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Abstract

We present spectrophotometry spanning 1–5 μmof 51 Eridani b, a 2–10MJup planet discovered by the Gemini
Planet Imager Exoplanet Survey. In this study, we present new K1 (1.90–2.19 μm) and K2 (2.10–2.40 μm) spectra
taken with the Gemini Planet Imager as well as an updated LP(3.76 μm) and new MS(4.67 μm) photometry from
the NIRC2 Narrow camera. The new data were combined with J(1.13–1.35 μm) and H(1.50–1.80 μm) spectra
from the discovery epoch with the goal of better characterizing the planet properties. The 51Erib photometry is
redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4 and T8),
and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used
two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the
photosphere, spanning a range of cloud properties, including fully cloudy, cloud-free, and patchy/intermediate-
opacity clouds. The model fits suggest that 51Erib has an effective temperature ranging between 605 and 737 K, a
solar metallicity, and a surface gravity of log(g) = 3.5–4.0 dex, and the atmosphere requires a patchy cloud
atmosphere to model the spectral energy distribution (SED). From the model atmospheres, we infer a luminosity
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for the planet of −5.83 to −5.93 ( L Llog ), leaving 51Erib in the unique position of being one of the only
directly imaged planets consistent with having formed via a cold-start scenario. Comparisons of the planet SED
against warm-start models indicate that the planet luminosity is best reproduced by a planet formed via core
accretion with a core mass between 15 and 127 MÅ.

Key words: instrumentation: adaptive optics – planets and satellites: atmospheres – planets and satellites:
composition – planets and satellites: gaseous planets – stars: individual (51 Eridani)

Supporting material: data behind figures

1. Introduction

Until recently, most of the imaged planetary-mass companions
detected were typically orbiting their parent star at large orbital
separations,>30au. However, new instrumentation with second-
generation adaptive optics such as the Gemini Planet Imager
(GPI; Macintosh et al. 2014) and Spectro-Polarimetric High-
contrast Exoplanet REsearch (SPHERE; Beuzit et al. 2008) are
now routinely obtaining deep contrasts ( 10 105 6> – ) in the inner
arcsecond (5–30 au). The recent detection of new companions
(Macintosh et al. 2015; Konopacky et al. 2016; Wagner
et al. 2016; Milli et al. 2017) and debris disks (Currie
et al. 2015; Millar-Blanchaer et al. 2016; Wahhaj et al. 2016;
Bonnefoy et al. 2017) showcase the advances made by these
next-generation Adaptive Optics (AO) systems. Direct imaging,
unlike nondirect methods such as radial velocity and transits,
measures light from companions directly, which permits
measuring the atmospheric spectrum, with the caveat that the
final calibration is dependent on a complete understanding of the
stellar properties. These new AO instruments combine excellent
image stability and high throughput with Integral Field Unit
(IFU) spectrographs, enabling the measurement of a spectrum of
the planet in the near-infrared (IR) wavelength range. Combining
the near-IR spectra with mid-IR photometry from instruments
such as Keck/NIRC2, MagAO/Clio, or LBT/LMIRCam
provides valuable constraints on the effective temperature and
nonequilibrium chemistry when undertaking comprehensive
modeling of the exoplanet spectral energy distribution (SED).

In this study we focus on the planetary companion
51Eridanib (51 Eri b; Macintosh et al. 2015). 51Erib is the
first planet discovered by the Gemini Planet Imager Exoplanet
Survey (GPIES), a survey targeting 600 young and nearby stars
using GPI to search for exoplanets. The planet orbits 51EriA,
a young F0IV star that is part of the βPic moving group
(Zuckerman et al. 2001). In this study, we adopt an age of
26±3Myr for the βPic moving group (Nielsen et al. 2016).
However, the age of the group is a topic of considerable debate
and has been revised several times, for example, 21±4 (Binks
& Jeffries 2014), 23±3 (Mamajek & Bell 2014), 20±6
(Macintosh et al. 2015), and 24±3 (Bell et al. 2015). The
primary is part of a hierarchical triple with two M-star
companions, GJ3305AB, separated from the primary by
∼2000au (Feigelson et al. 2006; Kasper et al. 2007; Montet
et al. 2015). 51EriA is known to have an IR excess, and a
debris disk was detected in the Herschel Space Observatory 70
and 100 μmbands with a very low IR luminosity of
LIR/L 2 10 6

 = ´ - and a lower limit on the inner radius of
82au (Riviere-Marichalar et al. 2014), as well as a detection at
24 μmwith the Spitzer Space Telescope (Rebull et al. 2008).
The debris disk was not detected in Macintosh et al. (2015),
which, given the low fractional luminosity, would be extremely
challenging. The analysis of the atmosphere of 51Erib by
Macintosh et al. (2015) was based on GPI JH spectra

(1.1–1.8 μm) and Keck LP photometry (3.76 μm), using two
different model atmosphere grids to estimate the planet
properties. While the models agreed on the temperature and
luminosity, they were highly discrepant in terms of best fitting
the surface gravity with one grid, suggesting low surface
gravity and youth, while the other required a high surface
gravity and an old planet. Similarly, one grid best fit the
atmosphere when using a linear combination of cloudy and
clear models, while the other best fit the data with a clear
atmosphere. These discrepancies indicate that more data are
required to fully constrain the planet parameters.
In this paper, we present new observations and a revised

data analysis that can be used to discriminate between some of
the disagreements. In Section 2, we present the first K1
(1.90–2.19 μm) and K2 (2.10–2.40 μm) spectra of the planet
taken with GPI. We also present updated LP photometry and
new observations of the planet in the MS band (4.67 μm). In
Section 3, we present new near-IR photometry of the star and
revise the stellar SED used in the rest of the analysis. In
Section 4, we examine the near- and mid-IR photometry of
51Erib in relation to that of other field and young brown
dwarfs through the brown dwarf color–magnitude diagram
(CMD). We also compare the near-IR spectrum of 51Erib to
field brown dwarfs and planetary-mass companions to
estimate the best-fitting spectral type of the planet. Finally,
in Section 5 we model the planet SED using two different
grids spanning effective temperatures from 450 to 1000 K
with deep iron/silicate clouds or sulfide/salt clouds. The
1–5μmSED in combination with these two model grids will
help refine the planet properties and clarify whether the
atmosphere is best fit by clouds or not.

2. Observations and Data Reduction

2.1. GPI K1 and K2

51Erib was observed with the Integral Field Spectrograph
(IFS) of GPI through the K1 filter on 2015 November 06 UT and
2016 January 28 and through the K2 filter on 2015 December 18
UT (see Table 1). Standard procedures, namely using an argon arc
lamp, were used to correct the data for instrumental flexure. To
maximize the parallactic rotation for angular differential imaging
(ADI; Marois et al. 2006), the observations were centered on the
meridian passage. All of the GPI data sets underwent the same
initial data processing steps using the GPI Data Reduction
Pipeline v1.3.0 (DRP; Perrin et al. 2014). The processing steps
included dark-current subtraction and bad-pixel identification and
interpolation; this is followed by compensating for instrument
flexure using the argon arc spectrum (Wolff et al. 2014).
Following this step, the microspectra are extracted to generate
the IFS data cubes (Maire et al. 2014). During the process of
generating the 3D (x, y, λ) cubes, the microspectra data are
resampled to 65l dl = and 75 at K1 and K2, respectively, after
which they are interpolated to a common wavelength scale and
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corrected for geometric distortion (Konopacky et al. 2014). The
data cubes are then aligned to a common center calculated using
the four satellite spots (Wang et al. 2014). The satellite spots are
copies of the occulted central star, generated by the use of a
regular square grid printed on the apodizer in the pupil plane
(Marois et al. 2006; Sivaramakrishnan & Oppenheimer 2006;
Macintosh et al. 2014). The satellite spots also help convert the
photometry from contrast units to flux units. No background
subtraction was performed since the following steps of high-pass
filtering and point-spread function (PSF) subtraction efficiently
remove this low-frequency component.

