i+l

NRC Publications Archive
Archives des publications du CNRC

An experimental intelligent computer-based coach for teaching logic
Bumbaca, Federico

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre I'une des suivantes : la version prépublication de l'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

Publisher’s version / Version de I'éditeur:

Proceedings of the 5th Canadian Symposium on Instructional Technology, pp.
146-150, 1986

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=93ac868e-2fa4-433c-b31e-49743cadbebf

https://publications-cnrc.canada.ca/fra/voir/objet/?id=93ac868e-2fa4-433c-b31e-49743cadbebf

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Conseil national de C dl*l
Council Canada recherches Canada ana, a

AN EXPERIMENTAL INTELLIGENT COMPUTER-BASED COACH FOR TEACHING LOGIC

Federico Bumbaca

Laboratory for Intelligent Systems
Division of Electrical Engineering
National Research Council
Ottawa, Canada

Introduction

Computer—based tutoring/coaching systems have the
promise of enhancing the educational value of gam-—
ing environments by guiding a student's discovery
learning. Games provide an enticing problem—
gsolving environment that a student explores at
will, free to create his own ideas of underlying
structure and to invent his own strategies for
utilizing his understanding of this structure.
This paper 1s concerned with the tutorial
resources Tequired to 1) keep the student from
forming grossly incorrect models of the underlying
structure of the game, 2) help him see the limits
of his strategy, and 3) help him discover the
causes of errors.

The game is augmented by tutorial guidance that
recognizes and - explains weaknesses in the
student's decisions by simply tracing its own
embedded expert's reasoning processes. It also
makes suggestlions when the student asks for them.
The coach 1s perceptive enough to make relevant
comments but not so intrusive as to destroy the
fun inherent im the game. For example, the stu-
dent is only interrupted when playing at a subop-
timal level. The degree of the intrusion is
entirely dependent on the requirements of the stu-
dent. The coach does not immediately point out
the student's errors but allows him to examine his

own behaviour and causes of his own mistakes. He
may then seek additlional assistance from the
coach.

The Game

Cows and Bulls 1s played by two players, a
Codemaker and a Codebreaker. The Codemaker

selects a code which is concealed from the Code-
breaker. The Codebreaker tries to guess the code
and can obtain information about it in the follow-
ing way.

A code 1s a sequence of N symbols selected from
some set 5. The Codebreaker submits a probe,
which is also a sequence of N symbols from S. The
Codemaker, the only player who sees both the code
and the probe, tells the Codebreaker the score,
which 1s a measure of similarity between code and

NRC No. 25579

145

probe whereupon the Codebreaker again submits a
probe, and so on until the Codebreaker submits a
probe equal to the code.

The score consists of two components: the number
of "cows" and the number of “bulls". A bull
occurs for every location where probe and code

have the same symbol. A cow occurs wherever among
the remaining locations there is one in the code
and one in the probe containing the same symbol.

The_System
The main components of the intelligent computer-
agsisted f{nstruction (ICAI) system discussed in

this paper are: 1) the natural language lunterface,
2} the domain expert, 3) the tutoring strategies,
4) the student model, and 5) the game-state-graph.
The natural language interface must understand any
questions or requests made by the user in a subset

of English as well as explain any reasoning
processes used by the system. The domain expert
represents the problem solving expertise or

knowledge that the system tries to impart to the

student. It acts as the expert with which the
student's performance . is compared. This "“dif-
ferential™ student model [1] [2] is then used in

conjunction with the tutoring strategies to deter-
mine what to do next (ie. how to teach, when to
break-in, what to say). The student model indi-
cates what the student does and does not know, and

the tutoring strategies specify how the system
presents material to the student. All of these
components are orchestrated in order to provide

the student with instructionally effective advice.
It is the game-state-graph which provides the
medium through which these components interact.
Self (3] is a classic discussion of the kinds of
knowledge needed in a computer-based tutor.

