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Abstract

In this paper we present an algorithm to compute approximate geodesic distances on a triangular manifold S

containing n vertices with partially missing data. The proposed method computes an approximation of the geodesic

distance between two vertices pi and p j on S and provides a maximum relative error bound of the approximation.

The error bound is shown to be worst-case optimal. The algorithm approximates the geodesic distance without

trying to reconstruct the missing data by embedding the surface in a low dimensional space via multi-dimensional

scaling (MDS). We derive a new method to add an object to the embedding computed via least-squares MDS.

1. Introduction

The computation of geodesic distances on a triangular man-

ifold is a common operation in many applications. In com-

puter graphics, geodesic distances were recently applied to

produce parameterizations with low distortion, which has di-

rect applications to texture mapping and morphing [ZKK02,

ZSGS04, PC05]. Geodesic distances can further be applied

to classify isometric shapes [YHHC00,HSKK01,EK03,JZ].

Bronstein et al. [BBK06b, BBK03, BBK05, BBKY06] use

geodesic distances for face recognition. The 3D models used

in these applications usually come from digitizing real-world

objects from a discrete set of measurements using a 3D laser-

range scanner or image-based reconstruction. Therefore, the

reconstructed surfaces are often incomplete. Despite of ef-

forts on fixing holes in triangular meshes, a general reliable

hole-filling algorithm is still unavailable.

In this paper, we explore the problem of computing es-

timates on geodesic distances with worst-case optimal up-

per and lower bounds on a triangular manifold S with par-

tially missing data without attempting to fill the holes of S.

To our knowledge, this problem has not been explored so

far. The main advantage of this approach compared to previ-

ous approaches to compute geodesic distances on triangular

manifolds [MMP87, KS98, SSK∗05] is that the error of the

estimate is bounded for incomplete surfaces. The resulting

approximated geodesic distances can be used to modify the

above-mentioned applications, such as matching isometric

objects, for models with incomplete surface descriptions.

The approximation of the geodesic distance consists of

three main steps. First, we compute the geodesic distance δi, j

between the vertices pi and p j for i, j ∈ P, where P is a set

of indices of uniformly distributed sample points on S, using

the fast marching technique (FMM) introduced by Kimmel

and Sethian [KS98]. Note that the geodesic path between pi

and p j computed by FMM may trace a hole of the model

and therefore be incorrect, see Figure 1. Furthermore, we

compute confidence values ωi, j = 1−
mh

i, j

mi, j
, where mi, j is the

number of edges on the geodesic path computed by FMM

from pi to p j and where mh
i, j is the number of edges tracing

a hole of S on the geodesic path from pi to p j.

Second, we use the geodesic distances δi, j as dissimilari-

ties and the confidence values ωi, j as weights to embed the

manifold S in a low-dimensional Euclidean space via multi-

dimensional scaling (MDS). In this way, we obtain a canoni-

cal form of S similar to the one introduced by Elad and Kim-

mel [EK03].
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Figure 1: Paths computed via FMM tracing holes.

Third, we compute an estimate of the true geodesic dis-

tance between two arbitrary vertices pi and p j on S by pro-

jecting pi and p j to the canonical form of S using an exten-

sion of the technique devised by Gower [Gow68]. The Eu-

clidean distance between the embedded points approximates

the true geodesic distance between the original points.

Section 2 reviews related work on geodesic distance com-

putations on triangular manifolds and on using MDS for ge-

ometry processing. Section 3 discusses the theory of canoni-

cal forms obtained via MDS and derives a method to add an

additional object to the least-squares MDS (LSMDS) em-

bedding. Section 4 presents the algorithm used to obtain

approximations of geodesic distances with worst-case tight

error bounds and Section 5 shows experimental results. Fi-

nally, Section 6 gives concluding remarks.

2. Related Work

Assume we are given a graph G consisting of a set V of n

vertices and a set E of m edges. Let each edge be associated

with a non-negative weight. The problem of computing the

shortest weighted paths between one given vertex v and all

the vertices in V , known as the single source shortest path

problem (SSSP), is well-studied. When considering a trian-

gular manifold S, the vertex set V corresponds to the ver-

tices pi, i = 1, . . . ,n of S and the edge set E corresponds to

the O(n) edges of S. The resulting shortest paths correspond

to geodesic paths on the triangular manifold. Hence, we as-

sume m = O(n) in the following.

A well-known approach to solving the SSSP problem is

Dijkstra’s graph search algorithm [Dij59]. The algorithm’s

running time is O(n logn) for planar graphs. Dijkstra’s graph

search algorithm gives an approximation, since the short-

est paths are always measured along edges of the graph and

never cut through faces of the graph.

