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Full characterization of an 
attosecond pulse generated  
using an infrared driver
Chunmei Zhang1, Graham G. Brown1, Kyung taec Kim2,3, D. M. Villeneuve1 & p. B. Corkum1

the physics of attosecond pulse generation requires using infrared driving wavelength to reach the 

soft X-rays. However, with longer driving wavelength, the harmonic conversion eiciency drops 
signiicantly. It makes the conventional attosecond pulse measurement using streaking very diicult 
due to the low photoionization cross section in the soft X-rays region. In-situ measurement was 

developed for precisely this purpose. We use in-situ measurement to characterize, in both space and 

time, an attosecond pulse produced by ultrafast wavefront rotation of a 1.8 µm fundamental beam. 

We conirm what models suggest – that each beamlet is an isolated attosecond pulse in the time 
domain. We get almost constant lat wavefront curvature through the whole photon energy range. The 
measurement method is scalable to the soft X-ray spectral region.

he nonlinear interaction of an intense ultrashort laser pulse with ionizing matter generates bursts of coherent 
XUV radiation with attosecond pulse duration1. hese attosecond pulses open the route to study and control of 
ultrafast electron dynamics2 in attosecond time scale3. For most experiments it is important that the pulses are 
well isolated and, for a range of experiments, it would be useful if the pulses could access the characteristic sot 
X-ray absorption features of atoms4. To reach sot X-ray absorption features, we need infrared drivers5,6 and we 
also need methods to characterize pulses that are scalable to the sot X-rays7. We report the irst temporal charac-
terization of isolated attosecond pulses produced by an infrared driver.

he information for in-situ measurement method8 is perturbatively – but indelibly – placed onto the attosec-
ond pulse itself. he only previous demonstration of the method was using an 800 nm fundamental beam8 and the 
attosecond pulse was selected by polarization gating9.

We show that isolated attosecond pulses can be created with infrared drivers and we measured their 
spatial-temporal characteristics. In addition the wavefront curvature of each frequency component is charac-
terized and compared with theoretical simulation. We measure that the wavefront curvature weakly depends on 
the frequency. his changes the space-time structure of the pulse as it propagates10,11, but the efect is relatively 
small. At the beam center, the near-ield pulse duration is 390 as and it increases to 420 as in the far-ield. As sug-
gested previously12 in contrast to 800 nm drivers, the long trajectory contribution to the attosecond pulse is small 
over the whole frequency range. he theoretical reason why the long trajectory contribution is less important is 
that the diference of the dipole phase between the long and short trajectories becomes much greater for long 
wavelength driver pulse. Please see Fig. S5. his leads to a large diference in divergence of the radiation from the 
short and long trajectories. he experimental reason is that, when we optimized for the short trajectory emission, 
background radiation from long trajectory emission is not observed. he details are discussed in Supplementary 
Information, Section II.

To create isolated attosecond pulses we choose to use ultrafast wavefront rotation13,14. Multi-optical cycle 
laser pulses emit a train of attosecond pulses, separated in time by half an optical period of the driving pulse. 
Using a fundamental beam with a temporal wavefront rotation spatially separates the attosecond pulses in a train. 
When viewed through an aperture they are predicted to be isolated attosecond pulses. We generated spatially 
well-separated attosecond pulses12 by gently focusing the infrared beam and using low ionization potential gases. 
he method can be scaled to stronger focusing and high ionization potential nonlinear media such as Helium. 
Polarization gating could also be used.
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As shown in the schematic diagram of the experimental setup in Fig. 1, wavefront rotation can be induced at 
the focus by placing a thin wedge in the beam. he amount of rotation is determined by the angle of the wedge 
and the distance from the wedge to the focusing mirror. For more details, please see Supplementary Information, 
Section I. When the distance is set to 3.5 meters for a 2.8° wedge, we obtain XUV beamlets that are spatially 
well-separated in the far-ield.

