Correlation of model-scale to full-scale ice piece size
Lau, Michael; Wang, Jungyong; Seo, Dongcheol; National Research Council of Canada. Ocean, Coastal and River Engineering

For the publisher’s version, please access the DOI link below. Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

Publisher’s version / Version de l’éditeur:
https://doi.org/10.4224/21263086
Technical Report, 2012-11-01

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
Summary

This document summarizes the model-scale to full-scale ice piece size correlation performed at the National Research Council’s Ocean, Coastal, and River Engineering (NRC-OCRE) St. John’s Ice Tank. This correlation work supports the NRC-OCRE CCGS Polar Icebreaker model test program; it is based on an earlier investigation by Lau et al (1999) on the influence of ice thickness on piece size during icebreaking by sloping structures. For this study, additional data from the CCGS R-Class icebreakers and the USCGC icebreakers Healy and Polar-Star are examined. The study is focused on the scaling performance of NRC-OCRE EG/AD/S model ice with respect to piece size generation. This study has shown the non-dimensional piece size decreases and approaches that found in full scale beyond a certain thickness, i.e., ~ 9 cm. We tested the Polar Icebreaker model in EG/AD/S model ice at 8 cm and 10.4 cm, and at this range we expect the similar thickness dependency follows. However, the bow breaking pattern of the Polar icebreaker model produced much larger pieces in comparison with other more conventional icebreaking bows, i.e., the R-Class, tested in similar ice thickness. It points to a need for further assessment of the bow shape influence on broken piece size, as the Polar icebreaker designs have bow geometry significantly diverse from the traditional icebreaker bow forms that may contribute to different icebreaking patterns and hence piece size.
CORRELATION OF MODEL-SCALE TO FULL-SCALE ICE PIECE SIZE

OCRE-TR-2012-30

Michael Lau, Jungyong Wang and Dongcheol Seo

November 2012
ABSTRACT

This document summarizes the model-scale to full-scale ice piece size correlation performed at the National Research Council's Ocean, Coastal, and River Engineering (NRC-OCRE) St. John’s Ice Tank. This correlation work supports the NRC-OCRE CCGS Polar Icebreaker model test program; it is based on an earlier investigation by Lau et al (1999) on the influence of ice thickness on piece size during icebreaking by sloping structures. For this study, additional data from the CCGS R-Class icebreakers and the USCGC icebreakers Healy and Polar-Star are examined. The study is focused on the scaling performance of NRC-OCRE EG/AD/S model ice with respect to piece size generation. This study has shown the non-dimensional piece size decreases and approaches that found in full scale beyond a certain thickness, i.e., ~ 9 cm. We tested the Polar Icebreaker model in EG/AD/S model ice at 8 cm and 10.4 cm, and at this range we expect the similar thickness dependency follows. However, the bow breaking pattern of the Polar icebreaker model produced much larger pieces in comparison with other more conventional icebreaking bows, i.e., the R-Class, tested in similar ice thickness. It points to a need for further assessment of the bow shape influence on broken piece size, as the Polar icebreaker designs have bow geometry significantly diverse from the traditional icebreaker bow forms that may contribute to different icebreaking patterns and hence piece size.
TABLE OF CONTENTS

ABSTRACT ... I
LIST OF FIGURES .. III
LIST OF TABLES ... IV
1 INTRODUCTION .. 1
2 SIZE OF ICE PIECES GENERATED AT ICEBREAKER BOW .. 2
 2.1 Key finding from previous work on broken ice parameter L_l/L_c 2
 2.2 Re-examined and supplemented model- and full-scale data from CCGS R-Class icebreakers ... 5
 2.2.1 Effect of ship parameters on piece size .. 5
 2.2.2 Effect of ice thickness on piece size ... 7
3 SIZE OF ICE PIECES GENERATED ALONGSIDE ICEBREAKER 10
 3.1 Summary of icebreaker USCGC Polar-Star sea trial .. 10
 3.2 Image analysis procedure .. 13
4 CORRELATION OF MODEL- AND FULL-SCALE CHANNEL WIDTH DATA 16
5 CONCLUSIONS ... 17
6 REFERENCES ... 18
LIST OF FIGURES