Kimmel and Sethian [KS98] present an approach called

fast marching method on triangular domains (FMM) that

solves the SSSP problem by solving the Eikonal equation

on a triangular grid based on [Set96]. The algorithm’s run-

ning time is O(n logn) and therefore optimal. The algorithm

proceeds by iteratively unfolding all of the triangles of the

triangular mesh. The shortest paths found using the FMM

method only approximate the true geodesic distances on the

triangular mesh. The accuracy of the approach depends on

the quality of the underlying triangulation; namely on the

longest edge and the widest angle in the triangular mesh.

Surazhsky et al. [SSK∗05] implemented the algorithm by

Mitchell et al. [MMP87] to find the exact geodesic paths on

triangular meshes from one source point to all other points

of the mesh. Although the worst-case running time of the

algorithm is O(n2 logn), they found the algorithm’s aver-

age running time to be much lower. The exact algorithm by

Mitchell et al. is then modified to obtain an algorithm that

solves the SSSP problem approximately. The approximation

ratio is bounded by (1+ ε) for any positive constant ε.

For incomplete triangular manifolds, all of the above-

mentioned methods compute the geodesic path between two

points on opposite sides of a hole by tracing along the bound-

ary of the hole as illustrated in Figure 1. This results in er-

roneous geodesic distances. In this paper, we approximate

geodesic distances for incomplete surface descriptions by

applying MDS to the weighted geodesic distances computed

via FMM and by measuring Euclidean distances in the com-

pressed space. Elad and Kimmel [EK03] applied a similar

technique to the problem of matching three-dimensional ob-

jects. They match the objects based on MDS embeddings

called canonical forms.

Canonical forms were then used by Bronstein et al.

[BBK06b, BBK03, BBK05, BBKY06, BBK06a] for face

recognition. Jain and Zhang [JZ] improved the efficiency of

surface matching algorithm using canonical forms by com-

puting an approximate canonical form via the Nyström ap-

proximation and Jain et al. [JZvK] find one-to-one corre-

spondences of isometric surfaces using canonical forms.

3. Canonical Forms

Elad and Kimmel [EK03] define the canonical form of a tri-

angular manifold S as the mapping of S to a low-dimensional

Euclidean space, such that the Euclidean distances between

the mapped vertices approximate the geodesic distances be-

tween the original vertices well. The canonical form is com-

puted via MDS with the geodesic distances between vertices

on the triangular manifold as dissimilarities. This has the ef-

fect that the canonical form of a non-rigid body is posture

invariant. Elad and Kimmel use this invariance of the canon-

ical form to match objects in different postures.

We compute the canonical form of a triangular manifold

using a sample set of vertices on the manifold. In the case

of incomplete surfaces, geodesic distances are estimated us-

ing the property that Euclidean distances between vertices of

the canonical form approximate geodesic distances between

vertices of the original manifold. To compute the canoni-

cal form, MDS is employed with the geodesic distance com-

puted using the FMM algorithm as dissimilarities.
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3.1. Multi-Dimensional Scaling

MDS is a commonly used technique to reduce the dimen-

sionality of high-dimensional data. Given a set of n objects

O1, . . . ,On in d dimensions as well as the pairwise dissim-

ilarities δi, j,1 ≤ i, j ≤ n with δi, j = δ j,i between objects

Oi and O j, the aim is to find points X1, . . . ,Xn in k dimen-

sions with k < d, such that the Euclidean distance di, j(X)
between Xi and X j equals δi, j for 1 ≤ i, j ≤ n. This aim can

be shown to be too ambitious, since in general it is not pos-

sible to find positions X1, . . . ,Xn in k dimensions such that

di, j(X) = δi, j for all i, j. To find a good approximation, dif-

ferent related optimality measures can be used. In the fol-

lowing, two ways to compute MDS are reviewed. Classi-

cal MDS, also called Principal Coordinate Analysis (PCO),

is a method closely related to Principal Component Anal-

ysis that assumes that the dissimilarities are Euclidean dis-

tances in a high dimensional space and that aims to mini-

mize EPCO = ∑
n
i=1 ∑

n
j=i+1(δ

2
i, j−di, j(X)2) by finding a map-

ping as eigenvectors of a matrix. LSMDS aims to mini-

mize ELS = ∑
n
i=1 ∑

n
j=i+1 ωi, j

(

δi, j −di, j(X)
)2

, where ωi, j is

a non-negative weight that can be viewed as a confidence

value corresponding to the dissimilarity δi, j.

Therefore, MDS can be viewed as a mapping from arbi-

trary objects Oi in d dimensions to points Xi in k dimensions

with the constraint that an objective function E is minimized.

3.1.1. Classical MDS

Classical MDS was introduced by Gower [Gow66]. It

aims to find points Xi in k dimensions, such that EPCO =

∑
n
i=1 ∑

n
j=i+1(δ

2
i, j −di, j(X)2) is minimized. Denote the posi-

tion vector of point Xi by~xi =
[

xi,1 xi,2 . . . xi,k

]T
and denote

the point matrix by X = [~x1 ~x2 . . . ~xn]
T

. Let B = XXT be the

inner product matrix of X .