The Game-State—Graph

The computer—based coach, during a game session,
builds a state—graph which represents the current
state of the game as well as all previous states.
It is this graph which is used as the data-base
for the student model, natural language interface,
embedded domain expert, and tutoring strategies,
It consists of two components: 1) system
knowledge, and 2) system trace. The systenm
knowledge includes all current known data with
regards to the unknown code as determined by the

embedded domain expert. The system trace consists The Natural Language Interface
of Horn clauses [4] whose conclusions make up the

system knowledge and whose conditions have been The natural language interface is based on an aug-
previously proven or given. In simpler terminol- mented transition network [5] utilizing a semantic
ogy, the trace explains how the system knowledge grammar [6] as opposed to a strictly syntactic one
was derived., Sleeman and Hendley utilize a simi-— [71. It 1is based on the LIFER system of Hendrix
lar mechanism in their ACE system [2]. et. al. [B] [9]. An application 1language 1s
defined which is a subset of English that is
The domain expert builds this graph for use by the appropriate for interacting with this particular
natural language intetface, student model, and program. This language specificatibn iz then used
tutoring strategy modules. A segment of it is to interpret natural language inputs as questions
given iIn TFigure 1 where it is noted that every or requests to the system.
assertion and hypothesis generated by the system
is stored. This graph may be sald to represent The language 1s primarily specified 1in terms of
the perfect student in that he should be aware of grammatical rewrite rtules or productions which
this explieit knowledge derived from its implicit specify the relations between certain strings of
counterpart through the information given to hin terminals and nonterminal symbols. These rules
in previous probes and scores. It should be noted may be interpreted as simplified forms of aug-
further that each clause represents a reasoning mented transition networks. Using these networks,
process which corresponds to a problem—solving the pargser Interprets inputs in the application
step by a human problem-solver. language resulting 1in an interpretation in terms

of the appropriate routines from the application

a8c0) ——pos ([nz])——numeos ([[s2]]11) system. The parser attempts to parse am input

gtarting node is the start symbol. For example,

cooe ([
‘ string from the top down and left to right by non-
pos([63]) = mourgs [[c3][o4]]22) _
’“I({“D%//’/{ ‘ deterministically tracing down the network whose
N

- umpds {[[az][c3][04]]23 suppose the following three production rules are
1™ (4) wot pos([az]) / ({faz]iesloal]z>) defined as part of the application language:
NuUMsTM([A] wor ros{[a3]) / wumpos([[n2]{a3]}i2}

— <Sentence) => is ¢SYMBOLY in {POSITION; | el
wusd ras{[{wz][aaljca]}3) <Sentencey ~> iz <SYMBOL) in the code ||e2

‘ vm{[oena) s}
wwsvs ([oes]2) B i m?éﬁ([u]) <Sentencey =¥ is {PROBEY consistent | a3

nuMSYH ([cn\: .];lv:no-ﬁ: LYVETTY)

If an input matches one of these patterns, the

corresponding expression {(el, e2, or e3) is

I T L L L bbbtk evaluated - these are the appropriate interpreta-

assume (#03([c4]) proor wY tions that the system is to wmake for the
CONTRADIGTION corresponding unit. ’

srone ([coER]303)

num ros ([[a2][04]]22)
=1 ACICTION
POS([£4D /(p?sf(n[u])ros([u])

[T S L —— P

During parsing, the parser starts at the symbol
Sentence and attempts to move toward the expres-—
sions to be evaluated at the right. The parser
uunsﬂ-([!10)4——1_—_'_".!_(_9L--.:-._..-—_-u;-‘—(;;?-m—';(-aﬁ-wl follows a branch only if some portion at the left
i ([een) s A3 i of the remaining input string can be matched to
numsri ([ea]1)] MOMETY °(I) v (e) :';:?r::;m} the first symbol on the branch. Actual words can
i be matched only by themselves. Meta-gymbols (such
as ¢SYMBOL) or {PROBE}} can be matched in a number
of ways:

wumsyw (fcon]3) i

ot svM (£}

o

NUNSYW [']3.).‘“,"_ ®

sYm(s) i
\T\GONTRADIGTIOII‘(/»OT ovu (s)sru(s))