Figure 1. Characterization of a broken ice piece .. 2
Figure 2. Ratio of ice piece size to characteristic length, \(L_L / L_c \), versus ice thickness for seven sets of model test data with sloping structures (Lau et al, 1999) 4
Figure 3. Model/full scale icebreaker test results for varying speeds in urea and sea ice showing the effect of ice thickness on the ratio of ice piece size to characteristic length, \(L_L / L_c \). (Lau et al, 1999) .. 5
Figure 4. Bow print of 1:8 scale R-Class model tested in 0.09 m EG/AD/S model ice. Arrows indicate secondary breaking ... 6
Figure 5. Bow print of the CCGS icebreaker Sir John Franklin taken during its 1991 sea trials ... 7
Figure 6. Non-dimensional piece size defined as \(A/(h^2) \) as a function of ice thickness .. 9
Figure 7. Non-dimensional piece size defined as \(L_o/h \) as a function of ice thickness. 9
Figure 8. Comparison of R-Class dataset with \(L_L / L_c - h \) (Lau et al, 1999) 9
Figure 9. Comparison of bow prints of two icebreakers in EG/AD/S ice 10
Figure 10. Broken cusps observed alongside the USCGC Polar Star 11
Figure 11. Camera installation on board the USCGC Polar Star 12
Figure 12. Typical snap shot captured from the Polar Star Video (red grid is reference scale) ... 13
Figure 13. Series of 6 stitched images showing an icebreaking pattern 15
Figure 14. Channel width created by the Healy on a straight run during sea trials (Tucker, 2001) ... 16
LIST OF TABLES

Table 1. Dimensionless R-class data .. 8
Table 2. Ice Measurement of Core 032, Site 18: air temperature 0.5°C, snow depth 0.05 m, ice thickness 2.35 m ... 12
Table 3. Ship Distance and Speed .. 13
Table 4. Cusp dimensions with non-dimensional piece size values of the Polar Star dataset .. 14
Table 5. Summary of channel width created by the Healy model 17
Table 6. Summary of channel width created by the Polar icebreaker model 17
1 INTRODUCTION

This document summarizes the model- to full-scale ice piece size correlation performed at the National Research Council Ocean, Coastal, and River Engineering (NRC-OCRE) St. John’s Ice Tank. This correlation work supports the NRC-OCRE CCG Polar Icebreaker model test program; it is based on an earlier investigation by Lau et al (1999) on the influence of ice thickness on piece size during icebreaking by sloping structures. For this study, additional data from the CCGS R-Class icebreakers and the USCGC icebreakers Healy and Polar-Star are examined.

The study is focused on the scaling performance of NRC-OCRE EG/AD/S model ice with respect to piece size generation. A standardized solution\(^1\) of ethylene glycol, aliphatic detergent and sugar (EG/AD/S) was used to make model-scale ice. A companion report (Lau and Wang, 2012) summarizes the model-scale/full-scale correlation of ship performance data obtained at the NRC-OCRE Ice Tank.

The mechanical and physical properties of EG/AD/S model ice have been well investigated since its introduction in 1986 and extensive data have been reported (Timco, 1986 and 1992). In 1990, Spencer and Timco (1990) introduced the variety of EG/AD/S ice called Correct Density (CD)-EG/AD/S ice to reduce the density of model ice to that of sea ice by trapping air bubbles in it. Besides controlling density, CD-EG/AD/S model ice has several advantages compared to EG/AD/S model ice: improved visibility, higher elastic modulus to flexural strength \(E/\sigma_f\) ratio, and lower fracture toughness. Lau et al (2007) performed a state-of-the-art review of the existing model ice used in different ice modeling facilities, including CD-EG/AD/S and AARC\(^2\) FGX, and their relative scalability was assessed against mechanical properties of sea ice.

Section 2 focuses on the broken ice piece size generated at a ship’s bow. It highlights the finding reported by Lau et al (1999) regarding the scalability of model ice piece size generated during icebreaking using EG/AD/S ice and presents further full- and model-scale test data from the CCGS R-Class icebreakers to assess Lau et al’s finding. Section 3 documents the result of video analysis of ice piece size observed alongside the USCGC icebreaker Polar-Star and Section 4 summarizes the model-scale/full-scale correlation of channel width created by the USCGC icebreaker Healy. Conclusions are given in Section 5 and references are provided in Section 6.