Further steps to remove quasi-static speckles and large-scale
structures were executed outside the DRP. Each data cube was
filtered using an unsharp mask with a box width of 11 pixels.
The four satellite spots were then extracted from each
wavelength slice and averaged over time to obtain templates
of the star PSF. The Linear Optimized Combination of Images
algorithm (LOCI; Lafrenière et al. 2007) was used to suppress
the speckle field in each frame using a combination of
aggressive parameters: dr = 5 px, NA = 200 PSF FWHM,
g = 0.5, and N 0.5 0.75=d – FWHM for the three data sets,
where dr is the radial width of the optimization zone, NA is the
number of PSF FWHM that can be included in the zone, g is
the ratio of the azimuthal and radial widths of the optimization
zone, and Nδ defines the maximum separation of a potential
astrophysical source in FWHM between the target and the
reference PSF. The residual image of each wavelength slice
was built from a trimmed (10%) temporal average of the
sequence.

Final K1 and K2 broadband images were created using a
weighted mean of the residual wavelength frames according to
the spectrum of the planet, examples of which can be found in
Figure 1. These broadband images were used to extract the
astrometry of the planet in each data set thanks to a higher
signal-to-noise ratio (S/N) than in individual frames. To do so,
a negative template PSF was injected into the raw data at the
estimated position and flux of the planet before applying LOCI
and reduced using the same matrix coefficients as the original
reduction (Marois et al. 2010). The process was iterated over
these three parameters (x position, y position, flux) with the
amoeba simplex optimization (Nelder & Mead 1965) until the
integration squared pixel noise in a wedge of 2×2 FWHM
was minimized. The best-fit position was then used to extract

the contrast of the planet in each data set. The same procedure
was executed in the noncollapsed wavelength residual images,
varying only the flux of the negative template PSF and keeping
the position fixed to prevent the algorithm from catching
nearby brighter residual speckles in the lower S/N spectral
slices. To measure uncertainties, we injected the template PSF
with the measured planet contrast into each data cube at the
same separation and 20 different position angles. We measured
the fake signal with the same extraction procedure. The
contrasts measured in the 2015 November 06 and 2016 January
28 K1 data sets agreed within the uncertainties, the latter
having significantly better S/N, and were combined with the
weighted mean to provide the final planet contrasts.

Table 1

Observations of 51Erib

Date Instrument Filter Total Int. Field Averaged Averaged Averaged
time (minutes) Rot. (°) air mass DIMM seeing (as) MASS 0t (ms)

2015 Jan 30 GS/GPI Ja 70 23.8 1.15 0.52 3.26
2014 Dec 18 GS/GPI H

a 38 37.7 1.14 L L

2015 Nov 06 GS/GPI K1b 55 30.5 1.17 0.38 1.56
2015 Dec 18 GS/GPI K2b 103 71.7 1.22 0.69 0.94
2016 Jan 28 GS/GPI K1b 97 55.5 1.15 0.86 4.40
2015 Oct 27 Keck/NIRC2 LP

b 100 74.2 1.10 L L

2016 Jan 02 Keck/NIRC2 MS
b 139 115.7 1.18 L L

2016 Jan 21 Keck/NIRC2 MS
b 174 116.0 1.21 L L

2016 Feb 04 Keck/NIRC2 MS
b 148 101.4 1.21 L L

2016 Feb 05 Keck/NIRC2 MS
b 142 102.1 1.21 L L

Notes.
a Macintosh et al. (2015).
b This work.

Figure 1. Final PSF-subtracted images of 51Erib. Top: LOCI-reduced GPIES
images at the K1 (2016 January 28, left) and K2 bands (2015 December 18,
right). Bottom: pyKLIP-reduced NIRC2 images, smoothed with a box of
width 2 pixels, at LP (2015 October 27, left), and a combined image of all four
MS data sets (right). The images are scaled linearly, but are different in each
panel in order to saturate the core of the planet PSF.
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2.1.1. Spectral Covariances

The estimation of a directly imaged planet’s properties from
its measured spectrum is complicated by the fact that spectral
covariances are present within the extracted spectra. In the GPI
data, these are caused by the residual speckle noise in the final
PSF-subtracted image and the oversampling of the individual
microspectra during the initial data reduction process. Atmos-
phere modeling without properly accounting for these covar-
iances can lead to biased results. We present the derivation of
the correlation using the parameterization of Greco & Brandt
(2016) in the Appendix.

We use the spectral covariance when carrying out a
comparison of the planet spectrophotometry against other field
and young dwarfs as well as during model fitting. The
covariance helps correctly account for the correlation in the
spectra while also increasing the importance of the photometry,
and thus the use of the covariance tends to move the best fits
toward cooler temperatures when compared to using the
variance directly.

2.2. Keck LP

We observed the 51Eri system on 2015 October 27 in the LP
filter with the NIRC2 camera (McLean & Sprayberry 2003) at
the Keck II observatory (Program ID U055N2). The observa-
tions were taken in ADI mode, starting ∼1hr prior to meridian
crossing to maximize the field-of-view rotation. The target was
observed for ∼3hr total, with 100minutes of on-source
integration. The observations were acquired using the 400 mas
focal plane mask and the circular undersized “in-circle” cold
stop. To calibrate the planet brightness, unsaturated observa-
tions of the star were taken at the end of the observing
sequence. The images were dark and flat-field corrected. We
used the KS-band lamp flats to build the flat-field and masked
hot and bad pixels. As these observations were taken after the
2015 April servicing of NIRC2, the geometric distortion was
corrected using the solution presented in Service et al. (2016,
updating the original Yelda et al. 2010 solution), with an
updated plate scale of 9.971±0.004 mas pixel−1 and the
offset angle β (0.262± 0.020) that is required when calculating
the position angle prior to rotating the images to put north up
(Yelda et al. 2010). Postprocessing of the data was carried out
using the Python version of the Karhunen–Loève (KL) Image
Projection algorithm (KLIP; Amara & Quanz 2012; Soummer
et al. 2012), pyKLIP (Wang et al. 2015). As part of this study,
we included an NIRC2 module in the pyKLIP code base that
is publicly available for users.36 The algorithm accepts aligned
images and performs PSF subtraction using KLIP where the
image can be divided into sections both radially and
azimuthally. Aside from the choice of zones, two main
parameters were adjusted, the number of modes used in the
KL transform and an exclusion criterion for reference PSFs,
similar to Nδ mentioned above, that determine the number of
pixels an astrophysical source would move due to the rotation
of the reference stack. We carried out a parameter search where
the four parameters mentioned were varied to optimize the S/N
in the planet signal. The planet photometry was estimated using
the method described above for the K1 and K2 filters, using a
negative template PSF. The LP magnitude contrast for the star/
planet is 11.58±0.15 mag, which agrees very well with the

photometry in the original epoch, 11.62±0.17 mag. The
weighted mean of both measurements is used in the rest of the
analysis.

