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METHODOLOGY Open Access

mPUMA: a computational approach to microbiota
analysis by de novo assembly of operational
taxonomic units based on protein-coding
barcode sequences
Matthew G Links1,2, Bonnie Chaban2, Sean M Hemmingsen3,4, Kevin Muirhead3 and Janet E Hill1*

Abstract

Background: Formation of operational taxonomic units (OTU) is a common approach to data aggregation in

microbial ecology studies based on amplification and sequencing of individual gene targets. The de novo assembly

of OTU sequences has been recently demonstrated as an alternative to widely used clustering methods, providing

robust information from experimental data alone, without any reliance on an external reference database.

Results: Here we introduce mPUMA (microbial Profiling Using Metagenomic Assembly, http://mpuma.sourceforge.

net), a software package for identification and analysis of protein-coding barcode sequence data. It was developed

originally for Cpn60 universal target sequences (also known as GroEL or Hsp60). Using an unattended process that is

independent of external reference sequences, mPUMA forms OTUs by DNA sequence assembly and is capable of

tracking OTU abundance. mPUMA processes microbial profiles both in terms of the direct DNA sequence as well as

in the translated amino acid sequence for protein coding barcodes. By forming OTUs and calculating abundance

through an assembly approach, mPUMA is capable of generating inputs for several popular microbiota analysis

tools. Using SFF data from sequencing of a synthetic community of Cpn60 sequences derived from the human

vaginal microbiome, we demonstrate that mPUMA can faithfully reconstruct all expected OTU sequences and

produce compositional profiles consistent with actual community structure.

Conclusions: mPUMA enables analysis of microbial communities while empowering the discovery of novel

organisms through OTU assembly.

Keywords: Operational taxonomic unit, Assembly, Automated sequence analysis pipeline, 60 kDa chaperonin,

Cpn60, Barcode, Microbial profiling, Microbiota, Microbiota analysis

Background
A common approach to the profiling of complex micro-

bial communities is the amplification and sequencing of

‘universal’ genes, such as Cpn60 (also known as GroEL

or Hsp60) or 16S rRNA, as DNA barcodes for the ge-

nomes in which they reside. Barcodes are defined by the

International Barcode of Life Project as short, phylogen-

etically informative sequences from standardized regions

of the genome that can be used for species identification

and discovery [1], and preferred barcodes for microbes

including fungi [2] and bacteria [3] have been proposed

recently. In microbial community studies, broad-range

‘universal’ PCR primers are used to amplify regions of

the target genes, and amplicon sequences are

determined directly using next-generation sequencing

methods. These gene-targeted methods arguably fall

under the umbrella of 'metagenomics' along with whole

genome sequencing approaches, since these are methods

based on the analysis of total genomic content of a com-

munity of organisms rather than individual isolates [4].

The number of individual sequences generated is typic-

ally in the order of 106 and can be much greater. Thus,
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some form of data aggregation is required to reduce the

complexity of the raw sequence data, and facilitate inter-

pretation. Data aggregation is focused on the in silico

steps following sequence data acquisition, and not issues

that arise from methods of DNA extraction and possible

biases in PCR amplification. The key challenge in aggre-

gation is ensuring that the resulting 'profiles' (list of se-

quences and their abundances) are faithful to the raw

sequence data that was aggregated.

Currently, the most widely used method for data ag-

gregation is the formation of operational taxonomic

units (OTU) with clustering approaches such as those of

MOTHUR [5] or UCLUST [6] as implemented within

packages such as QIIME [7]. Clustering procedures cul-

minate in the selection of a representative sequence for

each OTU, which may be selected from the experimental

data according to various rules: longest sequence in the

cluster, most abundant sequence in the cluster, or ran-

dom selection. However, representative sequences

selected from the experimental data may not include

full-length coverage of the target, depending on its

length. This in turn limits information content, and the

ability to conduct multiple sequence alignments and

phylogenetic analysis for characterization of novel OTU

sequences. Alternatively, the closest sequence from a ref-

erence database may be used to represent the OTU [5].

A limitation common to all of these approaches is ap-

parent when the community under study contains novel

sequences not represented in reference databases. In

these cases, novel sequences in the experimental data

may be ignored or pooled together as 'unclassified' since

they do not closely resemble the reference sequences.

The end result is that the aggregated description of the

community may not reflect the input sequence data gen-

erated in the experiment.