\(^2\) Aker Arctic Technology Inc
2 SIZE OF ICE PIECES GENERATED AT ICEBREAKER BOW

The correlation of model- to full-scale ice piece size generated at the bow depends on the properties of the model ice. In the following sections, a key finding demonstrates a trend in correlation between EG/AD/S ice pieces and sea ice and this trend is supported by additional data from model and full-scale tests in Section 2.2.

2.1 Key finding from previous work on broken ice parameter L_{L}/l_{c}

Lau et al (1999) consolidated and analysed icebreaking pattern and piece size data from a variety of tests with sloping structures, including icebreakers. The factors influencing the icebreaking pattern were examined, and the relationship between ice piece size and the ice thickness was established.

Broken ice pieces can be represented simplistically as rectangular or triangular in shape. In that study, the longest dimension is defined as width W and the perpendicular dimension as length L_{L} as shown in Figure 1. Most data on piece size were reported as piece area A, L_{L}, W, L_{L}/W ratio and ice thickness h.

Figure 1. Characterization of a broken ice piece

The scalability of EG/AD/S ice was first examined using piece size data from a variety of simple sloping structures including measurements from three multifaceted cones (Metge and Tucker, 1990; Irani and Timco, 1992; and Lau et al, 1993), three smooth cones (Lau et al, 1988; Lau and Williams, 1991; and Sodhi et al, 1985) and a sloping plane (Timco, 1984). These model tests were performed in standardized
urea ice or EG/AD/S ice, with the exception of Metge and Tucker’s tests which were conducted in thick naturally grown saline ice. Despite slight differences in model shape, these tests were conducted in targeted ice and structure conditions similar to one another.

The problem of predicting ice piece size has generally been considered using the theory of an elastic thin beam (or plate) resting on an elastic foundation (Hetenyi, 1946). In the case of a semi-infinite plate, this theory stipulates that the length of the broken pieces L_L is governed by its characteristic length l_c as given below (Cammaert and Muggeridge, 1988):

$$L_L = \frac{\pi}{4} l_c = \frac{\pi}{4} \left(\frac{E h^3}{12(1-\nu^2)\gamma_w} \right)^{1/4} \quad (Eq. 1)$$

where E is the elastic modulus of ice, ν is the Poisson ratio (assumed to be 0.3), and γ_w is the specific weight of water. This l_c is related to the thickness of the ice since it is proportional to $h^{3/4}$. It is usually measured in the tank as the purely elastic portion of the ice deflection although there are also some primary creep components that affect the loading process. Nevertheless, it is an important index to characterize the flexural deformation of the ice sheet taking account of its flexural rigidity as well as the stiffness of the water foundation.

Lau et al (1999) presented the piece size data as the ratio of piece size to characteristic length, L_L/l_c, as a function of ice thickness for the seven sets of model test data as shown in Figure 2. The data indicate a clear relationship between the L_L/l_c and ice thickness despite of a large variation of ice strength.
Simple elastic thin plate theory predicts a value of 0.78 for the ratio L_L/l_c, and the value is independent of ice thickness (Afanas'ev et al, 1971). However, Figure 2 shows that this is valid only for very thin ice, and the ratio decreases with increasing ice thickness. The dependency of piece size on ice thickness reflects the complexity of the icebreaking process and contributes to the scale effect. Nevertheless, the data also suggest a lower limit of 0.1 for the ratio L_L/l_c, and beyond a certain thickness (~9 cm), the non-dimensional piece size approaches that found in full scale. The data suggested that scaling of piece size produced by similar flexural bending process with model ice thicker than or equal to 9 cm may be considered satisfactory, despite the scale effect inherent in model ice. The tests conducted by Metge and Tucker (1990) and Lau et al (1993) with ice sheets thicker than 9 cm clearly reflect a similar viewpoint.

The failure process of the ice is highly inelastic and there is a large shear component in the ice when thickness increases so this greatly complicates things. Lau et al (1999) offers a hypothesis and preliminary analysis to explain this scale effect by including transverse shear action using thick beam theory. The readers are referred to the paper for details.