Lm e

1) As a simple set (eg. <SYMBOL) = the set [A B ¢

D E F}).
u X IS KNOWN TO BE THE GODE

cove (x) . 2) As a predicate that is applied to the string to
ros{[se]) w SYMBOL § 18 KNOWN TO BE W POSITION . test for satisfaction (eg. a meta-symbol such
sm(s), = 3YMPOL § IS KNOWN TO BE I8 THE CODE as PROBE nmay be tested to determine 1f it
wuM STM (X N) = N SYMBOLZ IN THE LIST X ARE KNOWN T0 BE IN THE GOOE congists of valid symbols as well as having the
worsYm (s) | SYMBOL 3 1S KNOWN NOT TO BE IN THE CODE specified length).
not pos ([se]) = SYMBOL S I3 KROWN NOT T0 BE (N POSITION P 3) By another network that has this meta-symbol at
NumPOS (X BN} = M SYMBOLS [N THE LIST X ARE IN THE COOE OF WHICH its starting node.

B ARE IN THE CORRECT POSITION
rroBE (X CBN) ® N STMBOLS IN THE LIST X ANE IN THE CODE OF WHICH A large amount of semantic information is embedded

B ARE IN THE CORRECT POSITION in the synt ctic description of the application
ASSUME (%} = ASSUME X TO BE TRVE language. A and ') are not defined as instances

of the single meta-symbol <CHARACTER) as they
would in a more formal grammar, but rather are
separated into the semantic categories indicated
Fig. 1 Segment of a Game—-State—-Graph by the meta-symbols ¢ SYMBOLY and {POSITION.

CONTRADIGTION (X ¥} = X ANO Y CANNOT BOTH BE TRUE

146

There are two additional features implemented to
make interactions easier for the user - acceptance
of grammatically incorrect inputs and a very lim—
lted form of ellipsis. Inputs such as "Is 'A in
code?™ and "'A in '3?", although grammatically
Incorrect are semantically unambiguous and are
therefore accepted by the parser. This feature is
implemented simply by extending the definition of
the ATNs to include any sentences whose insignifi-
cant words are omitted. '

A very limited form of ellipsis is dealt with by
allowing the user to ask "Why?" after any system
regsponse. The system assumes that this question
refers to the explanation of the previous response
and therefore produces a further and more detailed
explanation of the uger's initial request. This
mechanism allows the system to focus the 1nterac—
tion to as much detail as is required by the uger.
Once a satisfactory answer has been presented, the
user may contiaue the dialogue at a higher level.

Walcoms to Cows and Bulls
Langth of Code?
&

List of Symbole?
(Ascoege

Probe?
R R
Probas Bulls Cows
Coeex 3 1
Probe?
[a D5 E]
(£ DB E] is {uconeistent with previous Probas and Results!
Why?

This Probs is incomsistent because it is known that:
Symbol 'D is net in positicn '2

What i & walid probe?

The probs (F £ D C) Lis consiarent with pravicus Probes and Results
Is (D & B &l valid?

Probas Bulls Caws
[cbE B| [o03 1
[DEB A) 03] 2
Probe?!
€8 AcC)

Probas Bulls Cows
[cDE B| [03] 1
[D BB A 03 2
E84c] L 3
Probe?

(34cCF

{B A G F] is Lnconsistent with pravious Probes and Resaltsl

Why?

Thisz Probe is lnconsisceat becausa it ls known chact
Symbol 'D is lafche code

Symbol '? ia ot ia che code

If Symbel 'S {s la che code

Then
Symbol 'f is oot in the code
'l aymbols fo the 1lfsc [[B 2] [A 3] [C &]] are in the code of
whith 'L is in the corract position
Tf Symbol 'E is aot ia the code
Thea

Symbol 'S is in the code
‘0 sywbols in the List (E] axe in che code
'3 symbols in che itsc [(B 2] (A) [C 4]] are in the cods of
which 'l fa in the correct positicm
Tf Syabol 'A iz Lo position *%
Then

'2 aymbole Lo the Lae [{E 1] {B 2] [C &]] ate In cthe cods of
which 'L {s ia the correct pesiticn
Syubol 'C is not lu poeirica '2