The goal is to find X . Note that the quality of the point set

X is invariant w.r.t. translations, rotations, and reflections.

Therefore, we can choose the centroid of the point set to

be the origin of the coordinate system, that is, ∑
n
r=1 xr,i =

0, i = 1, . . . ,n. This yields B = HAH, where A is a matrix

with elements Ai, j =− 1
2 di, j(X)2,1≤ i, j ≤ n and where H =

I − 1
n 1 with I as n× n identity matrix and 1 as n× n matrix

containing 1 at each position [CC01, p.33].

A spectral decomposition is performed on B. Let B =
V ΛV T , where V is the matrix of eigenvectors of B and Λ

is the diagonal matrix of eigenvalues of B, be the spectral

decomposition with sorted eigenvalues in decreasing order.

Then X = V Λ
1
2 yields the sought points. A practical algo-

rithm is given by Cox and Cox [CC01, p.38-39]. Classical

MDS minimizes EPCO = ∑
n
i=1 ∑

n
j=i+1(δ

2
i, j −di, j(X)2) if δi, j

are Euclidean distances in a high-dimensional space. This

algorithm takes O(kn2) time and O(n2) space.

One disadvantage of this method is that the objective

function EPCO aims to minimize a Frobenius norm and is

not meaningful if the dissimilarities cannot be viewed as Eu-

clidean distances in a high dimensional space. Further, no

weights or confidence values can be assigned to the dissim-

ilarities between objects. The main advantage of classical

MDS is that the solution cannot get stuck in local minima.

3.1.2. Least-Squares MDS

LSMDS aims to find points Xi in k dimensions, such

that ELS = ∑
n
i=1 ∑

n
j=i+1 ωi, j

(

δi, j −di, j(X)
)2

is minimized,

where ωi, j are non-negative weighting coefficients with

ωi, j = ω j,i. Since the objective function ELS is a complex

function, it is easier to iteratively approximate the objec-

tive function by a simple function. This approach is pursued

in the algorithm Scaling by Maximizing a Convex Function

(SMACOF) that is explained by Borg and Groenen [BG97,

p.146-155] and used by Elad and Kimmel [EK03] to com-

pute canonical forms. SMACOF proceeds by iteratively re-

fining a simple majorization function that bounds the objec-

tive function ELS from above.

We can rewrite the objective function [BG97] as

ELS = α+β− γ

with α = ∑
n
i=1 ∑

n
j=i+1 wi, jδ

2
i, j,β = ∑

n
i=1 ∑

n
j=i+1 wi, jdi, j(X)2

and γ = 2∑
n
i=1 ∑

n
j=i+1 wi, jdi, j(X)δi, j and using the Cauchy-

Schwartz inequality bound it by

ELS ≤
n

∑
i=1

n

∑
j=i+1

wi, jδ
2
i, j + tr(XT

V X)−2tr(XT
B(Z)Z) = τ,

where V is an n×n matrix with elements

Vi, j =
n

∑
i=1

n

∑
j=i+1

ωi, j(ei − e j)(ei − e j)
T

with ei as ith column of the n × n identity matrix, Z is a

possible solution for X , and B(Z) is an n × n matrix with

elements

Bi, j =















−
ωi, jδi, j

di, j(Z)
i 6= j,di, j(Z) 6= 0

0 i 6= j,di, j(Z) = 0

∑
n
j=1, j 6=i Bi, j otherwise

.

The minimum of τ can be found by setting the gradient

of τ to zero. This approach is presented by Borg and Groe-

nen [BG97] and used by Elad and Kimmel [EK03]. Setting

the gradient to zero yields an iterative approach to update the

current solution of X using the formula Xr+1 = V+B(Xr)Xr,

where Xr is the position of X after r iterations and V+ is the

pseudo-inverse of V . The initial configuration X0 can be cho-

sen as a random point set. It can be shown that this approach

of solving the optimization problem is equivalent to using

a gradient descent method to minimize ELS and therefore

has only a linear convergence rate. Further, each iteration re-

quires the inversion of a n× n matrix. The algorithm takes

O(n2t) time, where t is the number of iterations needed until

convergence of X .
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We minimize τ using a quasi-Newton method instead. The

quasi-Newton method used is the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (LSBFGS) scheme discussed by

Bronstein et al. [BBKY06]. This quasi-Newton method of-

fers the advantage of obtaining close to quadratic conver-

gence rates without the need to compute the inverse of the

Hessian matrix explicitly in each step. Instead LSBFGS up-

dates an approximation to the inverse Hessian matrix in each

iterative step, such that the approximation converges to the

true inverse of the Hessian in the limit. Using LSBFGS in-

stead of a simple gradient descent method to minimize τ re-

duced the number of iterations t required until convergence

significantly in our experiments.