Further review of tests with icebreakers (both model and full scale) confirmed the above finding (Lau et al, 1999). Figure 3 shows the non-dimensional piece size observed in the wake of six icebreaker hulls (both model and full scale) taken from Tatinclaux (1986) with a model wedge and the Kigoriak in both model and full scale trials, and Valanto (1993) with the IB Kapitan Sorokin. This figure indicates a limiting value of 0.2 for L_L/l_c in thicker ice as shown by the figure. This value is higher than 0.1 associated with the cone tests. It may be due to the different icebreaking processes observed.
We therefore assume a value of 0.1 for conical structures and 0.2 for ships for the

![Graph showing the effect of ice thickness on the ratio of ice piece size to characteristic length, L_ℓ/l_c.](image)

Figure 3. Model/full scale icebreaker test results for varying speeds in urea and sea ice showing the effect of ice thickness on the ratio of ice piece size to characteristic length, L_ℓ/l_c. (Lau et al, 1999)

2.2 Re-examined and supplemented model- and full-scale data from CCGS R-Class icebreakers

Newbury (1989) performed preliminary investigation of model ice failure pattern and piece size generated by the CCGS R-Class icebreaker bow form. He analyzed high quality bow prints obtained from scaled R-Class model test performed in EG/AD/S model ice thickness (h) ranging from 1.1 cm to 9.2 cm and compared the results to those reported from both the CCGS icebreakers Kigoriak ($h = 0.49$ m to 0.74 m) and Pierre Radisson ($h = 1$ m) sea trials (Anonymous, 1984). In this study, these data were re-examined and supplemented with additional data on the 1:8 scaled R-Class model tests that extends the model test data range to 12.8 cm. It allows further examination of the trends reported by Lau et al (1999) as given in the previous section.

2.2.1 Effect of ship parameters on piece size

Figure 4 shows the breaking pattern made by the 1:8 R-Class model tested in 9 cm EG/AD/S model ice. This breaking pattern is typical of those made by conventional icebreakers. The size and shape of the broken ice pieces are influenced not only by ice properties, but also by ship parameters such as speed and bow geometry. Newbury pointed out the importance of ship speed (or 'velocity of attack') in determining piece size. For example, the bow angle is smallest near the stem
entrance, which has the largest velocity of attack. This in turn effectively increases the stiffness of the elastic foundation on which the ice rests through increased water pressure and thus creates more cracks in ice and smaller ice pieces at the stem area. The slender ice pieces generated by primary cracking are prone to further breaking (especially along the long sides) due to large or sudden changes of bow curvature along their path and hence with further size decreases. Figure 4 also shows the evidence of increasing secondary breaking when the broken pieces slide along the bow (increased intensity is indicated by increased concentration of arrows).

Figure 4. Bow print of 1:8 scale R-Class model tested in 0.09 m EG/AD/S model ice. Arrows indicate secondary breaking.
Figure 5 shows a bow print made by the CCGS Sir John Franklin during its 1991 Notre Dame Bay trials (Williams et al, 1992) where the ice thickness was between 0.5 to 0.6 m. Although the crack pattern was obscured by snow cover, we can still discern the general breaking pattern that was similar to that made by the R-Class model (see Figure 4).

![Figure 5. Bow print of the CCGS icebreaker Sir John Franklin taken during its 1991 sea trials](image)

2.2.2 Effect of ice thickness on piece size

Table 1 summarizes the dimensionless R-Class data. The non-dimensional piece size (non-PS) is parameterized using A/h^2, L_L/h and L_L/l_c. In this analysis, the dimensionless ratio L_L/l_c is calculated for comparison with Lau et al’s non-PS curve (see Figure 1). To compare the Pierre Radisson piece size data with the previous datasets in Figure 3, we compute l_c and L_L using Equation 1 assuming a Young’s modulus of 4 GPa in the absence of a measure of Young’s modulus, as this value is usually between 3-5 GPa for sea ice with salinity of 5 ppt at -10°C (Gagnon and Jones, 2001). For 1-m sea ice, l_c is equal to 13.8 m.

For this dataset, the average values of A/h^2, L_L/h and L_L/l_c are equal to 8.61, 1.72 and 0.13, respectively, for the Pierre Radisson sea trials conducted in 1-m sea ice, while these values increase to 14.07, 2.74 and 0.18, respectively, for the 1:8 scaled model tested in 0.128 m (1.02 m full-scale) EG/AD/S model ice. The increases amount to 63%, 59% and 38%, respectively. For the ice-thickness-scaled parameters, if we compare piece size directly as a function of scaled ice thickness, the simulated piece size is about 60% bigger in terms of both broken piece area A or
length L_L. Newbury offered an explanation of the moderately larger than expected piece sizes observed in model tests by pointing out the cracks visible in the broken model ice pieces that indicate a tendency toward smaller piece sizes in EG/AD/S model ice, which would give a closer agreement with the full scale observation.