147

If Symbol 'C is in positiom '3
Then

Symbol A ts net in position '3
'l sywbol {a the liac [{B 1| [B 2]| is fo the code of which it
is ia the correct position
Symbol 'D- {a ia position '4
'3 symbols in the List {[£ L] [B 2] (4 3] [C 4]] are ia tha code of which 'l {a
in the cotrect positiom

Which symbols are in code?
Symbol 'C ig in the code

Syabol ‘A iz in the code
Symbol 'D is in the code

fE A CDj

Probes Bulls Cows
lcoe 8| @3 1
{DERA] {0 3] z
{E B AC] {1tz 3
[EAQD) f2 1] &
Probe?
(FBah

(? 3 CD| in inconsiscent with previous Probes and Rasults!
Which symbola are 8ot in the zoda?

Symbol 'F Le oot ia the code
3ymbol 'T is not in the code

Vhy is 't not In code?

Symbcl 'E'f{s ast in the code
Bacause
'0 symbols in tha Lisr (E) are {o the code

Wyt

0 sywbols in the 1ist [E] ace io the code
Becauss
Symbol ‘D {s Lo tha code
‘L symbol Ein the list (E D| is in the code

Why?

Syatol 'D ia L(m the code
. Betause
Aswume Sywbol 'D i not in the code
'3 sywbols in the list [C E B] ace in the code
3ecanze +
Symbal 'D f{a not in the code
'3 dywbols lo the list {G D £ 8] are in tha code
Syubol '€ s L(n the coda
Bacauss
'] symbols in the list [C E B| are lo the code
Symbol '} is ia the code
s Bacausa
’ '3 symbols in the list {C X B] are in the cods
10 symbols in the list (B] are i the cods
Bacaiide
Symtol 'f i in the code
‘L symbol in the list {E B] is in the code
Symbol "B Ly oot in the code
- Bacauss
'Q symbols io the list [3] aze in the cods
Tha Tollowing Assertiows ire Coatradictory!
Symbol '3 ia in cha coda
Symbol 'S 14 cot in the code

"1 symbol in the list [E D] is in the codse
Because

Symbol 'k is in tha code
12 syubols in the list (¥ A D} are Lo the zode

Te "9 in '2?

Sywbol 'B is {n poeitica '2

What s the positicn of 'A?

Symbol 'A is in poeitiom 'l

Why?

Syabol 'A is in positica ‘1
Bacause

Symbol 'S is in positiom 'Z
Sywbol 'C is ia positica '3
Synbol 'D i3 in positiom ‘¥
Syabol 'A is la che coda

(A BCD]

EFrobas Bulls Cows
(cDE 3] 03] 1L
[0 E B A] (031 2
{8 BAG] Ly 3
(g ac¢0D] [z 4
{AB3cCcD (401 3§

Congratulations, You Broke the Codal

Fig. 2 A Sample Session with the System

Upon completion of a successful parse, the data-
base as defined by the game-state-graph is queried
with the appropriate expression. The system then
responds by evaluating this query and presenting
its natural language representation to the wuser.

A simple language generator is utilized to imple-
ment the final stage of this ianteraction. Figure
2 illustrates a sample sesslon with the system.

The Domain Expert

The domain expert component of this ICAI system is

an articulate one [10]. It can explalin each
problem=solving decision in terms that cotrespond
to those of a human problem-solver. Although it

also consists of data structures and processiung
algorithms that do not necessarily mimic the rea-—
soning steps of humans, {t takes advantage of
these algorithms only when the processing need be
a "black-box" to the user. A typical example of
such a situation may arise if the user were to ask
the system for a suggestion as to a probe which is
consistent with the known data. In such a case,
faster and more efficient algorithms are utilized
to produce a satisfactory response without the
need to explain how this response was derived.
This explanation is already resident In the game-
state-graph in another form which the student 1is
expected to acquire. The SOPHIE [11] and WEST [1]
systems also take advantage of both articulate and
black-box experts.

During a gawme session, after each acceptable probe
is {nput by the wuser, the articulate expert is
invoked to extract all possible data resulting
from the score of this probe. This data is made
explicit and stored in the game-state-graph for
later wuse by the various system components. The
reasoning processes within the expert are
represented as production rules which the student
is expected to eventually acquire.