2.3. Keck MS

Observations of 51Erib were taken in the MS-band filter
over four separate half nights on 2016 January 02 and 21 and
2016 February 04 and 05 with the Keck/NIRC2 Narrow
camera. The details of the observations are presented in
Table 1. Each night the target was observed for a period of ∼6
hr, as part of two separate NASA and UC Keck observing
programs (Program IDs N179N2, U117N2). The data were
obtained in ADI mode, with the field of view rotating at the
sidereal rate. To reduce the effects of persistence and enable
accurate thermal background correction, the star was nodded
across the detector in four large dithers centered in each
quadrant of the detector. Furthermore, to prevent saturation of
the detector by the thermal background, the exposures were
limited to 0.3 s with 200 coadds, without using an occulting
spot. The images were dark and flat-field corrected with
twilight sky flats, followed by hot and bad pixel correction. As
with the LP data, the solution provided by Service et al. (2016)
was used to correct the NIRC2 Narrow camera geometric
distortion. Finally, all of the images were rotated to put
north up.
An additional step required for the MS-band data that is not

as critical for the other data sets is the background subtraction.
Since the thermal background at 5 μmis large and highly time
variable, rather than median combine or high-pass filter to
remove the background, we adopted the least-squares sky-
subtraction algorithm proposed in Galicher et al. (2011). For
each point in the dither pattern, the algorithm uses the images
where the star is in one of the other three positions to construct
a reference library. We used a ring centered on the star to
estimate the thermal background in each image, with an inner
annulus of 24 pixels and an outer annulus of 240 pixels. The
final calibration step involved aligning the background-
corrected PSFs. Since the core of the PSF is saturated in the
data, we aligned the data using two different methods: (1)
fitting a 2D Gaussian to the wings of the stellar PSF to estimate
the center of the star and then shifting the PSF to a
predetermined pixel value to align all the images and (2) using
the rotation symmetry of the PSF using the method described in
Morzinski et al. (2015). To compare the two methods, we
calculated the residuals between images aligned using the
methods and compared the noise in the residuals and found
them to be similar, so we chose to go with the 2D Gaussian,
which is computationally faster.
The procedure used for the PSF subtraction for the MS data

was similar to that for the LP data. The planet is not detected in
each of the individual half-night data sets, requiring a
combination of all four half nights to increase the S/N to
detect the planet flux. To correctly combine the planet flux
across the multiple epochs, we adjusted the PA to account for
the astrophysical motion of the planet around the star, for
which we used the best-fitting orbit presented in De Rosa et al.
(2015). In the month between the first and last data sets, the
planet rotated ∼0°.48 or ∼0.4pixel, which is a sufficiently
large correction that it must be included in the data reduction.
Each night’s data were reduced individually to generate 603
PSF-subtracted images. These images were then combined by
dividing each image into 13 annuli, which were combined36 https://bitbucket.org/pyKLIP/pyklip
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using a weighted mean, where the weights are the inverse
variance in each annulus. As seen in Figure 1, we detect the
planet signal at ∼2–3σ. To confirm that we are detecting the
planet, we rotated the data to match the PA value of the LP
epoch to find that the flux peak in the MS band matches the
location of the planet in LP. We measured a star-to-planet
contrast of 11.5 mag using the same procedure as described for
the LP data. We injected 25 fake PSFs that were scaled to
match the contrast measured for the planet and detected the
fakes at the same contrast as the planet. The final magnitude of
the star-to-planet contrast in the MS is 11.5±0.5 mag.

3. Results

To estimate the stellar parameters of 51EriA, Macintosh
et al. (2015) made use of Two Micron All-Sky Survey
photometry (2MASS; Cutri et al. 2003; Skrutskie et al. 2006).
However, the J- and H-band photometry for the star are flagged
as “E,” indicating that the photometry is of the poorest quality
and potentially unreliable (as compared to an “A” flag for the
the K-band photometry). Further, the study used photometry
taken with the Wide-field Infrared Survey Explorer (WISE;
Wright et al. 2010) in the W1 filter ( effl = 3.35μm,

1.11lD = μm) as an approximation for the LP-band magni-
tude of the primary star. The photometry for 51EriA in W1,
from the AllWISE catalog (Cutri et al. 2013), has large errors
and contributes to more than half the error budget of the final
planet photometry. In this study, we thus chose to reobserve the
star in the JHKS filters and fit all the available photometry to
estimate the photometry in filters where no calibrated stellar
data exist.

3.1. Revised Stellar Photometry at J, H, and KS

The 2MASS near-IR colors of 51EriA were compared to
empirical colors for young F0 stars taken from Kenyon &
Hartmann (1995), where an F0IV star should have J−H=0.13
mag and H−K=0.03 mag. The colors of 51EriA estimated
using the 2MASS photometry are however discrepant, with
J−H=−0.03±0.08 and H−K=0.23±0.08 mag. The
discrepant near-IR colors combined with poor-quality flags
suggest that the published photometry is potentially incorrect.

We observed the star 51EriA using the 6.5m MMT on Mt.
Hopkins with the ARIES instrument (McCarthy et al. 1998) on
2016 February 28 UT under photometric conditions. We
obtained data in the MKO JHKS broadband filters (Tokunaga
et al. 2002), for a total of 3.4 minutes in each filter. To flux
calibrate these observations, we observed a photometric
standard star at a similar air mass as 51EriA, HR1552
(Carter 1990). The raw images for both targets were processed
through a standard near-IR reduction pipeline, performing
dark-current subtraction, flat-field calibration, and bad-pixel
correction. Aperture photometry was performed on both
targets, with the curve of growth used to select an aperture
that minimized the error on the measured flux. The measured
brightness of 51EriA is presented in Table 2.

Converting the MKO KS-band measurement into the 2MASS
system using empirical relations37 yields K 4.551S,2MASS = 
0.032 mag, which is within 1σ of the published 2MASS
photometry. Furthermore, the J−H and H−K colors
estimated from the revised photometry are 0.128±

0.037mag and 0.016±0.039mag, which are consistent with
the empirical expectations.
The published 51Erib spectrum in Macintosh et al. (2015)

was calibrated using the Pickles stellar models (Pickles 1998)
to estimate the spectrum of the primary, where each band was
scaled using the published 2MASS photometry. In Figure 2 we
present a comparison between the published spectrum and one
scaled using the new MKO photometry, using the same stellar
models. The revised photometry scales the planet spectrum
higher by ∼10% in the J band and ∼15% in the H band, which
is significant given the high S/N of the H-band data.

3.2. Fitting the SED of 51EriA

To mitigate the effects of incorrect photometry, rather than
scale the spectrum in pieces using the relevant broadband

Table 2

System Properties

Property 51EriA 51Erib

Distance (pc) L 29.43±0.29a

Age (Myr) L 26±3b

Spectral Type F0IV T6.5±1.5
L Llog ( ) 0.85 0.07

0.06
-
+ c 5.83 0.12

0.15- -
+ to 5.93 0.14

0.19- -
+ d

Teff 7331±30Ke 605–737Kd

glog 3.95±0.04e 3.5–4.0d

JMKO 4.690±0.020d 19.04±0.40d,f

HMKO 4.562±0.031d 18.99±0.21d

KS MKO, 4.546±0.024d 18.49±0.19d

KMKO 4.600±0.024e 18.67±0.19d

LP 4.604±0.014e 16.20±0.11d,g

MS 4.602±0.014e 16.1±0.5d

Notes.
a
Hipparcos catalog (van Leeuwen 2007).

b Nielsen et al. (2016).
c Macintosh et al. (2015) using hot-start predictions.
d This work.
e Stellar photometry estimated using SED fit.
f Distance modulus = 2.34±0.02mag.
g Weighted mean of the two LP observations.

Figure 2. Comparison of the JH spectra of 51Erib using the literature 2MASS
values against the new photometry measured in this study. The updated
photometry increases the planet flux by ∼10% in J and ∼15% in the H band.
The updated stellar photometry is used in the remainder of this study. However,
the final stellar spectrum used to correct the planet spectrum does not depend
on individual filter photometry, as in Macintosh et al. (2015) and shown in this
plot, but is generated by modeling the full stellar SED prior to converting the
planet spectra from contrast to flux units.