When the wedge is mounted to make the direction of the wavefront rotation parallel to the slit vertically 
mounted in the XUV spectrometer, each beamlet will pass through the slit at a diferent height. Figure 2a shows 
that all beamlets hit the detector. here are three beamlets in the spectrum generated from Kr gas. Each has a 
continuous spectrum and is spatially distinct. Since the direction of the wavefront rotation is the same as the 
direction of the spatial modulation induced by the perturbation beam for the in-situ measurement, it is preferable 

Figure 1. Schematic of the experimental setup. A wedge disperses the pulse prior to the focusing mirror, 
leading to wavefront rotation. he attosecond pulses generated in each half-cycle of the laser pulse propagate in 
diferent directions. A slit selects one attosecond pulse from the spatially separated train. he spectrum of the 
selected isolated attosecond pulse is measured with the MCP detector. A weak SHG beam is incident at small 
angle with respect to the fundamental beam. he insert shows the temporal electric-ield of the laser pulse at the 
focus.

Figure 2. Spectra generated from Kr with sub-two-cycle pulses. (a,b) he angularly resolved XUV spectrum 
where the wavefront rotation is parallel (a) to the slit and perpendicular (b) to the slit. he angularly resolved 
XUV signals from the let panels are plotted in the right panels as a function of the carrier-envelope phase of the 
driving laser pulse. (c) he drit of the spatial proile due to the time shit of the emitted attosecond pulse train. 
(d) he variation of the harmonic intensity with CEP originating from the selected fraction of the attosecond 
pulse train passing through the slit.
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to rotate the wedge by 90 degree. his coniguration is illustrated in Fig. 1. he slit then selects a single beamlet. 
he spectrum is shown in Fig. 2b. In either case, the spectrum clearly shows that the divergent emission which is 
expected from long trajectories is not detectable.

To make sure only one isolated attosecond pulse passes through the center of the slit, we do not only need to 
set the size of the slit to be less than the spatial separation between two adjacent attosecond pulses, but also to set 
the carrier envelope phase (CEP) to direct the selected attosecond pulse through the center of the slit.

Figure 2c shows how the spatial proile of the XUV radiation varies with the CEP of the driving laser pulse 
when the wavefront rotates parallel to the slit. he igure displays the spatial distribution of beamlets, integrated 
for the whole energy range, (vertical axis) plotted for diferent values of CEP (horizontal axis). As we scan the 
CEP, the propagation direction of all beamlets drits correspondingly due to a time shit of the whole emitted 
attosecond pulse train under the driving pulse envelope. When the wavefront rotation direction is perpendicular 
to the slit, as we scan the CEP, the variation of the spatial proile of the XUV radiation is perpendicular to the slit. 
So the attosecond pulses in the train pass through the slit one ater another. Figure 2d shows the intensity plot 
of the harmonic spectrum as a function of the CEP when the wavefront rotation is perpendicular to the slit. he 
variation of the harmonic intensity with CEP originates from the diferent part of the emitted attosecond pulse 
train selected by the slit.

Next, we added the second harmonic beam at a small angle to the fundamental, perturbing the harmonic gen-
eration process in space and time. his perturbation changes the phase of the harmonic radiation and modiies 
the wavefront of the XUV radiation in near-ield. hen the propagation direction and divergence of the XUV 
emission vary with the time (phase) delay between the fundamental and perturbation laser pulses. In this way, 
we modulate the far-ield spatial and spectral pattern of the beam as we change the phase between two beams.

Figure 3a,b show the measured spectrally-resolved far-ield beam proile as a function of the time delay for the 
photon energy of 30 eV and 60 eV. he vertical axis is the spatial proile of the XUV emission while the horizontal 
axis consists of 128 images placed side-by-side, each taken at diferent time delay (each delay step is 140 as).

he far-ield distribution contains spatial amplitude and phase information of XUV emission in the near-ield 
and can be determined by using a phase retrieval algorithm8. Since the spectra generated with 1.8 µ m driving laser 
only contain the contribution from short trajectory, the phase retrieval algorithm is simpliied. Without the quan-
tum path interference15 between long and short trajectories, we only need half of the parameters and less time to 
reconstruct the attosecond pulse. Reconstruction results are shown for the energy of 30 and 60 eV in Fig. 3c,d. 
he reconstructed results include the spatial amplitude and spatial phase information for the given energy. We 
apply the phase retrieval algorithm to all energies. hus, the amplitude and the phase for each XUV frequency are 
fully reconstructed in space. hen we obtain the relative phase between diferent frequency components from the 
oscillation phase of the spatial distribution16. he amplitude and phase of the XUV emission are fully determined 
in space and time.

