3.5 

 56% 35 500 ±10 46.5 ±3.5 

 51% 30 470 ±10 36.5 ±3.5 

VSM algorithm 47% 26 445 ±10 29.0 ±3.0 

 46% 25 440 ±10 27.0 ±3.0 

 41% 20 410 ±10 18.5 ±2.5 

 35% 15 375 ±15 11.5 ±2.5 

 30% 10 335 ±15 5.5 ±1.5 

 25% 5 285 ±25 2.0 ±1.0 

Random guessing 20% 0 225 ±25 0.5 ±0.5 

 15% −5 200 ±25 0.0 ±0.5 

Analogy questions are only a subset of the 78 verbal SAT questions. If we assume that 
the difficulty of our 374 analogy questions is comparable to the difficulty of other verbal 
SAT questions, then we can estimate that the average college-bound senior would 
correctly answer about 57% of the 374 analogy questions. We can also estimate that the 

performance of the VSM approach corresponds to a percentile rank of 29±3. Claman 
(2000) suggests that the analogy questions may be slightly harder than other verbal SAT 
questions, so we may be slightly overestimating the mean human score on the analogy 
questions.  

4.5 Discussion 
As mentioned in Section 3.1, the VSM algorithm performs as well as an ensemble of 
twelve other modules (Turney et al., 2003). All of the other modules employed various 
lexical resources (WordNet, Dictionary.com, and Wordsmyth.net), whereas the VSM 
module learns from a large corpus of unlabeled text, without a lexicon. The VSM 
performance of 47.1% correct is well above the 20% correct that would be expected for 
random guessing, but it is also less than the 57% correct that would be expected for the 
average college-bound senior high school student.  

When the number of choices for each stem is expanded from five to 369, the correct 
choice is among the top ten choices 29.5% of the time, where random guessing would 
give 2.7%. There is certainly much room for improvement, but there is also good 
evidence that analogies can be solved algorithmically. 
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The list of joining terms in Table 5 is somewhat arbitrary. This list was based on 
preliminary experiments with a development set of analogy questions. The terms in the 
list were selected by intuition. We attempted to take a more principled approach to the 
joining terms, by creating a larger list of 142 joining terms, and then using feature 
selection algorithms (forward selection, backward selection, genetic algorithm selection) 
to select an optimal subset of the features. None of the selected subsets were able to 
achieve statistically significantly better performance in cross-validation testing, compared 
to the original set in Table 5. The subsets seemed to overfit the training questions. We 
believe that this problem can be fixed with a larger set of questions. There is no reason 
to believe that the terms in Table 5 are optimal. 

The execution time (seventeen days) would be much less if we had a local copy of the 
AltaVista database. Progress in hardware will soon make it practical for a standard 
desktop computer to search in a local copy of a corpus of this size (about 1011 words). 

5 Noun-Modifier Relations 
In Section 5.1, we give the classes of noun-modifier relations that are used in our 
experiments (Nastase and Szpakowicz, 2003). Our classification algorithm is presented 
in Section 5.2. The experiments are in Section 5.3, followed by discussion of the results 
in Section 5.4.  

5.1 Classes of Relations 
The following experiments use the 600 labeled noun-modifier pairs of Nastase and 
Szpakowicz (2003). This data set includes information about the part of speech and 
WordNet synset (synonym set; i.e., word sense tag) of each word, but our algorithm 
does not use this information. 

Table 12 lists the 30 classes of semantic relations. The table is based on Appendix A of 
Nastase and Szpakowicz (2003), with some simplifications. The original table listed 
several semantic relations for which there were no instances in the data set. These were 
relations that are typically expressed with longer phrases (three or more words), rather 
than noun-modifier word pairs. For clarity, we decided not to include these relations in 
Table 12.  

In this table, H represents the head noun and M represents the modifier. For example, in 
“laser printer”, the head noun (H) is “printer” and the modifier (M) is “laser”. In English, 
the modifier (typically a noun or adjective) usually precedes the head noun. In the 
description of “purpose” (3), V represents an arbitrary verb. In “concert hall”, the hall is 
for presenting concerts (V is “present”) or holding concerts (V is “hold”). 

Nastase and Szpakowicz (2003) organized the relations into groups. The five bold terms 
in the “Relation” column of Table 12 are the names of five groups of semantic relations. 
(The original table had a sixth group, but there are no examples of this group in the data 
set.) We make use of this grouping in Section 5.3.2.  



NRC/ERB-1103. Learning Analogies and Semantic Relations 

Turney and Littman  19 

Table 12. Classes of semantic relations, adapted from Nastase and Szpakowicz (2003). 