Table 1. Dimensionless R-class data

<table>
<thead>
<tr>
<th></th>
<th>h (cm)</th>
<th>A/h^2</th>
<th>L_L/h</th>
<th>L_L/l_c</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierre Radisson (full-scale)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>107</td>
<td>6.90</td>
<td>1.42</td>
<td>0.12</td>
<td>Average $A/h^2 = 8.61$</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
<td>3.85</td>
<td>1.16</td>
<td>0.09</td>
<td>Average $L_L/h = 1.72$</td>
</tr>
<tr>
<td>3</td>
<td>105</td>
<td>4.72</td>
<td>1.14</td>
<td>0.10</td>
<td>Average $L_L/l_c = 0.13$</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>18.96</td>
<td>3.14</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>1:40 R-class</td>
<td>1.125</td>
<td>46.93</td>
<td>4.72</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>1:20 R-class</td>
<td>2.25</td>
<td>28.66</td>
<td>3.47</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>1:8 R-class</td>
<td>5.81</td>
<td>31.52</td>
<td>3.95</td>
<td>0.31</td>
<td>Average $A/h^2 = 34.28$</td>
</tr>
<tr>
<td>1:8 R-class</td>
<td>5.70</td>
<td>31.49</td>
<td>4.13</td>
<td>0.26</td>
<td>Average $L_L/h = 4.2$</td>
</tr>
<tr>
<td>1:8 R-class</td>
<td>5.76</td>
<td>34.40</td>
<td>4.19</td>
<td>0.31</td>
<td>Average $L_L/l_c = 0.30$</td>
</tr>
<tr>
<td>1:8 R-class</td>
<td>5.65</td>
<td>39.72</td>
<td>4.53</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>1:8 R-class</td>
<td>8.93</td>
<td>18.73</td>
<td>2.88</td>
<td>0.23</td>
<td>Average $A/h^2 = 19.09$</td>
</tr>
<tr>
<td>1:8 R-class</td>
<td>9.07</td>
<td>20.83</td>
<td>3.28</td>
<td>0.21</td>
<td>Average $L_L/h = 3.02$</td>
</tr>
<tr>
<td>1:8 R-class</td>
<td>9.18</td>
<td>17.70</td>
<td>2.90</td>
<td>0.19</td>
<td>Average $L_L/l_c = 0.21$</td>
</tr>
<tr>
<td>1:8 R-class</td>
<td>12.77</td>
<td>16.10</td>
<td>3.05</td>
<td>0.20</td>
<td>Average $A/h^2 = 14.07$</td>
</tr>
<tr>
<td>1:8 R-class</td>
<td>12.84</td>
<td>12.05</td>
<td>2.43</td>
<td>0.16</td>
<td>Average $L_L/l_c = 0.18$</td>
</tr>
</tbody>
</table>

Figures 6, 7 and 8 further show the influence of ice thickness h, on the non-dimensional piece size (non-PS) variable A/h^2, L_L/h and L_L/l_c, respectively, for the same dataset. In Figure 8, the R-Class dataset (highlighted) is compared with the other datasets report earlier by Lau et al (1999). These figures show a strong piece-size dependency on ice thickness in keeping with the trend exhibited by other datasets report by Lau et al (1999).
Figure 6. Non-dimensional piece size defined as $A/(h^2)$ as a function of ice thickness

Figure 7. Non-dimensional piece size defined as L_l/h as a function of ice thickness

Figure 8. Comparison of R-Class dataset with $L_l/l_c – h$ (Lau et al, 1999)
It should be noted that the 1:8 scale R-Class model test were performed at NRC-OCRE Ice Tank with ice properties similar to that used in the Polar icebreaker tests. We tested the Polar Icebreaker model in EG/AD/S model ice at 8 cm and 10.4 cm, and at this range we expect the similar thickness dependency. However, the bow breaking pattern of the Polar icebreaker model produced larger pieces in comparison with the R-Class as shown in Figure 9, in which the bow print of the Polar icebreaker model tested in similar ice thickness of 10.4 cm is given. It points to a need for further assessment of the bow shape influence on broken piece size. The bow prints shown in Figure 9 are at the same scale to assist reader’s comparison.