Figure 4a shows the reconstructed XUV spectrum in the near-ield, while Fig. 4b shows the spatial-temporal 
proile of the pulse. he lower energy of the spectral range was cut by the MCP. Since we used a round MCP, we 
only took the measured spectrum > 27 eV where the spatial proile was not distorted by the edge of the MCP for 
the reconstruction. hus, in-situ measurement completely reconstructs the attosecond pulse in space and time 

Figure 3. Reconstructing the far-ield pattern of an isolated attosecond pulse. (a,b) Far-ield pattern 
measured as a function of time delay for photon energy of 30 eV (a) and 60 eV (b). (c,d) he reconstructed far-
ield pattern obtained by using the phase retrieval algorithm for the photon energy of 30 eV (c) and 60 eV (d).
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in near-ield where it is produced and, therefore, everywhere as it propagates. Figure 4b shows that the tempo-
ral proile of the attosecond pulse does not change very much as we move of the axis. he temporal proiles of 
attosecond pulse on axis (θ =  0) in near- and far-ield are shown in Fig. 4c,d. he characterized pulse is only the 
radiation lying in the selected spectral window. In practice, a spectral ilter would allow us to get the same pulses 
that we characterize. Since the attosecond pulse is essentially only composed of the radiation from short trajectory 
electrons this signiicantly reduces the attosecond pulse duration and gives the whole spectrum a consistent lin-
ear atto-chirp of 22 as/eV. he pulse duration in the near- and far-ield for θ =  0 is about 390 and 420 attoseconds 
respectively. Please see Supplementary Information, Section III.

In addition, compared to the space-time measurement of the attosecond pulse generated with 800 nm laser 
pulse8, this measurement shows little variation of the temporal proile of the attosecond pulse between on- 
and of-axis. hat is due to the longer driving wavelength, the focusing geometry and the weak long trajectory 
emission.

Turning to the spatial structure of the beam, in our experiment the gas jet is placed 10 mm (1.5 times the 
Rayleigh range) before the focus of the fundamental beam. his is much larger than we would typically use for 
800 nm experiments, which is 0.8 times the Rayleigh range. he converging wavefront of the fundamental beam 
is opposite to the intrinsic dipole phase. Consequently, the balance between the fundamental wavefront and the 
dipole phase makes the harmonic wavefronts nearly lat.

he curves in Fig. 4b correspond to the wavefronts for diferent photon energies. he 4.5 fs time range on the 
igure corresponds to about a µ m distance, making the horizontal and vertical scales quite diferent. herefore, at 
every frequency the wavefront is almost lat with the curvature lipping near 50 eV photon energy. he measured 
curvature agrees with the simulation result in the supplementary information ile.

In conclusion, we have characterized the spatial and temporal amplitude and phase of isolated attosecond 
pulses generated by a 1.8 µ m pulse. Ours is the irst measurement of the spatial properties of an attosecond pulse 
generated by the lighthouse technique. Oten the spatial properties of attosecond pulses are ignored. However, 
with molecular gases as the nonlinear medium, the spatial structure of a pulse will encode molecular information 
that complements the spatially averaged spectral information on which high harmonics spectroscopy is currently 
based. Full characterization of attosecond pulses is, therefore, an important new tool for high harmonic molecular 
spectroscopy17.