37 http://www.astro.caltech.edu/~jmc/2mass/v3/transformations/
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photometry, we decided to fit the full SED of 51EriA using
literature photometry and colors, including Geneva U B B, , ,1

B V V G, , ,2 1 (Rufener & Nicolet 1988), Tycho2 B V,T T/
Hipparcos HP (ESA 1997; Høg et al. 2000), MKO JHKS (this
work), andWISEW W1, 2 (Cutri et al. 2013) measurements. We
made use of the Geneva color relations as constraints to the full
SED fit since the published Geneva V magnitude, which anchors
the colors to estimate the remaining photometry, appears to be
offset by ∼5% when compared to the Tycho2 photometry. The
WISE W2 photometry was corrected using the Cotten & Song
(2016) relation for bright stars. We combine the photometry with
model stellar atmospheres from the BT-NextGen grid38 (Allard
et al. 2012), and we estimated the stellar spectrum using a five-
parameterMarkov chain Monte Carlo (MCMC) grid search. The
best-fit atmosphere was found with T 7331 30eff =  K,

glog 3.95 0.04=  , M H 0.12 0.06= - [ ] , and a stellar
radius R 1.45 0.02=  R (assuming a parallax of 33.98±
0.34mas; van Leeuwen 2007). No correction for extinction is
performed as the extinction in the direction of 51Eri is
negligible (A 0.00;V = Guarinos 1992). These values are
consistent with previous literature estimates (e.g., Koleva &
Vazdekis 2012). The final SED of 51EriA is shown in
Figure 3, which highlights the significantly discrepant 2MASS
JH-band photometry that was used previously to calibrate the
spectrum of 51Erib. We extracted MKO K and NIRC2 LP and
MS photometry from the SED fit using the filter response
functions presented in Tokunaga et al. (2002); see Table 2.

3.2.1. Confirming the Stellar LP Photometry

51Erib emits a substantial amount of flux in the mid-IR,
and LP photometry in Macintosh et al. (2015) was used to
constrain the effective temperature of the planet. There exists
no LP flux measurement for the star, so they used the W1
magnitude reported in the AllWISE catalog (W1 4.543= 
0.210; Cutri et al. 2013) and assumed a color ofW L1 0P- =

based on the F0IV spectral type of 51Eri (Abt &Morrell 1995).
The LP photometry we estimated via the SED fits for 51Eri is
LP = 4.604±0.014 mag, which is consistent with the value
reported in Macintosh et al. (2015, 4.52± 0.21 mag) but with
significantly smaller uncertainties.
As a final check for consistency, the 2MASS KS magnitude

of 51Eri (K 4.537 0.024S,2MASS =  ) was used instead as a
starting point. The K LS P- color for early F-type dwarfs and
subgiants was estimated by folding model stellar spectra
( T7200 K 7400eff  , g4.0 log 4.5  , M H 0=[ ] )

from the BT-SETTL model grid through the relative spectral
response of the 2MASS KS (Cohen et al. 2003) and NIRC2 LP
filters. Over this range of temperatures and surface gravities,
the color was calculated as K L 0.001 0.001S P- = -  . In
order to realistically assess the uncertainties on this color, the
near- to thermal-IR spectra of F-type dwarfs and subgiants
within the IRTF library (Rayner et al. 2009) were processed in
the same fashion, resulting in a K L 0.014 0.055S P- =  . A
color of K L 0.001 0.055S P- = -  was adopted based on
the color calculated from the model grid and the uncertainty
calculated from the empirical IRTF spectra. This color,
combined with the KS,2MASS magnitude of 51Eri, gives an LP
apparent magnitude of 4.538±0.060. The estimates for the
stellar LP magnitude are within 1σ of each other, so we adopt
the value derived from the SED fit: LP = 4.604±0.014 mag.

3.3. 51Erib SED

We present the final SED of the planet 51Erib in Figure 4
and use it to analyze the system properties in the following
sections. Using the stellar SED estimated earlier, we have
updated the J and H spectra that were published in Macintosh
et al. (2015). In Table 2, we present the properties of the
system, including updated MKO JHK and NIRC2 L MP S

photometry for both the star and the planet. A future study will
refine the orbital solution presented in De Rosa et al. (2015).

4. Analysis

4.1. Comparison against Field Brown Dwarfs

We plot a series of CMDs for ultracool objects in Figure 5 and
compare the photometry of field M, L, and T dwarfs and young

Figure 3. Top panel: photometry of 51EriA from the literature, and from the
results presented in this study (solid symbols). One hundred models were
randomly selected from the MCMC search and are plotted (translucent black
curves). For each model, the synthetic magnitude was calculated for each filter.
The median value for each filter is shown as an open square. The 2MASS
photometry points are plotted to illustrate the offset relative to the new MKO
measurements and are not included in the fit. For the plotted Geneva
photometry, we computed the Geneva V-band photometry using the best-fit
spectrum and then used the color relations to calculate the photometry in the
remaining filters. Bottom panel: the fractional residuals relative to the median
model. The data used to create this figure are available.

Figure 4. Final spectral energy distribution of the directly imaged exoplanet
51Erib. The new K1 and K2 GPI spectra along with the updated LP and newMS

photometry are shown with red squares. The GPI J and H spectra, updated to
account for the revised stellar flux, from the discovery paper (Macintosh et al.
2015), are plotted with blue circles. The filter extent is shown with the horizontal
line over each band. To reduce crowding in the spectra, the errors for one out of
every two data points are plotted. The data used to create this figure are available.

38 https://phoenix.ens-lyon.fr/Grids/BT-NextGen/SPECTRA/

6

The Astronomical Journal, 154:10 (20pp), 2017 July Rajan et al.

https://phoenix.ens-lyon.fr/Grids/BT-NextGen/SPECTRA/


brown dwarfs and imaged companions to that of 51Erib (red
star). The colors of 51Erib seem to match the phase space of the
late-T dwarfs. To classify the spectral type of 51Erib, we do a
chi-squared comparison of the GPI JHK K1 2 spectrum of
51Erib to a library of brown dwarf spectra compiled from the
IRTF (Cushing et al. 2005), SpeX (Burgasser 2014), and Montreal
(e.g., Gagné et al. 2015; Robert et al. 2016) spectral libraries. Only
a small subsample of the brown dwarfs have corresponding

mid-IR photometry, so we choose to restrict our comparison to the
near-IR. The spectra within the library were convolved with a
Gaussian kernel to match the spectral resolution of GPI.
To compute the chi-squared between the spectrum of

51Erib and the objects within the library, we use two
different equations. The first method permits each individual
filter spectrum to vary freely (unrestricted fit). In the unrest-
ricted fit, we compute the 2c statistic for the jth object within

Figure 5. The brown dwarf and imaged exoplanet color–magnitude diagram. 51Erib is shown with the red star. The colors of 51Erib place it among late-T dwarfs,
where it is redder than most comparable-temperature brown dwarfs, likely indicative of greater cloud opacity in the atmosphere. The photometry for the field
M-dwarfs (black circles), young M-dwarfs (blue triangles), field L-dwarfs (dark gray circles), young L-dwarfs (light blue triangles), and T-dwarfs (light gray circles) is
taken from the compilation of Dupuy & Liu (2012) and Liu et al. (2016). We used a linear fit to convert WISE W1 photometry to LP, similar to what was done in
Macintosh et al. (2015). The photometry for the directly imaged planets and young brown dwarfs were taken from Males et al. (2014), Bonnefoy et al. (2014), Bowler
et al. (2017), Marois et al. (2010), Chauvin et al. (2005), Rameau et al. (2013), Naud et al. (2014), Leggett et al. (2007), Delorme et al. (2017), Goldman et al. (2010),
Janson et al. (2011), and Kuzuhara et al. (2013).
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the library as
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where Si is the spectrum of the planet, Ci is the covariance
matrix calculated in Section 6, and Fi j, is the spectrum of the
jth comparison brown dwarf, all for the ith filter. For each
object, the scale factor i j,a that minimizes 2c is found using a
downhill simplex minimization algorithm. In this method, the
scale factor for each object, i j,a , is allowed to vary between the
four filters (JHK K1 2). This is equivalent to allowing the near-
IR colors to vary freely up and down in order to better fit the
object (e.g., Burningham et al. 2011).