Figure 9. Comparison of bow prints of two icebreakers in EG/AD/S ice

3 SIZE OF ICE PIECES GENERATED ALONGSIDE ICEBREAKER

The Canadian Coast Guard (CCG) has requested additional analysis of the icebreaking pattern and piece size observed alongside the USCGC icebreaker Polar Star during its 1994-1995 Antarctic Expedition (Keinonen, 1998). This section describes the dataset, analysis procedure and the resulting piece size information.

3.1 Summary of icebreaker USCGC Polar-Star sea trial

In the sea trial of 1994/1995, there were ice measurement activities such as ice thickness, density, salinity and temperature to support the environmental data for
the propeller performance evaluation. Figure 10 shows typical cusps observed during the sea trial. A total of 18 videos (NRC, 1995) were recorded using the side-view camera. Among 100 hours of videos, raw footage was extracted from the first 5 minutes of recording taken from coring site no. 18. Figure 11 shows the location of camera installation on board the vessel. Table 2 shows ice measurement results at the coring site (Newbury and Kirby, 1995).

Figure 10. Broken cusps observed alongside the USCGC Polar Star
Figure 11. Camera installation on board the USCGC Polar Star

Table 2. Ice Measurement of Core 032, Site 18: air temperature 0.5°C, snow depth 0.05 m, ice thickness 2.35 m

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Ice Temp (°C)</th>
<th>Salinity (ppt)</th>
<th>Flexural Strength (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-0.6</td>
<td>1.38</td>
<td>219</td>
</tr>
<tr>
<td>15</td>
<td>-1.6</td>
<td>4.62</td>
<td>228</td>
</tr>
<tr>
<td>25</td>
<td>-1.9</td>
<td>4.27</td>
<td>294</td>
</tr>
<tr>
<td>35</td>
<td>-2.1</td>
<td>4.96</td>
<td>282</td>
</tr>
<tr>
<td>45</td>
<td>-2.0</td>
<td>6.19</td>
<td>216</td>
</tr>
<tr>
<td>55</td>
<td>-2.1</td>
<td>7.95</td>
<td>174</td>
</tr>
<tr>
<td>65</td>
<td>-2.2</td>
<td>5.97</td>
<td>248</td>
</tr>
<tr>
<td>75</td>
<td>-2.3</td>
<td>6.49</td>
<td>239</td>
</tr>
<tr>
<td>85</td>
<td>-2.4</td>
<td>5.97</td>
<td>271</td>
</tr>
<tr>
<td>95</td>
<td>-2.4</td>
<td>5.90</td>
<td>274</td>
</tr>
<tr>
<td>105</td>
<td>-2.3</td>
<td>5.97</td>
<td>260</td>
</tr>
<tr>
<td>115</td>
<td>-2.4</td>
<td>5.25</td>
<td>304</td>
</tr>
<tr>
<td>125</td>
<td>-2.4</td>
<td>4.75</td>
<td>331</td>
</tr>
</tbody>
</table>
3.2 Image analysis procedure

Figure 12 shows the typical view of recorded videos. From GPS information (time and position) annotated in the videos, the ship’s speed and position are estimated and summarized in Table 3.

![Figure 12. Typical snap shot captured from the Polar Star Video (red grid is reference scale)](image)

<table>
<thead>
<tr>
<th>Stitched Image No.</th>
<th>Distance (m)</th>
<th>Speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93.0</td>
<td>1.86</td>
</tr>
<tr>
<td>2</td>
<td>66.3</td>
<td>1.33</td>
</tr>
<tr>
<td>3</td>
<td>79.3</td>
<td>1.59</td>
</tr>
<tr>
<td>4</td>
<td>62.3</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>86.3</td>
<td>1.73</td>
</tr>
<tr>
<td>6</td>
<td>76.9</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Table 3. Ship Distance and Speed

From this grid in Figure 12, the scale ratio between image pixels and meters is calculated and applied to compute the size of ice pieces. For convenience, snapshots in one second intervals were captured from the movie file prior to image processing. The still images were then stitched together to identify the cusps which
were too large to be captured in a single image. Fiji toolkit was used for stitching and processing images. The stitching uses smooth boundary connections and common specific image features like ice cracks. A spline curve was then generated from this image mosaic to estimate the broken cusp size. The final composites are shown in Figure 13.