We have demonstrated recently that de novo assembly

of OTU sequences is an alternative strategy for sequence

data aggregation that provides robust information from

experimental data alone [3]. In this approach, OTU se-

quences are consensus sequences derived from the ex-

perimental data, without any reliance on an external

reference database. This strategy has been used success-

fully in producing high resolution profiles of a variety of

complex microbial communities [8-10] and has led to

the resolution of subspecies level diversity within previ-

ous established bacterial 'species' [11]. However, until

now there has been no computational pipeline available

for this work, requiring practitioners to attend to each

step of the assembly and post-assembly analysis indi-

vidually. Here, we introduce mPUMA (microbial profil-

ing using metagenomic assembly), a computational

pipeline for the automated assembly and analysis of

OTU sequences from protein coding gene sequence data

derived from microbial communities.

Methods
mPUMA workflow

mPUMA was written in PERL using BioPerl [12] and is

maintained as a sourceforge project (http://mpuma.

sourceforge.net/). It was developed originally for assem-

bly of Cpn60 universal target sequences [13,14] since the

characteristics of this target make it a preferred se-

quence barcode for resolution of bacterial taxa [3]. How-

ever, mPUMA is applicable to any other suitable

molecular barcode. mPUMA assembles OTU from PCR

amplicon sequence libraries generated from any number

of samples, starting from a set of SFF or Fastq files, and

a text file explaining how the files relate to experimental

samples. Following assembly, the abundance of each

OTU is determined and files for downstream analysis

using several common microbial ecology and phylogeny

tools are generated. The mPUMA workflow is illustrated

in Figure 1.

Sequence assembly

Sequence assembly within mPUMA can be performed

by two methods: gsAssembler (Roche/454, Branford, CT,

USA) in cDNA mode, or Trinity [16]. Abundance per

OTU can be calculated by mPUMA from a read-

to-OTU map produced in one of two ways (Figure 1A).

For gsAssembler assemblies, the internal read tracking

of the assembly process can be used as the basis for the

read tracking. Alternatively, reference mapping with

Bowtie 2 [17] can be used to map each experimental

read onto reference OTUs assembled with either

gsAssembler or Trinity. Considerations for the optimal

assembly and read tracking strategy for any particular

project are discussed below. Regardless of the strategy

used, the quality of the assembly and read tracking result

is assessed in terms of the specificity and sensitivity of

each OTU as described previously [3].

Post-assembly analysis of OTU

Removal of PCR primer sequences is accomplished with

seqclean (http://sourceforge.net/projects/seqclean/files/).

Identification and removal of chimeric sequences

is performed by two strategies implemented within

mPUMA. First, gsAssembler identifies chimeras resulting

from the assembly process. Second, the Chaban Chimera

Checker (C3) identifies putative chimeras that may be re-

moved from subsequent analyses. In C3 the 5′ and 3′

ends of each OTU (150 bp) are extracted, compared to a

reference set of sequences (for example, a non-redundant

set of sequences from cpnDB [14]) and evaluated to see if

both ends match the same reference sequence in the

expected orientations. Putative chimeras are identified as

assembled OTU that fail this test. In novel environments

where taxa are not well represented in the reference data-

base, it may be appropriate to forego the use of C3
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because the novelty of the experimental sequences could

lead to an increased false positive rate in chimera

identification.

Non-chimeric OTU are clustered at 100% identity by

CD-hit [18] to remove redundant sequences. For protein

coding barcode sequences, mPUMA implements BLASTX

OTU read-to-OTU map
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Figure 1 mPUMA workflow. Programs used at each step in the pipeline are shown in red. A. User-defined protocol options for assembly and read-

to-operational taxonomic unit (OTU) tracking include gsAssembler for both processes (green arrows), gsAssembler plus Bowtie 2 for read tracking

(blue arrows), and Trinity assembly plus Bowtie 2 for read tracking (purple arrows). B. Post-assembly analysis of OTU and abundance data. Gray boxes

indicate possible downstream analysis tools for which input is generated by mPUMA. The horizontal broken line indicates the transition from analysis

of nucleotide OTU ((nt)OTU) and translated peptide OTU ((aa)OTU). Quality of the assembly can be evaluated by assessing Sensitivity/Specificity (Sn/Sp)

of each OTU as defined in [3]. WateredBLAST is a combination of BLAST and Smith-Waterman alignments, described in detail in [15].
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[19] to identify the correct reading frame for translation of

OTU, and then translates the nucleotide OTU to their cor-

responding peptide OTU sequences. Redundant peptide

sequences are also collapsed using CD-hit [18] at 100%

identity. mPUMA calculates the abundance of each non-

redundant peptide OTU for each library, resulting in a

peptide OTU abundance table.