 Relation  Abbreviation Example phrase Description  
 Causality     

1 cause  cs  flu virus  H makes M occur or exist, H is necessary and sufficient  

2 effect  eff  exam anxiety  M makes H occur or exist, M is necessary and sufficient  

3 purpose  prp concert hall  H is for V-ing M, M does not necessarily occur or exist 

4 detraction  detr  headache pill  H opposes M, H is not sufficient to prevent M  

 Temporality     

5 frequency  freq daily exercise H occurs every time M occurs 

6 time at  tat  morning exercise  H occurs when M occurs  

7 time through  tthr six-hour meeting H existed while M existed, M is an interval of time 

 Spatial     

8 direction  dir  outgoing mail  H is directed towards M, M is not the final point  

9 location  loc  home town  H is the location of M  

10 location at  lat  desert storm  H is located at M  

11 location from  lfr  foreign capital  H originates at M  

 Participant     

12 agent  ag  student protest  M performs H, M is animate or natural phenomenon 

13 beneficiary  ben  student discount  M benefits from H  

14 instrument  inst  laser printer  H uses M  

15 object  obj  metal separator  M is acted upon by H  

16 object property  obj_prop  sunken ship  H underwent M  

17 part  part  printer tray  H is part of M  

18 possessor  posr  national debt  M has H  

19 property  prop  blue book  H is M  

20 product  prod  plum tree  H produces M  

21 source  src  olive oil  M is the source of H  

22 stative  st  sleeping dog  H is in a state of M  

23 whole  whl  daisy chain  M is part of H  

 Quality     

24 container  cntr  film music  M contains H  

25 content  cont  apple cake  M is contained in H  

26 equative  eq  player coach  H is also M  

27 material  mat  brick house  H is made of M  

28 measure  meas  expensive book  M is a measure of H  

29 topic  top  weather report  H is concerned with M  

30 type  type  oak tree  M is a type of H 

5.2 Nearest-Neighbour Approach 
The following experiments use single nearest-neighbour classification with leave-one-out 
cross-validation. A vector of 128 numbers is calculated for each noun-modifier pair, as 
described in Section 4.2. The similarity of two vectors is measured by the cosine of their 
angle. For leave-one-out cross-validation, the testing set consists of a single vector and 
the training set consists of the 599 remaining vectors. The data set is split 600 times, so 
that each vector gets a turn as the testing vector. The predicted class of the testing 
vector is the class of the single nearest neighbour (the vector with the largest cosine) in 
the training set.  

5.3 Experiments 
Section 5.3.1 looks at the problem of assigning the 600 noun-modifier pairs to thirty 
different classes. Section 5.3.2 considers the easier problem of assigning them to five 
different classes.  
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5.3.1 Thirty Classes 
Table 13 gives the precision, recall, and F values for each of the 30 classes. The column 
labeled “class percent” corresponds to the expected precision, recall, and F for the 
simple strategy of guessing each class randomly, with a probability proportional to the 
class size. The actual average F of 26.5% is much larger than the average F of 3.3% 
that would be expected for random guessing. The difference (23.2%) is significant with 
99% confidence (p-value < 0.0001, according to the paired t-test). The accuracy is 
27.8% (167/600). The F values are also shown graphically in Figure 2. 

Table 13. The precision, recall, and F for each of the 30 classes of semantic relations. 

 Class name Class size Class percent Precision Recall F 
1 ag 36 6.0% 40.7% 30.6% 34.9% 