These rules are predicate calculus well-formed
formulas (wffs) [4] [12], some of which are listed
in Figure 3. Formulas (a) to (e} represent the
types of most inference rules in the system. Type
(d), however, is sigunificantly different in that
it makes use of proof by contradiction. This rule
is used only when all other rtules fall and has
proven to be extremely powerful.

ta (¥} (¥2) (¥a) {symmoL {x) A wuMsvusoL (2#) A wewBER (x2)
=== [(3w) {sunsey (w2) A woTMEMBER (4 w} A WuMayusoL (v a-1)}]}
(V) {wousymsoL ([x] 1) = sywmov (s)}

e (¥a){wuwsrweoL {[z]e} —> wovavweot (11}

) (¥a) (Wy) {amsumeo_reDicave {1) A provEN_PREDICATE (1)
AL{Ze) {vrEn (e 2Uy) A wemsen (-1 3Ur)}]

= ~x}

Fig. 3 Sample Inference Rules

148

Rule (a) states that i{f "x" is known to be a
bol in the code, "n" symbols in the list "z" are
in the code, and "x" 1s a member of "z", then
there exists a list "w" such that it is a subset
of "z", "x" {s not a member of "w", and "n-1" sym-
bols in the 1list "w" are in the code. Rule (d)
states that 1f "X" 1s a predicate assumed to be
true (such as "A 1s a symbol 1in the code”), "Y"
represents a subset of all predicates known' to be
true, and there exists at least one predicate "Z"
which can be inferred from the union of "X" and
"I", and "EZ" 1s a member of this union, then "&X"
must be true.

sym—

The expert's inference engine may operate in one
of two domains: 1) it may use modus ponens [4]
with the inference rules of Figure 3, or 2) it may
first convert the wffs to clauses using a standard
procedure [4] [12] and then use resolution [13]
with unification [l4]. Both are 1loglcally
equivalent, although the latter method does not
provide intuitively obvious inferences. The first
method was implemented for this reason.

The production rule representation of domain
knowledge allows the program to solve problems
independently as well as criticize student solu-
tions. Belng able to solve the problems, ideally
in any of several possible ways, is necessary 1If
the TICAL program is to make fine-grained sugges-
tions about the completion of partial solutions.
However, currently the domain expert only solves a
particular problem in one way. Once a solution
has been generated, the inference mechanisn stops
and no longer searches for other possible solu-
tions. This mechanism may easily be extended to
deal with multiple solutions.

The Tutoring Strategies

The tutoring module of the coach must integrate
knowledge about natural language dialogues, teach-
ing methods, and the subject area. This 1s the
module that communicates with the student, select-
iug problems for him to solve, monitoring and cri-~
ticizing his performance and providing assistance
upon request. The design of this module involves
issues such as when it 1s appropriate to offer a

hint or how far the student should be allowed to
go down the wrong track. This additional
knowledge, beyond the representation of the sub-

ject domain and the student's state of understand-
ing (student model), is knowledge about teaching.

The teaching strategy employed 1s based
nostic modeling,

on diag-
in which the program debugs the
student's understanding by evaluating his
responses to the game [15] [16] [17] [18]. From
the program's feedback, the student is expected to
learn which skills he uses wrongly and which he
does not use at all. This strategy is implemented
through a coaching enviromment [10]. It is not
concerned with covering a predetermined lasson
plan within a fixed time. Rather, its goal is to
encourage skill acquisition and general problem-
solving abilities by engaging the student in the
game of logic, Cows and Bulls. The immediate aim
of the student 1is to have fun, and skill acquisi-

tion is an indirect consequence. Tutoring comes
about when the computer coach, "observing” the
student's play of the game, interrupts the student
and offers new finformation in as much detail as is
requested. A successful computer coach, such as
WEST {1]) and WUMPUS {19], must be able to discern
what skills or knowledge the student might
acquire, based on his playing style, and to judge
effective ways to intercede in the game and offer
advice.