The main disadvantage of this method is that the opti-

mization can get stuck in local minima. However, Elad and

Kimmel [EK03] found that this method is more accurate in

practice than classical MDS.

3.2. Adding an object to the MDS embedding

A question that arises in MDS is how to treat an addi-

tional object On+1 in d-dimensional space with correspond-

ing dissimilarities δn+1,1, . . . ,δn+1,n that becomes available

only after the objects O1,O2, . . . ,On have been mapped to

points X1,X2, . . . ,Xn in k-dimensional space. An inefficient

approach to this problem is to disregard the previously com-

puted points X1,X2, . . . ,Xn and to apply MDS to n + 1 ob-

jects as before. A more efficient approach to this problem

for classical MDS was derived by Gower [Gow68]. Assume

that we already computed the n× k matrix X containing the

positions of the first n points X1, . . . ,Xn. To find the embed-

ding Xn+1 of the object On+1 in k-dimensional space, we use

the previously computed embedding X and the dissimilar-

ities δn+1,1, . . . ,δn+1,n describing the relationship between

On+1 and the remaining objects. Let d2
i denote the squared

distance between Xi, i = 1, . . . ,n and the centroid of X . Since

the centroid of X was chosen to be the origin, d2
i = Bi,i,

where Bi,i is the diagonal element of the previously com-

puted matrix B = XXT . We can compute an n× 1 vector D

containing elements Di = d2
i − d2

n+1,i if we use the optimal

case dn+1,i(X) = δn+1,i,1 ≤ i ≤ n. The embedding Xn+1 can

then be computed as

Xn+1 =
1

2
(XT

X)−1
X

T
D.

Note that the matrix XT X that is inverted has dimension k×k

and that the inverse is therefore fast to compute in typical

applications (with k = 2 or k = 3). Gower proved that the

position of Xn+1 computed using this method is identical to

the position of Xn+1 when classical MDS is performed for

all the n+1 objects at once.

To add an object On+1 to the LSMDS embedding, we

are also given the corresponding weights ωn+1,1, . . . ,ωn+1,n.

The technique by Gower does not yield satisfying results,

since the objective function minimized for the embedding of

the objects O1, . . . ,On is ELS. Instead, we try to minimize the

least-squares function

E
∗
LS =

n

∑
i=1

ωn+1,i

(

δn+1,i −dn+1,i(X)
)2

,

which can be written as

E
∗
LS = α∗ +β∗− γ∗

where α∗ = ∑
n
i=1 ωn+1,iδn+1,i,

β∗ = ∑
n
i=1 ωn+1,i(~xi −~xn+1)

T (~xi −~xn+1) and

γ∗ = 2∑
n
i=1 ωn+1,iδn+1,i

√

(~xi −~xn+1)T (~xi −~xn+1).

We can now compute the gradient of this objective func-

tion w.r.t. the point~xn+1 analytically as

∇E
∗
LS =

n

∑
i=1

2ωn+1,i(~x
T
n+1 −~x

T
i )

(

1−
δn+1,i

dn+1,i

)

.

This allows us to add the object On+1 to the MDS embed-

ding by minimizing E∗
LS using a LSBFGS quasi-Newton ap-

proach. Although the authors are not aware that this addition

to the LSMDS embedding was discussed previously, this is

not the main contribution of this work.

4. Geodesic Distance Estimation

We use the canonical form to estimate the geodesic distance

between any given pair pi and p j with 1 ≤ i, j ≤ n of ver-

tices on a triangular manifold S with partially missing data.

The main idea of the approach is to compute the canonical

form of the manifold based on weighted geodesic distances

on S. That is, we use geodesic distances as dissimilarities

δi, j∀i, j ∈ S and we use confidence values ωi, j = 1−
mh

i, j

mi, j
,

where mi, j is the number of edges on the geodesic path from

pi to p j on S and where mh
i, j is the number of edges tracing

a hole of S on the geodesic path on S from pi to p j. Since S

is a manifold, we can find the edges of S tracing a hole of S

as edges of degree less than two, since every edge not adja-

cent to a hole of S has degree two. We chose this measure for

ωi, j, since it can be computed more efficiently than the frac-

tion of the length of the path that does not trace the bound-

ary of a hole. When working with data obtained from laser

range scanners, ωi, j is a good approximation of the fraction

of the path that does not trace the boundary of a hole, be-

cause all of the edges of S have similar lengths. If paths that

trace holes of S obtain weight 0, it can be proven that Eu-

clidean distances in embedding space approximate the origi-

nal geodesics well [RBBK06]. Since we wish to extrapolate

information using the metric property of the manifold, we

weigh distances tracing a hole of S less than accurate dis-

tances, but we do not disregard those distances completely.