2 ben 9 1.5% 20.0% 22.2% 21.1% 

3 cntr 3 0.5% 40.0% 66.7% 50.0% 

4 cont 15 2.5% 23.5% 26.7% 25.0% 

5 cs 17 2.8% 18.2% 11.8% 14.3% 

6 detr 4 0.7% 50.0% 50.0% 50.0% 

7 dir 8 1.3% 33.3% 12.5% 18.2% 

8 eff 34 5.7% 13.5% 14.7% 14.1% 

9 eq 5 0.8% 0.0% 0.0% 0.0% 

10 freq 16 2.7% 47.1% 50.0% 48.5% 

11 inst 35 5.8% 15.6% 14.3% 14.9% 

12 lat 22 3.7% 14.3% 13.6% 14.0% 

13 lfr 21 3.5% 8.0% 9.5% 8.7% 

14 loc 5 0.8% 0.0% 0.0% 0.0% 

15 mat 32 5.3% 34.3% 37.5% 35.8% 

16 meas 30 5.0% 69.2% 60.0% 64.3% 

17 obj 33 5.5% 21.6% 24.2% 22.9% 

18 obj_prop 15 2.5% 71.4% 33.3% 45.5% 

19 part 9 1.5% 16.7% 22.2% 19.0% 

20 posr 30 5.0% 23.5% 26.7% 25.0% 

21 prod 16 2.7% 14.7% 31.3% 20.0% 

22 prop 49 8.2% 55.2% 32.7% 41.0% 

23 prp 31 5.2% 14.9% 22.6% 17.9% 

24 src 12 2.0% 33.3% 25.0% 28.6% 

25 st 9 1.5% 0.0% 0.0% 0.0% 

26 tat 30 5.0% 64.3% 60.0% 62.1% 

27 top 45 7.5% 20.0% 20.0% 20.0% 

28 tthr 6 1.0% 40.0% 33.3% 36.4% 

29 type 16 2.7% 26.1% 37.5% 30.8% 

30 whl 7 1.2% 8.3% 14.3% 10.5% 

 Average 20 3.3% 27.9% 26.8% 26.5% 

The average precision, recall, and F values in Table 13 are calculated using 
macroaveraging, rather than microaveraging (Lewis, 1991). Microaveraging combines 
the true positive, false positive, and false negative counts for all of the classes, and then 
calculates precision, recall, and F from the combined counts. Macroaveraging calculates 
the precision, recall, and F for each class separately, and then calculates the averages 
across all classes. Macroaveraging gives equal weight to all classes, but microaveraging 
gives more weight to larger classes. We use macroaveraging (giving equal weight to all 
classes), because we have no reason to believe that the class sizes in the data set 
reflect the actual distribution of the classes in a real corpus. (Microaveraging would give 
a slight boost to our results.) 
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Figure 2. The F values for each of the 30 classes. 

We can adjust the balance between precision and recall, using a method similar to the 
approach in Section 4.3. For each noun-modifier pair that is to be classified, we find the 
two nearest neighbours. If the two nearest neighbours belong to the same class, then we 
output that class as our guess for the noun-modifier pair that is to be classified. 
Otherwise, we calculate the margin (the cosine of the first nearest neighbour minus the 
cosine of the second nearest neighbour). Let m be the margin and let t be the threshold. 

If −m ≤ t ≤ +m, then we output the class of the first nearest neighbour as our guess for 
the given noun-modifier pair. If t > m, then we abstain from classifying the given noun-

modifier pair (we output no guess). If t < −m, then we output two guesses for the given 
noun-modifier pair, the classes of both the first and second nearest neighbours. 

Figure 3 shows the trade-off between precision and recall as the threshold on the margin 

varies from −0.03 to +0.03. The precision, recall, and F values that are plotted here are 
the averages across the 30 classes. The vertical line at zero corresponds to the bottom 
row in Table 13. With a threshold of +0.03, precision rises to 35.5% and recall falls to 

11.7%. With a threshold of −0.03, recall rises to 36.2% and precision falls to 23.4%.  
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Figure 3. Precision, recall, and F with varying thresholds on the margin, for 30 classes. 

In Figure 3, F is higher for negative thresholds on the margin. We do not have an 
explanation for this. We believe it is due to noise.  

5.3.2 Five Classes 
Classification with 30 distinct classes is a hard problem. To make the task easier, we 
can collapse the 30 classes to 5 classes, using the grouping that is given in Table 12. 
For example, agent and beneficiary both collapse to participant. Table 14 gives the 
results for the 5 class problem. Random guessing would yield an average F value of 
20.0%, but the actual average F value is 43.2%. The difference (23.2%) is significant 
with 95% confidence (p-value < 0.027, according to the paired t-test). The accuracy is 
45.7% (274/600). This information is also displayed graphically in Figure 4. 

Table 14. The precision, recall, and F for each of the 5 groups of classes of semantic relations. 

 Class name Class size Class percent Precision Recall F 
1 causality 86 14.3% 21.2% 24.4% 22.7% 

2 participant 260 43.3% 55.3% 51.9% 53.6% 

3 quality 146 24.3% 45.4% 47.3% 46.3% 

4 spatial 56 9.3% 29.1% 28.6% 28.8% 

5 temporality 52 8.7% 66.0% 63.5% 64.7% 

 Average 120 20.0% 43.4% 43.1% 43.2% 
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Figure 4. The precision, recall, and F for the 5 groups of classes. 

As before, we can adjust the balance between precision and recall by varying a 
threshold on the margin. Figure 5 shows precision and recall as the threshold varies 

from −0.03 to +0.03. The precision, recall, and F values are averages across the 5 
classes. The vertical line at zero corresponds to the bottom row in Table 14. With a 
threshold of +0.03, precision rises to 51.6% and recall falls to 23.9%. With a threshold of 

−0.03, recall rises to 56.9% and precision falls to 37.2%. 