Nucleotide and peptide OTU and abundance data are for-

matted for use with additional tools, which are run automat-

ically where appropriate. Prior to generating input files for

these applications, mPUMA carries out a down-sampling

process where reads are sampled at random to the depth of

the smallest library to address the concerns raised by

Gihring et al. related to the effects of unequal sampling ef-

fort on calculation and comparison of ecological parameters

such as richness, diversity and evenness [20]. Abundance

files for OTU are used to create input for MOTHUR [5].

Using t-coffee [21] for multiple sequence alignments and

FastTree [22], a phylogenetic tree of the OTU is calculated,

which can be used in conjunction with abundance data to

analyze libraries in Unifrac [23,24]. A naïve Bayesian classi-

fier trained on Cpn60 universal target sequences from

cpnDB [14] has been developed using the RDP classifier

framework [25]. Classifier results can be loaded into

MEGAN [26] for comparison of multiple libraries in a taxo-

nomic context. All of the output files generated by mPUMA

for secondary analyses are generated both for the nucleotide

and the amino acid OTU sequences.

Computational platform

Demonstrations of mPUMA running in an unattended

fashion were performed using a previously published

dataset [10] that included 711 MB of data in SFF files.

Analyses were carried out on a Dell R910 equipped with

128 GB of RAM and 2x Intel Xeon 6-core E7530 proces-

sors running CentOS 5.8.

Results and Discussion
To validate the primary function of mPUMA (OTU forma-

tion and abundance calculation), we tested its performance

in the analysis of sequence data generated by amplification

and sequencing of Cpn60 universal target sequences from a

synthetic community containing cloned Cpn60 universal

target sequences from 20 human vaginal bacteria with pair-

wise sequence identity values of 60 to 96% [27]. PCR from

this template mixture and pyrosequencing of the resulting

amplicon library on a Roche GS FLX instrument was

performed using established protocols [28], resulting in

9,877 sequence reads from either the 5′ or 3′ end of the tar-

get sequence. The SFF data is accessible through the

mPUMA sourceforge site (http://mpuma.sourceforge.net/).

We verified that all 20 target sequences were represented in

the results by using Bowtie 2 to map all reads on to the ref-

erence sequences for the synthetic community ('Target' in

Figure 2). OTU formation and abundance calculations were

performed on the dataset using all three options available

within the mPUMA pipeline (gsAssembler OTU assembly/

gsAssembler read-to-OTU mapping, gsAssembler OTU as-

sembly/Bowtie 2 read-to-OTU mapping and Trinity OTU

assembly/Bowtie 2 read-to-OTU mapping) and the resulting

microbial profiles were evaluated for number of OTU gener-

ated, number of reads unmapped, amount of total error gen-

erated and comparison of the profile to the known 'Target'

synthetic community profile (Figure 2).

gsAssembler was able to reconstruct all 20 expected

OTU with minimum length parameter settings of >100 bp

(Figure 2). However, despite accurately describing the rich-

ness of the sample (20 OTUs), read tracking within

gsAssembler failed to place a substantial proportion of data

in any OTU. The proportion of sequence reads unmapped

increased steadily from 8% to a maximum of 33% as the

minimum length parameter was increased from 150

through 350 bp (Figure 2). There are several possible expla-

nations for this unplaced data: the reads could be short or

of low quality, or the assembly process may not have com-

pletely accounted for the placement of each read to an

OTU. In our experience, situations in which a study con-

tains samples with extreme differences in richness can lead

to incomplete mapping when utilizing gsAssembler which

cannot be resolved using the available command line op-

tions (−ig, -it, and -icc). The occurrence of such

'thresholding' problems is recorded in the 454IsotigsLayout.

txt files generated by gsAssembler. Given that we confirmed

that gsAssembler had correctly resolved all 20 of the

expected OTU for this synthetic community, we were left

with the possibility that either there was a proportion of the

data which was of insufficient quality and/or length to be

placed in the OTUs at higher stringencies (that is, greater

minimum overlap length requirement) or the placement

was incomplete. To determine which of these phenomena

were occurring we employed Bowtie 2 [17] as a method to

independently assess the read to OTU mapping.