Let Ŝ denote the complete surface partially represented by

S. Let δ̂i, j be the geodesic distance between pi and p j on Ŝ

and let δi, j be the geodesic distance between pi and p j on

S. Note that δi, j equals δ̂i, j if the geodesic path between pi

and p j on S does not trace a hole of S. Let d̂i, j denote the
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Euclidean distance between pi and p j. After computing the

canonical form, pi is associated with a point Xi in embed-

ding space and p j is associated with a point X j in embedding

space. As before, di, j(X) denotes the Euclidean distance be-

tween Xi and X j in embedding space.

Note that the geodesic distances δ̂i, j form a metric. That

is, δ̂i, j is non-negative, symmetric, and satisfies the triangle

inequality. If Ŝ = S, the set of dissimilarities δ̂i, j∀i, j ∈ S con-

tains therefore redundant information. When S is a true sub-

set of Ŝ, we take advantage of this redundancy by weighing

well approximated geodesic distances higher than geodesic

distances tracing around a hole of S. We use the geodesic dis-

tances with confidence values to compute a canonical form

of a sample set with indices in P of S. This sample set is nec-

essary for objects with hundreds of thousands of vertices,

since computing the canonical form is not only computa-

tionally expensive, but also requires quadratic storage in the

number of vertices to embed due to the quadratic number of

dissimilarities and weights. For real-life data sets, an algo-

rithm using quadratic storage is not feasible. Taking a sample

set P of vertices for the embedding has a negative effect on

the quality of the results however and the sample set should

therefore be large enough to represent the overall shape of S

well. We use Voronoi sampling to choose the sample set P.

The approach is discussed in Section 4.1.

Note that the canonical form has the property that

Euclidean distances in the canonical form approximate

geodesic distances on S well according to the optimality

measure ∑i∈P ∑ j∈P

(

1−
mh

i, j

mi, j

)

(

δi, j −di, j(X)
)2

. Hence, we

expect di, j to be a good approximation of δ̂i, j on Ŝ even if

δi, j is obtained by a path tracing a hole of S. In fact, the error

made by approximating δ̂i, j by di, j can be bounded and the

bound is worst-case optimal. The approach used to compute

a worst-case optimal error bound for the approximation is

discussed in Section 4.2.

A detailed overview of the algorithm suggested to esti-

mate geodesic distances on incomplete triangular manifolds

along with an analysis of the algorithm is given in Section

4.3.

4.1. Voronoi sampling

We aim to compute a set P of nP sample points on S that

represent the overall shape of S well. We choose a set of

samples with uniformly distributed geodesic distance.

Voronoi sampling, also called Farthest Point Sampling

(FPS), allows to obtain uniformly distributed samples in an

iterative way. FPS was introduced to image processing by

Eldar et al. [ELPZ97]. It starts from a random sample and

iteratively computes the next sample as the vertex which

is farthest from the samples computed so far. If the met-

ric is chosen to be the Euclidean distance, the new sam-

ple can be viewed as the vertex which is the center of the

largest circle not containing any sample points. This obser-

vation yields an elegant relationship between the sampling

approach and Voronoi diagrams that can be used to obtain

an efficient sampling algorithm. Eldar et al. show that this

sampling approach has favorable properties such as a high

data acquisition rate and good anti-aliasing properties.

The FPS approach can be extended to obtaining samples

on a 3D surface. In this case, the distance metric to mea-

sure uniformity is the distance metric intrinsic to the surface

being sampled, that is the geodesic distance on the surface.

This yields a relationship between the sampling approach

and generalized Voronoi diagrams. Generalized Voronoi di-

agrams are Voronoi diagrams built in an arbitrary metric

space. It is well-known that generalized Voronoi diagrams

may have disconnected and non-convex cells, which compli-

cates the use of Voronoi diagrams for the sampling approach.

Moenning and Dodgson [MD03] combine FMM and FPS to

overcome the problem of storing the Voronoi diagram ex-

plicitly. The main idea is to run FMM while tracking mul-

tiple propagation fronts originating from different sample

points. Moenning and Dodgson claim that the resulting al-

gorithm takes O(n logn) time to compute nP uniformly dis-

tributed sample points on a surface with n vertices, but the

algorithm appears to take O(nPn logn) time.

Combining FMM and FPS to obtain samples used to per-

form MDS works well in practice [EK03, JZvK]. Hence, we

use FPS to obtain P and compute an MDS embedding.

4.2. Worst-Case Optimal Error Bound of the

Approximation

The error made by approximating the geodesic distance δ̂i, j

on the complete surface by the Euclidean distance di, j be-

tween Xi and X j in embedding space can be bounded by

finding an upper bound and a lower bound for δ̂i, j .

A lower bound on δ̂i, j is given by the Euclidean distance

d̂i, j between pi and p j, since the shortest path can not be

shorter than the straight line segment between the two points.