In the second method, the individual filter spectra are still
allowed to vary, only within the satellite spot brightness ratio
uncertainty (restricted fit), thereby restricting the scale factor
for each filter. For the restricted fit, the scale factor is split into
two components. The first, ja , is independent of the filter and
accounts for the bulk of the difference in flux between 51Erib
and the comparison object due to differing distances and radii.
The second, i j,b , is a filter-dependent factor that accounts for
uncertainties in the satellite spot ratios given in Maire et al.
(2014). Equation (1) is modified to include an additional cost
term restricting the possible values of i j,b :
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where Ni is the number of spectral channels in the 51Erib
spectrum for the ith filter, and is is the uncertainty in the
satellite spot flux ratio given in Maire et al. (2014) for the same
filter. The second term in Equation (2) penalizes values of the
scale factor, i j,b , that are very different from the satellite spot
uncertainty and thus increases the chi-squared for objects
significantly different from 51Erib.

The spectral type of 51Erib was estimated for both fits from
the 2c of the L5–T9 near-IR spectral standards (Burgasser et al.
2006; Kirkpatrick et al. 2010; Cushing et al. 2011). To compute
the weighted mean and standard deviation of 51Erib, we
converted the spectral type to a numerical value for the
standard brown dwarfs, that is, L5=75, T5=85. Each
numerical spectral type when compared to 51Erib is weighted
according to the ratio of its 2c to the minimum 2c for all
standards (e.g., Burgasser et al. 2010), and the lowest value was
adopted as the spectral type of 51Erib. A systematic
uncertainty of one-half subtype was assumed for the standards.
We find that the two estimates are consistent with one another,
that is, T6.3±1.3 and 6.1±1.4 for unrestricted and restricted
fits, respectively; see Figure 6. We adopt a spectral type for
51Erib of T6.5±1.5 from the unrestricted fit, rounded to the
nearest half subtype.

The best-fit object for both the unrestricted and restricted fits
was G204-39B (SDSS J175805.46+463311.9; 1.0332c =n
and 1.209), a T6.5 brown dwarf common proper motion
companion to the nearby M3 star G204-39A (Faherty
et al. 2010). G204-39B has marginally low surface gravity
based on photometric ( glog 4.5;» Knapp et al. 2004) and
spectroscopic measurements ( glog 4.7= –4.9; Burgasser et al.

2006), indicative of it being younger than the field population.
While the binary system is not thought to be a member of any
known young moving group (Gagné et al. 2014), the stellar
primary can be used to provide a constraint on the age of the
system. Combining the X-ray and chromospheric activity
indicators for the M-dwarf primary and a comparison of the
luminosity of the secondary with evolutionary models, Faherty
et al. (2010) adopt an age of 0.5–1.5 Gyr for the system.
51Erib is redder than the spectrum of G204-39B (Figure 7),
especially in terms of the H−K color, which is a photometric
diagnostic of low surface gravity among T-dwarfs (e.g., Knapp
et al. 2004). This is consistent with the younger age of
51Erib, and the most likely cause for this is that it has lower
surface gravity than does G204-39B.
Additional good matches to the 51Erib spectrum include

2MASSJ22282889–4310262 (2M 2228–43, 1.072c =n and
1.26 for the two fits) and 2MASSJ10073369–4555147
(2M 1007–45, 1.072c =n and 1.33). 2M2228–43 is a well-
studied T6 brown dwarf that exhibits a spectrophotometric
variability in multiple wavelengths that is indicative of patchy
clouds in the photosphere (Buenzli et al. 2012; Yang
et al. 2016). 2M1007–45 is a T5 brown dwarf at a distance
of 17±2pc (Smart et al. 2013). It was identified by Looper
et al. (2007) as a low surface gravity object based on its H2O
J- versus K/H spectral ratios defined in Burgasser et al.

(2006); comparisons against solar-metallicity models imply an
age of between 200 and 400Myr (Looper et al. 2007).
The best-fit objects for each spectral type between spectral

types T4.5 and T7.5 using the restricted fit are plotted in
Figure 7. While the quality of the fits were generally good,
none of the objects were able to provide a good match across
all of the bands simultaneously, being too luminous in either
the J or K bands. Differences in surface gravity, effective
temperature, or metallicity could be the cause (e.g., Knapp
et al. 2004). The poor fit to the color of 51Erib is especially

Figure 6. Comparison of L5 to T9 field (gray circles) and young (yellow stars)
brown dwarf JHK spectra to 51Erib using the reduced 2c . The standard
brown dwarf for each spectral bin is plotted with a red cross (Burgasser et al.
2006; Kirkpatrick et al. 2010; Cushing et al. 2011). The dashed and dotted
vertical lines give the best-fitting spectral type and corresponding uncertainty.
Top: Each spectral band of the comparison was allowed to float to find the
lowest chi-squared while fitting the planet spectrum. Bottom: The spectrum
was allowed to float up or down in flux, but was penalized by the spot ratio
uncertainty in each respective band.
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apparent in the CMDs plotted in Figure 5, with 51Erib having
unusually red near-IR colors relative to similar spectral type
objects.

4.2. Comparison against Young Brown Dwarfs

Searches for young companions and moving group objects
have resulted in detections of several tens to hundreds of
million year old L-type brown dwarf and planetary-mass
companions as well as the identification of L-dwarf subclasses
based on youth (e.g., Allers & Liu 2013; Filippazzo et al. 2015;
Faherty et al. 2016; Liu et al. 2016). In comparison, there exist
relatively few known (or suspected) young T-dwarf brown
dwarfs. In Figure 8, we plot the known young T-dwarfs and
compare them in a manner similar to what was done above for
field brown dwarfs. The chi-squared for the fits is not much
better than what is seen for the field dwarfs, which is likely due
to the absence of young T-dwarfs of spectral type similar to
51Erib.
The brown dwarf SDSSJ1110+0116 with a spectral type of

T5/T5.5 is the best-fitting young comparison object. It has been
identified as a bona fide member of the ABDoradus moving
group and is thus young (110–130Myr) and low in mass
(10–12MJup; Gagné et al. 2015). The other young field object that
closely matches the near-IR spectrum of 51Erib is the T7
peculiar brown dwarf, CFBDSIRJ2149−0403 (Delorme et al.
2012). CFBDSIRJ2149−0403 was originally suggested to be a
member of the ABDoradus moving group, but Delorme et al.
(2017) find that the parallax and kinematics of the free-floating
object rule out its membership in any known young moving
group. However, despite the lack of proof of youth, medium-
resolution spectroscopy examining the equivalent width of the KI
doublet at 1.25μmsuggests that the object has low surface
gravity and is most likely a young planetary-mass object
(2–13MJup). An alternative solution is that it is a higher mass,
2–40MJup, brown dwarf with high metallicity. CFBDSIRJ2149
−0403 shows stronger methane absorption features in the red end
of the H-band spectrum as compared to 51Erib. However, it is
worth pointing out that while both young objects, SDSSJ1110
+0116 and CFBDSIRJ2149−0403, are reasonable matches
across the J and H spectra of 51Erib, they appear to be
underluminous in the K band. A likely reason for this is that
51Erib is much younger than both of the comparison
companions and thus has the lowest surface gravity among the
three objects (Burgasser et al. 2006).