The structure is in place for the implementation
of more elaborate tutorial strateples. The
current strategies which determine exactly when to
intercede, what to say, and how to respond to stu-
dent requests are quite simple. They do not deal
with complex interactions which may dictate
whether information should or should not be sup~
plied to the user. For example, if the game-
state-graph indicates that the code should be
known by the user at a particular point in the
game, it would be unwise to allow the user to ask
the aystem for its value unless he is having
extreme difficulty. If the system responded
directly to each and every question by the stu—
dent, he would not need to acquire any skills iIn
order to play the game well. The strategies
governing this interaction should only volunteer
Information 1f it {is felt that the student would
benefit from 1it. The major strategy actually
implemented 4is one which 18 nonintrusive and
rarely lectures. It will only interrupt the stu—
dent when he 1s playing at a suboptimal level.

The tutoring strvategles are implemented as produc—
tion rules which may easily be altered, deleted,
or appended to. Collins [15] has ploneered the
careful investigation and:articulation of teaching
strategles. The WHY [20] and GUIDON [21] systems
also explicitly articulate their strategiles.

The Student Model

The student
gtudent's

modeling module represents the
understanding of the material to be
taught. The purpose of modeling the student 13 to
make hypotheses about his misconceptions and
suboptimal performance strategies so that the
tutoring module can point them out, indicate why
they are wrong, and suggest corrections. It .18
advantageous for the system to be able to recog-
nize alternative ways of solving problems includ-
ing the 1incorrect methods that the student might
use as a result of systematic misconceptions about
the problem or inefficlent strategies.

Since the student 1s primarily engaged in a gaming
activity, any explicit diagnosing of a student's
strengths and weaknesses must be nonobtrusive or
subservant to his main activity. This means that
the diagnostic component cannot use prestored
tests or pose a lot of diagnostic questions to the
student. Instead, the computer coach must res-
trict itself mainly to inferring a student's
shortcomings from whatever he does in the context
of playing the game. This can be a difficult
problem. Just because a student does not use a
certain skill while playing a game does not exist

149

certain skill while playing a game does not mean
that he does not know that skill., TFor example, a
situation that required him to invoke it may never
have been created. The absence of a manifested

skill carries diagnostic value if and only if an
expert in an equivalent situation would have wused
that skill. Hence, apart from the outright

errors, the main window a computer-based coach has
to a student’'s misconceptions is through a “"dif-
ferential"” modeling technique that compares what
the student 1s doing with what the expert would be
doing 1in his place.

The process of constructing a differential model
requires two tasks - both of which require the
domain expert. The first task is evaluating the
quality of the student's action (or probe) in
relationship to the set of possible alternative
moves that an expert might have made 1n the exact
same circumstances. The second task is determin-—
ing the wunderlying skills that went into the
selection and compositlion of the student's move as
well as each of the better moves of the expert.
In this program, a complete model is not built

since only the first task is carried out. The
tutoring strateglies utilize this model to guide
the student — system interactiom.

Conclusions

In general, ICAI programs have only begun to deal

with the problems of representing and acquiring
teaching expertise and of determining how this
knowledge should be integrated with general prin-
ciples of discourse. A successful computer—based
coach has been developed which 1) tells the stu—
dent whether or not his solution (probe) to a sub-
problem 1s correct, 2) identifies the source of an
incorrect solution should one exist, and 3)
explains why such a solution is incorrect iIn as
much detail as is required by the user. Future
work will focus on the development of a facility
to deal with multiple solutions to a given sub-
problem, the incorporation of more complex tutor-
ing strategles, and the development of a student
model which explicitly determines the underlying
skills that went into the selection and composi-
tion of the student's move.

Implementation Note

The program has been implemented on a Data General
MV8000 using Waterloo Unix Prolog [22].

References
1] Buyrton, R.R., Brown, J.5., "An Investigation
of computer coaching for informal learning
aetivities™, Int. J. Man—Machine Studies,
Yol.1ll, 1979, pp.5-24.