When read mapping was performed using Bowtie 2 to

place reads onto a gsAssembler assembly, there was a

dramatic reduction in the proportion of unmapped data

and in total error of the assembly coincident with all 20

members of the synthetic community being resolved

(Figure 2). The results of assembly using gsAssembler

with a minimum overlap >100 bp followed by read map-

ping with Bowtie 2 served to construct a microbial pro-

file indistinguishable from the actual profile of the

synthetic community at both the nucleotide and peptide

levels, with the 20 expected nucleotide OTU and 19 cor-

responding peptide OTU (peptide sequences for Lacto-

bacillus gasseri and Lactobacillus johnsonii are identical).

This result confirmed that the reads were of sufficient

length and quality for inclusion, and thus the more likely

explanation for the relatively large proportion of data
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that is not placed by gsAssembler read tracking is that

the assembler had failed to completely assign all reads to

the OTU assembled (the thresholding problem described

above).

gsAssembler uses an Overlap-Layout-Consensus (OLC)

strategy for assembly, which is dramatically affected by

coverage depth [29]. The dominant alternative approach

for assembly is the use of a de Bruijn graph (DBG) to

analyze sequence composition in terms of k-mers. The

total length of sequence being assembled, independent of

coverage depth, governs the size of a de Bruijn graph. Be-

ing unaffected by coverage depth is the chief computa-

tional advantage of DBG approaches. We explored

whether Trinity, a DBG method [16], offers a valid alter-

native to gsAssembler in cDNA mode for the analysis of

microbial barcode data. Within Trinity, the parameter

most likely to affect the accuracy of assembly results is k-

mer size. We examined all possible k-mer lengths sup-

ported by Trinity (k-mer ranging from 10 to 31, inclusive).

Bowtie 2 was then used to map the individual reads onto

the non-redundant set of OTU formed by Trinity for cal-

culating abundance because the reductive process of dis-

tilling sequences to component k-mers eliminates the

ability of tracking reads directly within DBG approaches.

As can be seen in Figure 2, increasing k-mer length

resulted in the formation of more of the expected OTU,

reduction of the proportion of unmapped reads and a

corresponding reduction in total error of the assembly.

However, in no case did Trinity resolve all 20 OTUs

from the synthetic community. Trinity assemblies with a

k-mer of 30 or 31 were nearly complete, failing only to

resolve an OTU for L. johnsonii. This was perhaps not
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surprising since L. johnsonii and L. gasseri are the two

most similar members of the community (96% identical)

and have similar abundances, being the 11th and 9th

most abundant in this dataset, respectively. The L.

johnsonii reads were placed in the L. gasseri OTU when

an L. johnsonii OTU was not formed.

Resource usage by mPUMA can vary significantly de-

pending on the size and complexity of the datasets being

analyzed. In our experience the use of Trinity over

gsAssembler can be necessary for computational con-

straints (memory and cpu time) when dealing with

datasets that are extremely rich or diverse. mPUMA is

suitable for the assembly and analysis of OTU from

other suitable targets besides Cpn60, such as the gene

encoding the universal archaeal type-II chaperone (also

known as Thermosome or TCP1 or CCT) [30], and

RpoB [31]. Pyrosequencing data from both have been

processed through mPUMA, confirming its utility for

other protein coding targets. To date, we have applied

mPUMA to the analysis of amplicon sequence data from

the 454 GS FLX, Titanium and Junior platforms. We en-

courage the microbial ecology community to investigate

the application of mPUMA to other sequence data types

and gene targets of interest.

Conclusions
The de novo assembly of OTUs from barcode sequence

data can be optimized to reduce error and accurately re-

flect the richness of a microbial community, presenting

possible advantages over clustering methods that may

mask diversity or inhibit discovery of novel sequences.

The mPUMA pipeline was developed to facilitate the

use of assembly in microbial ecology studies where both

accurate descriptions of richness and calculation of

OTU abundance are desired. Based on our examination

of a synthetic community, optimal resolution of OTU

sequence barcodes and calculation of their abundance

can be achieved through use of gsAssembler with a

minimum overlap length parameter >100 bp followed by

Bowtie 2 read tracking for determining OTU abundance.

In cases where computational performance is limiting,

Trinity assembly followed by read tracking with Bowtie

2 should produce near-optimal results with only excep-

tionally similar barcodes remaining unresolved. In

choosing the most appropriate strategy for assembly and

abundance calculations from among the options avail-

able in mPUMA, researchers will need to balance the

computational performance of the assembly approach

with the precision of OTU formation.