4.3. A Very Red T6 or an L–T Transition Planet?

Based on the position of 51Erib in Figure 5, it appears that
the trend of planetary-mass objects having redder colors
compared to the field, seen in young L-type brown dwarfs
and planetary-mass companions (Faherty et al. 2016; Liu et al.
2016), possibly continues for the T-type companions. Note that
the K LP- CMD shows little reddening, which is natural if
clouds are causing the effect. The effect of clouds is negligible
in the K and LP bands. Across both the near- and mid-IR
CMDs, 51Erib is one of the reddest T-type objects, and
within its spectral classification it has the reddest colors. This
trend in the 51Erib colors was originally noted in Macintosh
et al. (2015), where they compared the LP versus H LP- color
for the planet and noted that it was clearly redder than the field.
Rather than simply being redder than the field T-dwarfs
because of the presence of clouds, we present a second possible

Figure 7. Comparison of the spectra, using the restricted fit, of the best-fitting
T4.5 to T7.5 field brown dwarfs to 51Erib. The spectra shown in this figure
are a subset of the data plotted in Figure 6. The brown dwarf spectral fits
plotted here use the restricted chi-squared equations presented in Equation (2).
The T4.5 and T5.0 spectra are from Looper et al. (2007), the T5.5 is from
Burgasser et al. (2008), the T6.0 is from Burgasser et al. (2004), the T6.5 and
T7.5 are from Burgasser et al. (2006), and the T7.0 is from Dupuy &
Liu (2012).
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interpretation for the red colors of 51Erib, of the planet still
undergoing the process of transitioning from L-type to T-type.
This hypothesis assumes that the evolutionary track followed is
gravity dependent, with examples for higher mass objects
shown in Figure 9. In this scenario, 51Erib transitions at
fainter magnitudes than that seen for field L–T transition brown
dwarfs, and it has not yet completed its evolutionary transition
to reach the blue colors typical of field mid-T dwarfs.

In Figure 9, we replot the J vs. J−H panel from the series
of CMDs shown in Figure 5. In addition to the photometry of
51Erib and the field and young brown dwarfs, we also

overplot two low-mass, 5 and 14 MJup, evolutionary model
tracks (assuming hot-start conditions) from Saumon & Marley
(2008) and Marley et al. (2012). If the L–T transition is gravity
dependent, as multiple lines of evidence now suggest (Leggett
et al. 2008; Dupuy et al. 2009; Stephens et al. 2009), then lower
mass objects may turn blue at fainter absolute magnitudes than
field objects. In Figure 9, we show a simple model in which the
L-to-T transition begins at 900 K at glog 4= (solid red line)
instead of 1200 K at glog 5.3= (dashed black line). In the case
of a M5 Jup planet, the L-to-T transition begins and ends about
one magnitude fainter in the J band than is observed for the
field population. Furthermore, the congruence of the spectrum
of SDSSJ1110+0116 with 51Erib (Figure 8) is interesting as
SDSSJ1110+0116 lies just short of the blue end of the field
L-to-T transition, although it does so at an absolute magnitude
just slightly fainter than the field transition magnitude. While
these simple models explain the fainter absolute magnitudes of
the transition, their colors are too blue and appear to miss the
younger brown dwarf and free-floating planets. Similarly, the
models are too blue to match the T-dwarf sequence. Clearly,
more sophisticated modeling of evolution through the L-to-T
transition, accounting for inhomogeneous cloud cover and a
gravity-dependent transition mechanism as well as a range of
initial conditions, is required. Testing this hypothesis is difficult
and would require knowledge of the true mass of the
companion as well as the formation mechanism. If this
hypothesis is true, then the only objects that are brighter on
the CMD should be higher mass objects. There should not be
any lower mass objects above and to the left of 51Erib on the
J vs. J−H CMD shown in Figure 9.

Figure 8. Comparison of the spectra of known young T-dwarfs to that of
51Erib. Similar to the field sequence, the fits presented here were computed
using the restricted chi-squared. From top to bottom, the four spectra were
sourced from Luhman et al. (2007), Naud et al. (2014), Burgasser et al. (2006),
and Delorme et al. (2012).

Figure 9. The J vs. J−H brown dwarf and imaged exoplanet color–
magnitude diagram reproduced from Figure 5. The photometry for 51Erib is
shown with the red star. Also plotted on the CMD are the evolutionary tracks
for 5 and 14 MJup objects (Marley et al. 2012), with the solid red line and
dashed black line, respectively. The models assume a simple gravity
dependence for the initiation of the transition. A few ages for the 5MJup

track have been overplotted. The L–T transition for the 5 MJup planet starts at
approximately 900 K and 20 Myr, but for a lower-mass planet such as 51Erib,
it will occur at younger ages.
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5. Modeling the Atmosphere of 51Erib

For the purpose of modeling the complete SED of 51Erib,
we made use of two updated atmospheric model grids from the
same group, focusing on different parameter spaces (see
Table 3). The first grid, described in Marley et al. (1996,
2002, 2010), focused on the higher effective temperature
atmospheres (L-dwarfs) and includes iron and silicate clouds in
the atmosphere. The second grid, described in Morley et al.
(2012, 2014) and Skemer et al. (2016), is designed for lower
effective temperatures (T- and Y-dwarfs) and include salt and
sulfide clouds in the atmosphere, which are expected to
condense in the atmospheres of mid-to-late-T dwarfs.

The methodology used to fit the models to the data is the
same for both model grids. To fit the models to the data, we bin
the model spectra to match the spectral resolution of the GPIES
spectra across each of the JHK K1 2 filters. For the photometry,
we integrated the model flux through the Keck/NIRC2 LP and
MS filter profiles, respectively. The estimation of the best-fitting
model is done by computing the chi-squared value for each
model in the grid compared to the data using Equation (2). We
made use of the covariance matrices estimated for the four
spectral channels described in the Appendix and also included
the variance for each of the two photometric data points to
compute the chi-squared statistic. Note that we use the
restricted fit equation in the computation of the best-fitting
model. This equation permits each of the individual filters to
scale within the 1σ error of the satellite spot ratios. We also did
the fitting without the scaling factor and found that the results
are similar.

As stated in Section 2.1.1, the use of the covariance affects
the model fitting where the peak of the posterior distribution
occurs at slightly cooler effective temperatures, consistent
within the errors. Due to the high spectral correlation in the J
band (see Figure 19), when using the covariance, the best-
fitting models are not models that pass through the data but
rather models that have lower flux in the J band than the data.
We present the specific modeling details in the following text.

5.1. Iron and Silicate Cloud Models

In Section 4.3, we suggested that 51Erib, rather than
having completely evolved to T-type, could be transitioning
from L to T. In this scenario, the cloud composition of the
planetary atmosphere might still be influenced by the deep iron
and silicate condensate grains and patchy cloud atmosphere.
Therefore, we compared the planet SED to a grid of models
with a fixed low surface gravity and solar metallicity, where the
key variable is the cloud hole fraction, and the unique aspect of
this grid is the presence of iron or silicate clouds in an
atmosphere with clear indications of methane absorption. The
clouds are modeled using the prescription presented in
Ackerman & Marley (2001), where cloud thickness is
parameterized via an efficiency factor ( fsed). Small values of

fsed indicate atmospheres with thick clouds, whereas large
values of fsed are for atmospheres with large particles that rain
out of the atmosphere, leaving optically thinner clouds. As
mentioned earlier, the primary condensate species in this grid
are iron, silicate, and corundum clouds, molecules that are
expected to dominate clouds in L-dwarfs (Saumon &
Marley 2008; Stephens et al. 2009). At the L–T transition,
clouds are expected to be patchy, so for each Teff , the models
went from fully cloudy, with f 2sed = and 0% holes, to an
atmosphere with f 2sed = and 75% holes (patchy clouds). The
methodology used to calculate the flux emitted from the patchy
cloud atmosphere includes both cloud and cloud-free regions
simultaneously in the atmosphere using a single global
temperature–pressure profile and is not created via a linear
combination of two models, as is sometimes done in the
literature (Marley et al. 2010). The iron and silicate cloud grid
models use solar metallicity (Lodders 2003). The opacity
database used for the absorbers are described in Freedman et al.
(2008), including updated molecular line lists for ammonia and
methane (Yurchenko et al. 2011; Yurchenko & Tenny-
son 2014). The models span effective temperatures from 600
to 1000 K for solar metallicity ([M/H] = 0.0) and low surface
gravity ( glog 3.25, 3.50= ; see Table 3).
Presented in Figure 10 is the best-fitting model to the SED of