[2] S5leeman, D.H., Hendley, R.J., "ACE: A system
which Apalyzes Complex Explanations”, Int.
J. Man-Machine Studies, Vol.ll, 1979,
pp.125-144,

(3] Self, J.A., "Student models
aided instruction”, Int. J.
Studies, Vol.6, 1974, pp.261-276.

in computer-
Man-Machine

(4]

(5]

[6]

(7]

(8]

(9]

[10]

f11]

(12]

[13]

(14]

(15]

[16]

17]

Kowalski, R., "Logic for Problem Solving",
North Holland, Amsterdam, 1979.

Woods, W.A., "Transition Network Grammars
for Natural Language Analysis", Comm. ACM,
Vol.1l3, No.ll, Oct. 1970, pp.591-606.

Burton, R.R., “Semantic grammar: An
engineering techmique for constructing
natural language understanding systems”, BBN
Rep. No. 3453, Bolt, Beranek and Newman,
Inc., Cambridge, MA, 1976.

Winograd, T., "Language as a Cognitive Pro-
cess, Volume 1: Syntax”, Addison-Wesley,
Reading, MA, 1982.

Hendrix, G.G., Sacerdoti, E.D., Sagalowicz,

D., Slocunm, J., "Developing a Natural
Language Interface to Complex Data®, ACM
Trans. Databagse Systems, Vol.3, No.2, June

1978, pp.105-147.

Hendrix, G.G., "The LIFER Manual: A Guide a
Building Practical Natural Language Inter—

faces”, SRI International, Tech. Note 138,
February 1977.
Goldstein, I., "The computer as coach: An

athletic paradigm for intellectual educa-
tion™, AI Memo 389, MIT, 1977,

Brown, J.S., Burton, R.R., DeKleer J.,
“Pedagogical, natural language and knowledge
englineering techniques in SOPHIE I, II and
IIr¥, 1Int. J. Man—Machine Studies, Vol.ll,
1979, pp.227-282.

Nilsson, N.J.,
Intelligence”,
Alto, CA, 1980.

"Principles of Artificial
Tioga Publishing Co., Palo

Robinson, J.A., “"The Generalized Resolution
Principle”, Machine TIntelligence 3, (Dale
and Michie, Eds.), Oliver and Boyd, Edip-
burgh, 1968, pp.77-93.

Robinson, J.A., ”Coﬁputational Loglet the
Unification Computation”, Machine Intelli-

gence 6, Edinburgh University Press, New
York, {(Meltzer and Michie, Eds.), 1971,
pp.63-72.

Collins, A., "Processes In acquiring

knowledge", Schooling and the acquisition of
knowledge (Anderson, Spiro, and Montague,
Eds.), Hillsdale, NJ, 1976, pp.339-363.

Brown, J.S., Burton, R.R., "Diagnostic
models for procedural bugs in basie
mathenatical skills", Cognitive Science,
Vol.2, 1978, pp.155-192.

Brown, J.S8., Burton, R.R., "Multiple
representations of knowledge for tutorial
reasoning”, Represéntation and undérstand-

ing: Studies in cognitive science, (Bobrow
and Collins, Eds.), Academic Press, New
York, 1978, pp.311-349,

150

(18]

[19]

(20]

{21]

[22]

¥offman, E.B., Blount, S.E., "Artificial
intelligence and automatic programming in
CAI", Artificial Intelligence, Vol.6, 1975,
PP+215-234.

Goldstein, L., "The genetic graph: a
representation for the evolution of pro-
cedural knowledge”, Int. J. Man—Machine Stu-
dies, Vol,ll, 1979, pp.51-77.

Stevens, A., Collins, A., Goldim, S8.E.,
"Misconceptions in student's understanding”,

Int. J. Man-Machine Studies, Vol.ll, 1979,
pp.145-156.
Clancey, W.J., "Transfer of rule-based

_expertise through a tutorial dialogue”, Rep.

No. STAN-C3-769, Computer Science
Stanford University 1979.

Dept.,

Van Emden, M.H., Goebel, R.,, "Waterloo Unix
Prolog User's Manual, Version 1.47, Logic
Programming and Artificial Intelligence
Group, Dept. Computer Science, University of
Waterloa, 1985.