These experiments required 76,800 queries to AltaVista (600 word pairs × 128 queries 
per word pair). With a five second delay between each query, processing the queries 
took about five days. 
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Figure 5. Precision, recall, and F with varying thresholds on the margin, for 5 classes. 

5.4 Discussion 
The performance of the nearest-neighbour VSM algorithm is well above random chance. 
With 30 classes, the average F is 26.5%, where random guessing would give an 
expected average F of 3.3%. With 5 classes, the average F is 43.2%, where random 
guessing would give an expected average F of 20.0%. As far as we know, this is the first 
attempt to classify semantic relations without a lexicon.4 Research with the same data 
(Nastase and Szpakowicz, 2003), but using a lexicon, is still in the exploratory phase. 

However, there is clearly much opportunity for improvement. Most practical tasks would 
likely require higher accuracy than we have obtained here. One place to look for 
improvement is in the joining terms. For the experiments in this section, we used the 
same joining terms as with the analogy questions (Table 5). It seems possible that the 
joining terms that work best for analogy questions are not necessarily the same as the 
terms that work best for classifying semantic relations. The kinds of semantic relations 
that are typically tested in SAT questions are not necessarily the kinds of semantic 
relations that typically appear in noun-modifier pairs.  

We also expect better results with more data. Although 600 noun-modifier pairs may 
seem like a lot, there are 30 classes, so the average class has only 20 examples. We 
would like to have at least 100 examples of each class, but labeling 3000 examples 
would require a substantial amount of painstaking effort.  

                                                
4
 Berland and Charniak (1999) and Hearst (1992) do not use a lexicon, but they only consider a 

single semantic relation, rather than multiple classes of semantic relations. 
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6 Limitations and Future Work 
Perhaps the biggest limitation of this work is the accuracy that we have achieved so far. 
Although it is state-of-the-art for SAT analogy questions and unrestricted-domain noun-
modifier semantic relations, it is lower than we would like. However, both of these tasks 
are ambitious and research on them is relatively new. We believe that the results are 
promising and we expect significant improvements in the near future. 

The VSM has been extensively explored in information retrieval. There are many ideas 
in the IR literature that might be used to enhance the performance of VSM applied to 
analogies and semantic relations. We have begun some preliminary exploration of 
various term weighting schemes (Salton and Buckley, 1988) and extensions of the VSM 
such as the GVSM (Wong et al., 1985).  

We believe that our set of joining terms (Table 5) is far from ideal. It seems likely that 
much larger vectors, with thousands of elements instead of 128, would improve the 
performance of the VSM algorithm. With the current state of technology, experiments 
with alternative sets of joining terms are very time consuming.  

In this paper, we have focused on the VSM algorithm, but we believe that ensemble 
methods will ultimately prove to yield the highest accuracy (Turney et al., 2003). 
Language is a complex, heterogeneous phenomenon, and it seems unlikely that any 
single, pure approach will be best. The best approach to analogies and semantic 
relations will likely combine statistical and lexical resources. However, as a research 
strategy, it seems wise to attempt to push the performance of each individual module as 
far as possible, before combining the modules.  

7 Conclusion 
We believe that analogy and metaphor play a central role in human cognition and 
language (Lakoff and Johnson, 1980; Hofstadter et al., 1995; French, 2002). SAT-style 
analogy questions are a simple but powerful and objective tool for investigating these 
phenomena. Much of our everyday language is metaphorical, so progress in this area is 
important for computer processing of natural language. Martin (1992) shows that even 
“dry” technical dialogue, such as computer users asking for help, is often metaphorical: 

• How can I kill a process? (kill:organism::terminate:process) 

• How can I get into LISP? (get_into:container::start:LISP_interpreter) 

• Tell me how to get out of emacs. (get_out_of:container::terminate:emacs_editor) 

Investigating SAT verbal analogies may help us to develop software that can respond 
intelligently in these kinds of dialogues. 

A more direct application of SAT question answering technology is classifying noun-
modifier relations, which has potential applications in machine translation, information 
extraction, and word sense disambiguation. Contrariwise, a good algorithm for 
classifying semantic relations should also help to solve verbal analogies, which argues 
for a strong connection between recognizing analogies and classifying semantic 
relations.  

In this paper, we have shown how the cosine metric in the Vector Space Model can be 
used to solve analogy questions and to classify semantic relations. The VSM performs 
much better than random chance, but below human levels. However, the results indicate 
that these challenging tasks are tractable and we expect further improvements. We 
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believe that the VSM can play a useful role in an ensemble of algorithms for learning 
analogies and semantic relations. 
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