51Erib. Stated in the figure are the model parameters along
with the radius of the planet required to scale the model
spectrum to match the planet SED. This scaling factor is
required since the model spectra are typically computed to be
the emission at the photosphere or at 10 pc from the object. One
of the free parameters in most model fitting codes is the term
R2/d2 to scale the model flux to match the SED, where R is the
radius of the planet and d is the distance to the object. For
51Eri, the distance is known to better than 2% (see Table 2),
so we only fit the radius term. Shown in Figure 11 is the
posterior distribution for the radius, where we find that the best-
fitting radii are significantly smaller than that predicted by
evolutionary models, for example, 1.33–1.14 RJup for a
2–10MJup hot/cold-start planet at the age of 51Eri (Marley
et al. 2007; Fortney et al. 2008). This discrepancy has been
noted previously as well for the HR8799 planets (Marois
et al. 2008; Bowler et al. 2010; Barman et al. 2011; Currie
et al. 2011; Marley et al. 2012), βPicb (Morzinski
et al. 2015), and for 51Erib itself in the discovery paper
(Macintosh et al. 2015). In an attempt to circumvent this issue,
while modeling the SED we adopted a Bayesian prior
probability density function for the radius in the form of a
Gaussian centered on the expected radius from evolutionary
models (green line in Figure 12), with the width chosen to
include the radius of Jupiter. Without the prior (i.e., using a
uniform prior), the median radius is 0.68 RJup and T 740eff ~ K;
with the prior, the median radius value is forced closer to the
predictions of evolutionary models (red line in Figure 12) at
0.98 RJup and Teff ∼690 K, biasing the luminosity of the planet

Table 3

Model Grid Parameters

Model Effective Surface Gravity Metallicity Cloud Cloud Hole
Name Temperature (K) [ glog ] (dex) [M/H] (dex) Parameter ( fsed) Fraction (%)

Iron/Silicate Cloud Grid 600–1000 3.25 0.0 2 0–75
Sulfide/Salt Cloud Grid 450–900 3.5–5.0 0.0, 0.5, 1.0 1, 2, 3, 5 L

Cloudless Grid 450–900 3.5–5.0 0.0, 0.5, 1.0 no cloud L
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to larger values. When fitting the SED, the term that is
conserved is the luminosity rather than the effective temper-
ature or the radius. Adopting the evolutionary radius and
marginalizing over the uncertainty in radius raises the
luminosity ( L Llog ) from −5.83 to −5.65. Since observa-
tional constraints on the radius for young planets are
unavailable, we chose to use an uninformative prior.

Plotted in Figure 11 are the normalized posterior distribu-
tions for each of the model parameters varied in the model fit,
along with the covariances to show how each of the parameters
are affected. Since the grid only had a few models with

glog 3.5= , with the majority being 3.25, we marginalized
over the surface gravity. The irregular shape of the effective
temperature posterior is caused by the missing models in the
grid. The median effective temperature, 737K, estimated from
the grid falls right in between the range of best-fitting
temperatures from the models in the Macintosh et al. (2015)
paper (700–750 K). However, based on the shape of the
posterior and the covariances, the peak of the effective
temperature distribution extends to cooler temperatures. Since
the L-to-T transition has been suggested to arise from holes or
low-opacity patches appearing in an initially more uniform
cloud deck (Ackerman & Marley 2001; Burgasser et al. 2002;
Marley et al. 2010), our finding here that partly cloudy models
best fit the 51 Eri b spectrum is consistent with this
interpretation. In general, however, the models struggled to
fit the entire planet SED, typically being able to fit either the
near- or mid-IR portions of the SED. The inability to fit mid-IR
photometry suggests that chemical equilibrium models are not
appropriate. Disequilibrium chemistry predicts less CH4 in the
atmosphere and could explain the higher flux at 1.6 μmand in
the LP band. It would also introduce CO, accounting for the
lower flux in the MS band.

5.2. Sulfide and Salt Cloud Models

In Section 4.1, we showed that the best-fitting spectral type
of 51Erib is a mid-to-late-T dwarf. At the effective
temperatures of mid-to-late-T dwarfs, Cr, MnS, Na2S, ZnS,
and KCl are expected to condense and form clouds high in the
photosphere. The second grid we tested the planet SED against
made use of a model grid that includes salt and sulfide clouds to
test additional parameters such as the surface gravity and
metallicity (which were varied, unlike the iron/silicate grid)
and the properties of clouds typically associated with T-dwarfs.
The grid was designed specifically for lower temperature
objects (450 900~ K; Morley et al. 2012, 2014) and has been

used successfully to reproduce the SED of GJ504b (Skemer
et al. 2016), a cool low-mass companion with a similar spectral
type (late-T) that is comparable to 51Erib (Kuzuhara
et al. 2013). Note that the use of this cloud grid does not
preclude the possibility of the planet transitioning from L to T.
Also included as part of this grid are the clear atmosphere

models from Saumon & Marley (2008), the ranges for which
are presented in Table 3. The ranges of parameters varied are
presented in Table 3, including temperatures, surface gravities,
metallicities, and sedimentation factor ( fsed) ranging from
cloudy ( fsed=1) to cloud-free. The cloud model used in the
sulfide/salt grid is the same as the one described above. In
addition to the opacity updates mentioned above, opacity
effects due to alkali metals (Li, Na, K) have been included
using the results from Allard et al. (2005). For effective
temperatures between 450 and 775 K, the grid is complete with
models available for every step of the varied parameters. For
effective temperatures between 800 and 900 K, the temperature
steps switch from increments of 25–50 K, and there are no
models with fsed values of 1 and 2. This grid does not include
the opacity effect that is due to iron and silicate condensates. A
future series of papers describing an extended atmosphere
model grid will describe the updates, but the present grid
extends the models to greater than solar metallicities.
In Figure 13, we present the four best-fitting model

atmospheres for 51Erib. Presented in each panel are the
atmosphere with the lowest reduced chi-squared in one of four
cases, namely, solar and cloudless (top left), solar and cloudy
(top right), nonsolar and cloudless (bottom left), and nonsolar
and cloudy (bottom right). Both cloudless model atmospheres
are warmer and thus fit the near-IR spectrum of the planet while
completely missing the LP photometry. The cloudy atmosphere
model fits are cooler and do a much better job of fitting the
overall SED of 51Erib, and the best-fitting atmospheres for
both solar and nonsolar metallicity have very similar reduced
chi-squared values.
The normalized posterior distributions for the different

parameters varied as part of the model fitting are shown in
Figure 14. The best-fitting Teff (605 66

61
-
+ K) is much cooler in

comparison to the iron/silicate grid, but the values are within
2σ of each other. We also note that the median might not be the
best estimate for the effective temperature PDF in the iron/
silicate grid where the peak extended to cooler temperatures.
For the surface gravity and metallicity posterior distributions,
we present the median values and error bar assuming a
Gaussian distribution, though they may not be Gaussian. The
surface gravity PDF suggests that the planet has high surface
gravity. However, 51Erib is clearly a low-mass companion,
indicating that the data do not constrain the gravity. A prior
might help constrain the distribution, but there are currently no
physically motivated priors available for the surface gravity of
young planets. Similarly, the PDF for the metallicity is also
unconstrained, and higher resolution spectra in the K band
might help provide greater constraints on the metallicity of
51Erib (Konopacky et al. 2013).
A difference between the iron/silicate and salt/sulfide

atmosphere grids is in the planet radius, where the best-fit
radii for the cloudy models and the median radius of the PDF
for the salt/sulfide models are much closer to evolutionary
model predictions. A possible explanation for this discrepancy
is that fitting the lower effective temperatures while still
matching the bolometric luminosity requires a larger radius. If