The mPUMA software package is available from

sourceforge and it is covered by an open-source license

(http://mPUMA.sourceforge.net). At present, mPUMA

is distributed on its own, but it is possible that in the fu-

ture it may become incorporated into a Virtual Machine

image. Since it is as an open-source platform, mPUMA

can be extended by anyone interested in utilizing de

novo assembly for the analysis of microbial profiling

data.

Availability of supporting data
The SFF data used in the validation and demonstration of

mPUMA is available through the mPUMA sourceforge

site (http://mpuma.sourceforge.net/).

Abbreviations

DBG: De Bruijn graph; mPUMA: microbial Profiling Using Metagenomic

Assembly; OLC: Overlap-layout-consensus; OTUs: Operational taxonomic

units.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MGL designed mPUMA. MGL and KM developed the mPUMA codebase. JEH,

BC and SMH contributed to the design and validation of mPUMA, and data

analysis. BC designed the C3 chimera checker and generated the Cpn60

amplicon library. MGL and JEH drafted the manuscript and figures. All

authors read and approved the final manuscript.

Acknowledgements

This work was supported by funding from the Canadian Institutes for Health

Research, the Natural Sciences and Engineering Research Council of Canada,

and Agriculture and AgriFood Canada. We are grateful to the members of

the Hill Lab and the Cpn60 research collaboratorium for their valuable

feedback, and contributions to testing mPUMA.

Author details
1Agriculture and AgriFood Canada, 107 Science Place, S7N 0X2, Saskatoon,

SK, Canada. 2Department of Veterinary Microbiology, University of

Saskatchewan, 52 Campus Drive, S7N 5B4, Saskatoon, SK, Canada. 3National

Research Council Canada, 110 Gymnasium Place, S7N 0W9, Saskatoon, SK,

Canada. 4Department of Microbiology & Immunology, University of

Saskatchewan, 107 Wiggins Road, S7N 5E5, Saskatoon, SK, Canada.

Received: 8 April 2013 Accepted: 3 August 2013

Published: 15 August 2013

References

1. Hebert PD, Cywinska A, Ball SL, DeWaard JR: Biological identifications

through DNA barcodes. Proc R Soc Lond B Biol Sci 2003, 270:313–321.

2. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA,

Chen W: Nuclear ribosomal internal transcribed spacer (ITS) region as a

universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 2012,

109:6241–6246.

3. Links MG, Dumonceaux TJ, Hemmingsen SM, Hill JE: The chaperonin-60

universal target is a barcode for bacteria that enables de novo assembly

of metagenomic sequence data. PLoS ONE 2012, 7:e49755.

4. Schloss PD, Handelsman J: Biotechnological prospects from

metagenomics. Curr Opin Biotechnol 2003, 14:303–310.

5. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,

Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger

GG, Van Horn DJ, Weber CF: Introducing mothur: open-source, platform-

independent, community-supported software for describing and

comparing microbial communities. Appl Environ Microbiol 2009,

75:7537–7541.

6. Edgar RC: Search and clustering orders of magnitude faster than BLAST.

Bioinformatics 2010, 26:2460–2461.

7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,

Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D,

Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M,

Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T,

Zaneveld J, Knight R: QIIME allows analysis of high-throughput community

sequencing data. Nat Methods 2010, 7:335–336.

Links et al. Microbiome 2013, 1:23 Page 6 of 7

http://www.microbiomejournal.com/content/1/1/23

http://mpuma.sourceforge.net/
http://mpuma.sourceforge.net/


8. Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG, Hill

JE: Effects of plant-based diets on the distal gut microbiome of rainbow

trout (Oncorhynchus mykiss). Aquaculture 2012, 350:134–142.

9. Schellenberg JJ, Links MG, Hill JE, Dumonceaux TJ, Kimani J, Jaoko W,

Wachihi C, Mungai JN, Peters GA, Tyler S, Graham M, Severini A, Fowke KR,

Ball TB, Plummer FA: Molecular definition of vaginal microbiota in East

African commercial sex workers. Appl Environ Microbiol 2011,

77:4066–4074.

10. Chaban B, Links MG, Hill JE: A molecular enrichment strategy based on

cpn60 for detection of Epsilon-Proteobacteria in the dog fecal

microbiome. Microbial Ecol 2012, 63:348–357.