An upper bound on δ̂i, j is given by δi, j. This upper bound

is optimal in the worst case, since a path tracing a hole of S

can be the shortest path on Ŝ if Ŝ has a high mountain where

the hole is located on S. Note however, that the upper bound

only exists if there exists a path on S between pi and p j. If

this is not the case, pi and p j are located on two distinc-

tively connected components of S. In this case, the error of

the approximation di, j is not bounded from above. Hence,

only an error bound of infinity can be given. Note that this

error bound is optimal, because we can always find a sur-

face Ŝ where the geodesic distance δ̂i, j between pi and p j

exceeds any given finite length by building high mountains

between the regions corresponding to the distinct connected

components containing pi and p j on S.

Once a lower bound δ̂lower
i, j and an upper bound δ̂

upper
i, j are
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known, the relative error e of the approximation of δ̂i, j by

di, j is computed as e =
max(|di, j−δ̂lower

i, j |,|di, j−δ̂
upper
i, j |)

di, j
.

4.3. Algorithm Overview and Analysis

We now describe the algorithm used to estimate geodesic

distances on the incomplete surface S. First, we compute the

canonical form of S. Since the aim is not to reduce the di-

mensionality of the data, we choose k = 3 and k = 4 as di-

mensions of the embedding space in our experiments. A set

P of indices of sample points on S is obtained via FPS.

FMM is performed to obtain all of the pairwise geodesic

distances δi, j, i, j ∈ P on S along with confidence val-

ues ωi, j, i, j ∈ P. Note that FMM does not compute ex-

act geodesic distances on S, but approximations. However,

the geodesic distances computed via FMM approximate δi, j

well for surfaces obtained using a laser-range scanner in

practice, since the longest edge of S and the widest angle

of the triangles in the triangulation of S are small. The mi-

nor theoretical flaw of using geodesic distances computed

via FMM instead of the exact geodesic distances on S can

further be overcome by using any known exact algorithm to

compute geodesic distances on S [MMP87, SSK∗05]. The

main advantage of choosing FMM is that it can be com-

bined with FPS to obtain an elegant and efficient sampling

approach [MD03]. Furthermore, FMM is easy to implement

and solves the SSSP problem in optimal asymptotic running

time on triangular meshes.

The pairwise geodesic distances δi, j, i, j ∈ P on S along

with confidence values ωi, j, i, j ∈ P are then used to per-

form LSMDS and to obtain a canonical form in embedding

space. Instead of starting with a random point set, we ini-

tialize the canonical form to the canonical form computed

using classical MDS. This reduces the risk of getting stuck

in a local minimum when performing the iterations required

for LSMDS, since classical MDS cannot get stuck in local

extrema. Computing the
(

nP

2

)

geodesic paths on the surface

S consisting of n vertices via FMM takes O(nPn logn) time

and computing the canonical form given the weights and dis-

similarities takes O(n2
Pt) time for LSMDS, where t is the

number of iterations required for convergence. Hence, this

algorithm is computationally expensive. However, comput-

ing the canonical form once per surface S can be viewed as

a preprocessing step.

Second, we estimate the geodesic distance between any

pair pi and p j of vertices on S. Note that i and j do not

have to be elements of P. To estimate the geodesic distance,

we first compute the geodesic distance δi, j between pi and

p j via FMM and analyze the resulting geodesic path. If the

path does not trace a hole of S, a valid geodesic path was

found. We report the result along with an error bound of

zero, since the exact geodesic path was found. Otherwise,

the path traces a hole of S. If i 6∈P ( j 6∈P respectively), pi (p j

respectively) is projected to the canonical form. To project pi

to the canonical form, all of the geodesic distances δi,r,r ∈ P

and weights ωi,r,r ∈ P are computed via FMM in O(n logn)
time and an optimization problem with k variables is solved

using a quasi-Newton method. Once the embedded points Xi

and X j are known, we use the Euclidean distance di, j(X) in

embedding space to approximate the geodesic distance be-

tween pi and p j on S. The approximation error of di, j(X)

is bounded by max(
∣

∣d̂i, j −di, j(X)
∣

∣ ,
∣

∣δi, j −di, j(X)
∣

∣). Recall

that this error bound is finite if and only if there exists a path

from pi to p j on S.

After O(nP(n logn + nPt)) preprocessing time, this algo-

rithm reports in O(n logn) time an approximation of the

geodesic distance between pi and p j on S along with a worst-

case optimal error bound. An overview of the algorithm as

chart is given in Figure 2. Note that both the preprocess-

ing time and the approximation time are dominated by the

time needed to compute δi, j using the FMM algorithm. If

we can find a faster way to perform this computation, the al-

gorithm’s running time is expected to decrease significantly.