To extract piece size data, care was taken to identify full cusps that were generated. Due to the lower velocity of attack at the shoulder as explained in Section 2.2.1, the piece size generated at this location is expected to be bigger than those generated from the bow; nevertheless, it provides valuable estimate of piece size to compare with other datasets.

Table 4 summarizes the measured length and width of each cusp taken from each respective photo. The area A of each cusp was estimated by assuming the cusp can be idealized as an arc segment of a circle with height equal to L_L and width equal to W. Table 4 also gives the values of non-dimensional piece sizes, A/h^2 and L_L/h, for this dataset. Despite this approximation, the dimensionless variables A/h^2 and the L_L/h obtained from the Polar Star at 2.35 m sea ice were 7.33 and 1.59, respectively, in comparison with their corresponding values of 8.61 and 1.72 for the Pierre Radisson.

For details of the image stitching procedure, please refer to Preibisch et al (2009).

Table 4. Cusp dimensions with non-dimensional piece size values of the Polar Star dataset

<table>
<thead>
<tr>
<th>Image No.</th>
<th>Cusp No.</th>
<th>W (m)</th>
<th>L_L (m)</th>
<th>A (m^2)</th>
<th>A/h^2</th>
<th>L_L/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>21.90</td>
<td>3.96</td>
<td>46.34</td>
<td>15.70</td>
<td>1.69</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>14.00</td>
<td>2.34</td>
<td>18.89</td>
<td>5.93</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>22.25</td>
<td>3.99</td>
<td>47.82</td>
<td>16.08</td>
<td>1.70</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>23.67</td>
<td>4.10</td>
<td>54.06</td>
<td>17.57</td>
<td>1.74</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>19.55</td>
<td>4.05</td>
<td>37.12</td>
<td>14.34</td>
<td>1.72</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>25.10</td>
<td>4.37</td>
<td>60.80</td>
<td>19.86</td>
<td>1.86</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>13.66</td>
<td>3.34</td>
<td>18.27</td>
<td>8.26</td>
<td>1.42</td>
</tr>
</tbody>
</table>
Figure 13. Series of 6 stitched images showing an icebreaking pattern
4 CORRELATION OF MODEL- AND FULL-SCALE CHANNEL WIDTH DATA

Channel width depends on the icebreaking process. Extensive full-scale ice trials of USCGC Healy (Sodhi et al., 2001) were performed in 2000 shortly after its delivery to the US Coast Guard. The ice thickness was in the range of 0.6 to 1.75 m and the ice flexural strength varied from 190 to 400 kPa. During two trials, the width of the broken channel created by the ship after a series of continuous icebreaking tests was measured to compare with the respective model test; this was used to validate the icebreaking processes simulated at model scale. The width of the channel was measured at a spacing of 1 m for a distance of 67 m on May 4 and 100 m on May 6 by stretching a rope across the channel. Figure 14 shows plots of channel width reported by Tucker (2001). The average ice thicknesses on these two days were, respectively, 1.35 and 1.73 m, and the channel widths W_c were 32.28 and 31.36 m. The gap G_c between the sides of the ship to the edge of intact ice is half the difference between the average channel width and the maximum ship’s beam (25 m). The ratio of gap to ice thickness (G_c/h) was 2.77 for 1.35 m thick ice sheets and 1.83 for 1.73 m thick ice sheets.

Figure 14. Channel width created by the Healy on a straight run during sea trials (Tucker, 2001)

Following the full-scale trials, a complete set of resistance, propulsion, and manoeuvring model tests with a 1:23.7 scale model of the ship were performed in
scaled ice conditions at the NRC-OCRE Ice Tank for correlation with the full-scale
data (Jones and Moores, 2002 and Lau, 2006). Broken channel width was
measured at 2-m intervals after tests in three level ice sheets and these are
summarized in Table 5. For 0.031-m (0.73 m full-scale), 0.0424-m (1.00 m full-
scale) and 0.0418-m (0.99 m full scale) ice sheets, the ratio of gap to ice thickness
was 2.56, 2.02 and 2.56, respectively, which are within the range of the full scale
values, i.e., 1.83 to 2.77.