We also report the irst measurement of the duration of isolated attosecond pulses obtained from mid-infrared 
driving lasers. his is possible because in-situ measurement doesn’t depend on photoelectron spectroscopy but 
instead the temporal information is encoded on the pulse itself. his encoding allows the method to be extended 
to any wavelength for which emission is measurable. We measured a 390 as pulse in the medium in which the 
pulse is generated. With a well characterized, linear chirp (in our case, it is ~22 as/eV), it is now possible to search 
for the optimum material for chirp compensation18. If the chirp were fully compensated, the pulse duration in the 
far-ield would be 210 as while, if the cut-of energy extended beyond 500 eV19, we could generate 50 as pulse even 
without atto-chirp compensation.

Figure 4. Reconstructed spatial-temporal proile of an isolated attosecond pulse. (a) Reconstructed XUV 
spectrum in the near-ield where the XUV is generated. (b) he reconstructed spatial-temporal electron ield 
of the attosecond pulse in near-ield. he curves (white, green and yellow) correspond to the wavefronts for 
40 eV, 50 eV and 60 eV photon energies. (c) he intensity proiles of the XUV emission in the near-ield for y =  0 
(blue) and y =  10.5 µm (red). (d) he intensity proiles of the XUV emission in the far-ield for θ =  0 (blue) and 
θ =  0.8 mrad (red).
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Methods
experimental system. In our experiment, 1.8 µ m driving laser pulses for creating isolated attosecond pulses 
are generated from a white-light seeded high-energy optical parametric ampliier (HE-TOPAS, Light Conversion) 
which is pumped with a chirped-pulse-ampliied Ti:sapphire laser system. he OPA system provides 50 fs laser 
pulses at 1.8 µ m with more than 1 mJ pulse energy ~50 fs duration at a repetition rate of 100 Hz. he 1.8 µ m pulses 
are focused into an argon-illed, diferentially pumped hollow-core iber (1 m long, 400 µ m inside diameter) by 
an f =  75 cm lens made of CaF2. he spectrum is broadened due to the nonlinear propagation in the hollow-core 
iber and the chirp is compensated with an antirelection coated fused silica plate in the beam path12,20. We rou-
tinely achieve ~500 µ J sub-13 fs pulses from the iber compressor. he CEP of the 1.8 µ m laser pulses was meas-
ured with an f - 2 f interferometer and locked by a servo system.

In the chamber, the gas source is from a pulsed gas jet with a backing pressure of 4.5 bars. he laser beam is 
focused by a silver-coated concave mirror (f =  30 cm) into the gas jet. he high harmonics propagate through a 
slit, relect from a curved 1200 l/mm grating and are recorded on a microchannel plate and CCD detector. he 
detector records the spectrum of the XUV emission along its horizontal axis, and the angle of the XUV emission 
(from the gas jet to the MCP plate) along the vertical axis.

Isolated attosecond pulse generation. To induce the wavefront rotation into the 1.8 µ m laser pulses, we 
use a thin 2.8° BK7 wedge located in the beam path. hen the laser beam is focused by a silver-coated concave 
mirror behind the gas jet. he maximum laser intensity at focus is approximately 1015 W/cm2. he attosecond 
pulses generated at diferent time propagate to diferent direction.

space-time measurement. For the space-time measurement we use the set-up shown in Fig. 1. he laser 
beam from the OPA system is divided by a long wavelength pass beam splitter ater the second harmonic genera-
tion using by a 250 µ m -thick BBO crystal. he transmitted beam is used for the isolated attosecond pulse gener-
ation. his beam creates the spatially well-separated XUV radiation beamlets extending from 30 eV to 68 eV. he 
relected second harmonic is used as a perturbation. Two beams are combined to be parallel but the perturbation 
beam is 2 mm below the fundamental. Both beams are focused into the chamber. hus, the angle of the perturba-
tion beam is 6.7 mrad and its intensity was 10-3 of the fundamental. Because of the small angle, the perturbation 
beam only modiies the wavefront along the vertical direction. he time delay between two pulses is controlled by 
a piezo stage. he XUV emissions are obtained in Kr gas jet.
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