5. Experimental Results

The accuracy of the approximation was evaluated using a

synthetic data set. The complete data set of an artist-created

human body consisting of 20002 vertices shown in Figure

3 was modified to simulate the holes present in the models

of the Civilian American and European Surface Anthropom-

etry Resource (CAESAR) data base [RDP99] as shown in

Figure 3. In the Figure, holes are shown in blue. We found

362 testing samples on the incomplete model. The follow-

ing distances between each pair of sample points pi and p j

where the geodesic path between pi and p j traces at least 20

boundary edges of S are considered: the true geodesic dis-

tance δ̂i, j computed via FMM on the complete surface, the

upper bound δ̂
upper
i, j computed via FMM on the incomplete

surface, and the estimate di, j along with a worst-case opti-

mal relative error bound ei, j computed as proposed in this

paper using 4000 samples to compute the canonical form.

We used these distances to find the true relative errors of

both δ̂
upper
i, j and di, j. A histogram of the error bounds ei, j and

relative errors of δ̂
upper
i, j and di, j is shown in Figure 4. Figure

4 (a) shows the number of occurrences of relative errors in

the bins shown at the x-axis. It is apparent that ei, j overes-

timates the error of di, j in most cases. Figure 4 (b) shows

the percentage of distances where the relative error of di, j is

smaller than or equal to the relative error of δ̂
upper
i, j . We can

see that δ̂
upper
i, j is more accurate than di, j for small relative

error bounds. For larger relative error bounds, di, j is more

accurate than δ̂
upper
i, j .

We furthermore evaluated the quality of approximation of

the approach using three real-life data sets. The first data set

is the model of a bag that was reconstructed from multiple

images. The model consists of 7091 vertices, 520 of which

were used to compute a canonical form. We used 511 test
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Obtain nP samples using
Voronoi sampling.

Compute pairwise geodesic dis-
tances between the samples us-
ing FMM on S.

Compute δi,j and ωi,j based on
the pairwise geodesic distances
and paths of the samples.

Use δi,j and ωi,j to compute an
embedding of the nP samples
via least-squares MDS.

Preprocessing performed once
per surface S.

Geodesic distance estimation
between pi and pj ∈ S.

Compute geodesic distance
from pi to pj and all of the nP

sample points using FMM.

If the geodesic path from pi to
pj computed via FMM does not
trace a hole of S, report the geo-
desic distance with error 0.

If the geodesic path from pi to
pj computed via FMM traces a
hole of S, project pi and pj to
the canonical form of S.

Report the Euclidean distance
of the projections of pi and pj in
the canonical form as geodesic
estimate. The error bounds are
obtained by evaluating the geo-
desic path between pi and pj .

Figure 2: Chart describing the overview of the proposed algorithm. The left side of the chart describes the preprocessing

performed once per surface. The right side of the chart describes the steps taken to compute the geodesic distance between two

points on the surface after preprocessing.

(a) (b)

Figure 4: (a) Histogram shows the number of times that relative error bound in a certain bin occurs. The occurrence of δ̂
upper
i, j

is shown in blue, the occurrence of di, j is shown in purple, and the occurrence of ei, j is shown in yellow. (b) Blue column shows

the percentage of distances where the relative error of di, j is smaller than or equal to the relative error of δ̂
upper
i, j .

vertices that were not used to compute the canonical form

to evaluate the quality of the geodesic approximations. The

model is shown in Figure 5. Vertices used to compute the

canonical form are shown in red and vertices used to evalu-

ate the quality of the geodesic approximation are shown in

green. Holes in the model are visible in blue. Figure 6 shows

the canonical form obtained via LSMDS with R
3 as embed-

ding space obtained for the bag model.

The results of the quality of the approximations of

geodesic distances between the green sample points for R
3

and R
4 as embedding space are shown in the first two rows

of Table 1. All of the error bounds in Table 1 are given

as relative error bounds. The first row discusses the results

when LSMDS is performed with R
3 as embedding space.

Note that 83.87% of the geodesic distance approximations

have a relative error under 0.25. This means that for 83.87%

of the geodesic distance approximations, the approximation

di, j is bounded by 3
4 δ̂i, j ≤ di, j ≤

5
4 δ̂i, j. Further, 99.78%

of the geodesic distance approximations are bounded by
1
2 δ̂i, j ≤ di, j ≤

3
2 δ̂i, j and all of the geodesic distance approx-

imations are bounded by 1
4 δ̂i, j ≤ di, j ≤

7
4 δ̂i, j. The second

row discusses the results when LSMDS is performed with

R
4 as embedding space. Allowing a higher-dimensional em-

bedding space yields higher accuracy until the dimension of

the embedding space is sufficient. We can see that the qual-

ity of the result only changed insignificantly. Hence, we can

conclude that R
3 is a suitable embedding space for the bag.

We further estimated all the distances from a fixed source
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Figure 3: Model of an artistic human model. Left: Complete

model. Right: Modified model. The points used to compute

the canonical form are shown in red and the test vertices are

shown in green.

Figure 5: Model of a bag obtained by image-based recon-

struction. The points used to compute the canonical form are

shown in red and the test vertices are shown in green.

point for the bag model. The source point is shown as red

dot in Figure 7. Figure 8 (a) shows a color display of the dis-

tance estimates from the source point. The color scale shows

small distances as red color and far distances as blue color.