Table 5. Summary of channel width created by the Healy model

<table>
<thead>
<tr>
<th>Test</th>
<th># of data points</th>
<th>h (m)</th>
<th>Wc (m)</th>
<th>Gc (m)</th>
<th>Gc/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healy_16</td>
<td>12</td>
<td>0.031</td>
<td>1.21</td>
<td>0.080</td>
<td>2.56</td>
</tr>
<tr>
<td>Healy_17</td>
<td>8</td>
<td>0.042</td>
<td>1.22</td>
<td>0.086</td>
<td>2.02</td>
</tr>
<tr>
<td>Healy_18</td>
<td>22</td>
<td>0.041</td>
<td>1.26</td>
<td>0.107</td>
<td>2.56</td>
</tr>
</tbody>
</table>

The channel width data for the Polar icebreaker model tests were also analyzed in
the same way as the Healy model tests for the straight ahead runs B3_126, B3_128
and B4_133, in which channel measurements were performed at 2-m intervals along
the broken ship track and the ratio of gap to ice thickness Gc/h ranged from 1.10 to
1.45. The result is summarized in Table 6.

Table 6. Summary of channel width created by the Polar icebreaker model

<table>
<thead>
<tr>
<th>Test</th>
<th># of data points</th>
<th>h (m)</th>
<th>Wc (m)</th>
<th>Gc (m)</th>
<th>Gc/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3_126</td>
<td>17</td>
<td>0.100</td>
<td>1.40</td>
<td>0.142</td>
<td>1.42</td>
</tr>
<tr>
<td>B3_128</td>
<td>12</td>
<td>0.100</td>
<td>1.34</td>
<td>0.110</td>
<td>1.10</td>
</tr>
<tr>
<td>B4_133</td>
<td>12</td>
<td>0.090</td>
<td>1.38</td>
<td>0.131</td>
<td>1.45</td>
</tr>
</tbody>
</table>

The channel width created by the model of Healy compared well with those
measured during its ice trials with the ratio of gap to ice thickness within the range of
full-scale data. This gives additional support to the validity of simulated icebreaking
processes during model tests. On the other hand, the Polar icebreaker gives a
smaller gap to thickness ratio ranging from 1.1 to 1.45. This difference in channel
width may suggest a large influence of the hull geometry on the icebreaking process.

5 CONCLUSIONS

Icebreaking is a complex process: the size and shape of the resulting ice pieces are
influenced not only by ice properties but also by ship parameters such as speed and
bow geometry. This study is focused on ice properties, in particular the correlation
of model-scale EG/AD/S ice to full-scale sea ice; the effect of ship parameters on
piece size was not examined. A review of the model-scale/full-scale correlation study
on data with five icebreakers (Lau and Wang, 2012) has shown a good agreement
between NRC-OCRE performance predictions from model test data and full-scale measurements in resistance, power and manoeuvring. To add to this work, we have examined the scalability of EG/AD/S model ice regarding broken piece sizes, focusing on limited datasets collected from conventional icebreakers operating in the Canadian Arctic.

This study has shown the non-dimensional piece size decreases and approaches that found in full scale beyond a certain thickness: in particular, the scaling of piece size with model EG/AD/S ice equal to or thicker than 9 cm thick may be considered satisfactory despite the scale effect inherent in model ice.

Analysis of R-Class and Polar Star data further substantiates the aforementioned trend. In the case of R-Class model tests that were conducted at a thickness range used in the Polar icebreaker model test program, the simulated piece size scales to about 60% bigger at full scale. Evidence of secondary cracking captured on bow prints of model tests also indicates a tendency toward smaller piece sizes in EG/AD/S model ice, which would give a closer agreement with the full scale observation. We expect the EG/AD/S ice would scale piece size within this level of accuracy.

We tested the Polar Icebreaker model in EG/AD/S model ice at 8 cm and 10.4 cm, and at this range we expect similar thickness dependency. However, the bow breaking pattern of the Polar icebreaker model produced much larger pieces in comparison with the R-Class tested in similar ice thickness. It points to a need for further assessment of the influence of bow shape on broken piece size, as the Polar icebreaker designs have bow geometry which significantly diverge from the traditional icebreaker bow forms that may contribute to different icebreaking patterns and hence piece size.

6 REFERENCES

Maattanen, M., 1986. Ice sheet failure against an inclined wall, Proc. 8th IAHR Ice Symposium, Vol. 1, Iowa City, pp. 149-158.

Williams, F.M. et al, 1992. Full scale trials in level ice with Canadian R-Class icebreaker, Trans. SNAME, 100, 293.