11. Paramel Jayaprakash T, Schellenberg JJ, Hill JE: Resolution and

characterization of distinct cpn60-based subgroups of Gardnerella

vaginalis in the vaginal microbiota. PLoS ONE 2012, 7:e43009.

12. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G,

Gilbert JG, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI,

Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, Birney E:

The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002,

12:1611–1618.

13. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW:

HSP60 gene sequences as universal targets for microbial species

identification: studies with coagulase-negative staphylococci.

J Clin Microbiol 1996, 34:818–823.

14. Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM: cpnDB: a

chaperonin sequence database. Genome Res 2004, 14:1669–1675.

15. Schellenberg J, Links MG, Hill JE, Dumonceaux TJ, Peters GA, Tyler S, Ball B,

Severini A, Plummer FA: Pyrosequencing of the chaperonin-60 universal

target as a tool for determining microbial community composition. Appl

Environ Microbiol 2009, 75:2889–2898.

16. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis

X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A,

Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N,

Regev A: Full-length transcriptome assembly from RNA-Seq data without

a reference genome. Nat Biotechnol 2011, 29:644–652.

17. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat

Methods 2012, 9:357–359.

18. Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large

sets of protein or nucleotide sequences. Bioinformatics 2006, 22:1658–1659.

19. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ:

Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs. Nucl Acids Res 1997, 25:3389–3402.

20. Gihring TM, Green SJ, Schadt CW: Massively parallel rRNA gene

sequencing exacerbates the potential for biased community diversity

comparisons due to variable library sizes. Environ Microbiol 2012,

14:285–290.

21. Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method for fast

and accurate multiple sequence alignment. J Mol Biol 2000, 302:205–217.

22. Long KS, Poehlsgaard J, Hansen LH, Hobbie SN, Bottger EC, Vester B: Single

23S rRNA mutations at the ribosomal peptidyl transferase centre confer

resistance to valnemulin and other antibiotics in Mycobacterium

smegmatis by perturbation of the drug binding pocket. Mol Microbiol

2009, 71:1218–1227.

23. Hamady M, Lozupone C, Knight R: Fast UniFrac: facilitating high-

throughput phylogenetic analyses of microbial communities including

analysis of pyrosequencing and PhyloChip data. ISME J 2010, 4:17–27.

24. Lozupone C, Knight R: UniFrac: a new phylogenetic method for comparing

microbial communities. Appl Environ Microbiol 2005, 71:8228–8235.

25. Wang Q, Garrity GM, Tiedje JM, Cole JR: Naive Bayesian classifier for rapid

assignment of rRNA sequences into the new bacterial taxonomy.

Appl Environ Microbiol 2007, 73:5261–5267.

26. Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic

data. Genome Res 2007, 17:377–386.

27. Dumonceaux TJ, Schellenberg J, Goleski V, Hill JE, Jaoko W, Kimani J,

Money D, Ball TB, Plummer FA, Severini A: Multiplex detection of bacteria

associated with normal microbiota and with bacterial vaginosis in

vaginal swabs using oligonucleotide-coupled fluorescent microspheres.

J Clin Microbiol 2009, 47:4067–4077.

28. Schellenberg J, Links MG, Hill JE, Hemmingsen SM, Peters GA, Dumonceaux TJ:

Pyrosequencing of chaperonin-60 (cpn60) amplicons as a means of

determining microbial community composition. Methods Mol Biol 2011,

733:143–158.

29. Li Z, Chen Y, Mu D, Yuan J, Shi Y, Zhang H, Gan J, Li N, Hu X, Liu B, Yang B,

Fan W: Comparison of the two major classes of assembly algorithms:

overlap-layout-consensus and de-bruijn-graph. Brief Funct Genomics 2012,

11:25–37.

30. Chaban B, Hill JE: A ‘universal’ type II chaperonin PCR detection system

for the investigation of Archaea in complex microbial communities.

ISME J 2012, 6:430–439.

31. Vos M, Quince C, Pijl AS, De Hollander M, Kowalchuk GA: A comparison of

rpoB and 16S rRNA as markers in pyrosequencing studies of bacterial

diversity. PLoS ONE 2012, 7:e30600.

doi:10.1186/2049-2618-1-23
Cite this article as: Links et al.: mPUMA: a computational approach to
microbiota analysis by de novo assembly of operational taxonomic units
based on protein-coding barcode sequences. Microbiome 2013 1:23.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Links et al. Microbiome 2013, 1:23 Page 7 of 7

http://www.microbiomejournal.com/content/1/1/23