Figure 8 (b) shows a color display of the corresponding er-

ror bounds. Detail views of the hole boundary of the same

color-displayed model are shown in Figure 8 (c) and (d), re-

spectively. The color scale shows small error bounds as red

color and large error bounds as blue color. We can see that

the distance estimate proceeds smoothly around the hole of

the bag. However, the error bounds get larger close to the

hole of the bag, since some shape information is not avail-

able.

Figure 6: Canonical form of the bag obtained via LSMDS.

Figure 7: Bag model with red dot as source point for SSSP

computation.

(a) (b)

(c) (d)

Figure 8: (a) Color display of the geodesic distance esti-

mates from one source point. Red means small distance and

blue means large distance. (b) Color display of the error

bounds of the distances shown in (a). Red means small error

bound and blue means large error bound. (c) Detail view of

(a). (d) Detail view of (c).

The two other data sets are human models from the CAE-

SAR data base that were acquired using a 3D range scans.

The first of the human models consists of 209660 vertices,

3707 of which were used to compute a canonical form. We

used 1218 test vertices that were not used to compute the

canonical form to evaluate the quality of the geodesic ap-

proximations. The model is shown in Figure 9. Vertices used

to compute the canonical form are shown in red and vertices

used to evaluate the quality of the geodesic approximation

are shown in green. Holes in the model are visible in blue.

Figure 11 shows the canonical form with R
3 as embedding

space obtained for the model. Figure 10 shows a detailed

view of holes on the arm and upper body of the model.

The results of the quality of the approximations of

geodesic distances between the green sample points for R
3

and R
4 as embedding space are shown in the third and fourth

rows of Table 1. The third row discusses the results when
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LSMDS is performed with R
3 as embedding space. Note

that although less than 2% of the original 209660 vertices

of the model were used as samples to compute the canoni-

cal form, 99.50% of the bounded geodesic distance approx-

imations have a relative error under 0.75. The fourth row

discusses the results when LSMDS is performed with R
4 as

embedding space. Again, we can see that R
3 is a suitable

embedding space for the model, since the quality of the re-

sult only changes insignificantly by allowing an embedding

in higher dimensions.

Figure 9: The points used to compute the canonical form are

shown in red and the test vertices are shown in green.

Figure 10: Detail views of holes on arm and upper body.

Figure 11: Canonical form obtained via LSMDS.

The second of the human models consists of 160190 ver-

tices, 3707 of which were used to compute a canonical form.

We used 1218 test vertices that were not used to compute

the canonical form to evaluate the quality of the geodesic

approximations. The model is shown in Figure 12. Vertices

used to compute the canonical form are shown in red and

vertices used to evaluate the quality of the geodesic approx-

imation are shown in green. Holes in the model are visible

in blue. Figure 13 shows the canonical form with R
3 as em-

bedding space obtained for the model.

The results of the quality of the approximations of

geodesic distances between the green sample points for R
3

and R
4 as embedding space are shown in the fifth and sixth

rows of Table 1. The fifth row discusses the results when

LSMDS is performed with R
3 as embedding space. The

sixth row discusses the results when LSMDS is performed

with R
4 as embedding space. Again, we can see that a rel-

atively small sample set yields satisfying results with R
3 as

embedding space.

Figure 12: The points used to compute the canonical form

are shown in red and the test vertices are shown in green.

Figure 13: Canonical form obtained via LSMDS.
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Object Embedding / 0.25 0.5 0.75 1

% of errors under

error bound

bag

MDS R
3 83.87 99.78 100.00 100.00

MDS R
4 83.87 99.78 100.00 100.00

csr0001a

MDS R
3 75.15 93.07 99.50 99.90

MDS R
4 75.14 93.12 99.48 99.95

csr0106a

MDS R
3 69.64 87.12 98.43 99.75

MDS R
4 70.47 87.67 98.65 99.92

Table 1: Quality of approximation. The table shows the per-

centage of estimated errors with finite error bounds within

relative error bounds of 0.25,0.5,0.75, and 1, respectively.

A relative error bound of 0.5 implies that the true geodesic

distance is at least half and at most 1.5 times the estimated

geodesic distance.

6. Conclusion

In this paper we presented an algorithm to compute approx-

imate geodesic distances on triangular manifolds with par-

tially missing data. The geodesic distance approximations

have worst case optimal error bounds. The geodesic approx-

imation algorithm was shown to be feasible for large data

sets with hundreds of thousands of vertices. The experimen-

tal results illustrate that the relative error bounds are below

0.25 for most approximations even for surfaces with signifi-

cant amounts of missing data.

Furthermore, a new method was derived to add an ob-

ject to the embedding computed via LSMDS. This method

is generally applicable to problems involving LSMDS.
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