Figure 10. Spectral energy distribution of 51Erib with the best-fitting iron
and silicate cloudy model.
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the iron/silicate models extended to lower temperatures,
assuming the continued presence of these clouds at these
colder temperatures, it is likely that the radius discrepancy
would not be as apparent. The sedimentation factor was fixed
(at f 2sed = ) in the iron/silicate grids but had varying hole

fractions (hfrac). In the sulfide/salt grid, fsed was varied, and
the median value for the distribution is f 2.48sed = . If we
equate the hfrac from the iron/silicate model with the fsed as the
physics controlling the emission of flux from the photosphere,
then for both model grids the best-fitting models tend to favor
the presence of clouds over cloud-free atmospheres. Further-
more, in both cases, the best-fitting models were not the fully
cloudy atmospheres, with the smallest hfrac/ fsed. While the
cloud compositions in both models are different, fitting either
grid requires the cloud opacity. This can be achieved in one of
two ways: either make the deep iron/silicate clouds be very
vertically extended (small fsed) or introduce a new cloud layer
in the form of the sulfide/salt clouds.
The cloudy model atmosphere fits presented in Figure 13

match the H through K spectrum while being slightly
underluminous in the J and overluminous MS bands. Given
the large photometric errors in the MS data, the model
photometry lies within 2σ of the data. JWST and other future
low-background mid-IR instruments will better constrain the
3–24μmSED, a further test of current models. In Figure 15,
we show 10 of the best-fitting models assuming cloudy
(sulfide/salt clouds) or cloudless atmospheres extended out to
20 μm. It is clear from these models that observations with the

Figure 11. Normalized posterior distributions for the iron and silicate model grid. The PDFs are for the parameters varied in our fit along with the inferred distribution
of the luminosity of 51Erib. The lines on the 1D histogram indicate the 16th, 50th, and 84th percentile values, while those on the 2D histogram are the 1σ (solid red),
2σ (dashed green), and 3σ (dotted blue) values of the distribution. The values printed above each histogram are the median value along with the 1σ error on it.

Figure 12. The figure shows the effect of applying a Gaussian radius prior
when modeling with the iron/silicate grid. The prior shown by the green line is
centered on the radius given by evolutionary models: 1.29 RJup (Marley et al.
2007; Fortney et al. 2008). Also plotted are the likelihood (black) and posterior
distribution (red).
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coronagraph on the Near InfraRed Camera, spanning the
3–5μmwavelengths, will add significant constraints on the
atmosphere of the planet. If the planet can be studied with
the Mid Infrared Instrument, it could be used to apply
constraints on the chemical disequilibrium in the atmosphere
through observations of NH3 in the 10–11 μmrange.

5.3. Luminosity of the Planet

The two different grids used in this study have produced
similar luminosity predictions for the planet despite the
different cloud compositions. From the iron/silicate grid we
infer a bolometric luminosity of L Llog 5.83 0.12

0.15= - -
+

 , and
L Llog 5.93 0.14

0.19= - -
+

 from the sulfide/salt model atmo-
spheres. We compare these luminosity estimates to predictions
of evolutionary models to infer the planet mass and discuss its
initial formation conditions.

5.3.1. Standard Cold- and Hot-start Models

In Figure 16 we compare the bolometric luminosity to
evolutionary models for planets formed via the two extreme
scenarios, namely, the hot-start and cold-start models (Burrows
et al. 1997; Marley et al. 2007). In the hot-start scenario,
planets are formed with high initial entropy and are very
luminous at birth. This scenario is usually associated with rapid
formation in the circumstellar disk through disk instabilities.
Alternatively, in the cold-start scenario, which is often
associated with current 1D models of the core-accretion
mechanism, planets start with a solid core that accretes gas
from the stellar disk. The accreting gas loses energy via a
radiatively efficient accretion shock and form with low initial
entropy and thereby lower postformation luminosity.

The other directly imaged companions plotted in Figure 16
can all be considered as having formed via the hot-start

scenario. Despite the older age assessment for the companion
in this study, 26±3Myr (Nielsen et al. 2016) compared to
20±6Myr (Macintosh et al. 2015), the revised luminosity
when compared to the system age places 51 Eri b in a location
where either cold or hot initial conditions are possible. Based
on the hot-start tracks, it would have an inferred mass between
1 and 2 MJup. However, for the cold-start case, the planet mass
could lie anywhere between 2 and 12 MJup, since the model
luminosity is largely independent of mass at the age of
51Erib. Dynamical mass estimates for the planet could help
clarify the formation mechanism, especially if the planet
mass 2> MJup.

5.3.2. Warm-start Models

Spiegel & Burrows (2012) proposed a complete family of
solutions existing between the hot- and cold-start extreme cases.
Warm-start models39 explore a wide range of initial entropies
aimed at covering the possible range of initial parameters that
govern the formation of planets. In Figure 17, we compare the
inferred bolometric luminosity and the planet SED to models
from Spiegel & Burrows (2012). The Spiegel & Burrows (2012)
models are evolutionary tracks calculated assuming different
initial entropies for the planet, between 8 and 13 kB/baryon,
where kB is Boltzmann’s constant, with steps of 0.25 kB/baryon
and masses between 1 and 15 MJup with steps of 1 MJup. Four
different model atmospheres are considered in combination with
the evolutionary model: cloud-free and solar metallicity to fully
cloudy with 3× solar metallicity (Burrows et al. 2011). The
bolometric luminosity of each point in the grid for each of the
four atmosphere scenarios was computed by integrating the SED
over the wavelength range. Because of the sparse sampling of

Figure 13. Spectral energy distribution of 51Erib with the best-fitting salt and sulfide cloud models. Each panel shows the best-fitting model under the specific
conditions: the top two panels show the best-fitting solar-metallicity models with a cloudless atmosphere on the left and cloudy atmospheres on the right. The bottom
two panels show the best-fitting nonsolar models with a cloudless atmosphere on the left and cloudy atmospheres on the right.

39 http://www.astro.princeton.edu/~burrows/
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the grid, we linearly interpolate the evolutionary tracks with
steps of 0.06 kB/baryon and 0.2 MJup.

In the top row of Figure 17, we plot the probabilities for each
grid point measured by comparing the average of the inferred
bolometric luminosities from the SED fit ( L Llog =−5.87±
0.15) to the predictions of the Spiegel & Burrows (2012) models
with the four atmosphere conditions. For the bottom row in
Figure 17, the surface is calculated by fitting the planet SED to the
Spiegel & Burrows (2012) model atmosphere grid, using
Equation (2). For both comparisons, luminosity and SED, we
chose the age of the evolutionary grid best matching the age of 51
Eri (25 Myr), to minimize the number of interpolations, and only
varied the mass of the planet and initial entropy for the models.

Mordasini (2013) find that the luminosity of a planet that
underwent accretion through a supercritical shock (the standard
cold-start core accretion hypothesis) is highly dependent on the
mass of the core, Mcore

2 3- . Therefore, the continuum of warm-
start models can also be explained by similar bulk-mass planets
with increasing core mass. These models suggest that the
entropy of 51Erib can be explained via core accretion, with a
core mass ranging between 15 and 127MÅ, which can
reproduce the planet luminosity with various initial entropies.
The four panels generated by fitting the inferred luminosity

(upper four panels) appear highly consistent and in agreement
with the results from Figure 16. The 1σ contour encompasses
the entire available entropy space, where for intermediate and

Figure 14. Normalized posterior distributions for the sulfide and salt model grid, same as Figure 11.
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high entropies the most likely mass for the planet is between 2
and 3 MJup and for low initial entropy the most likely mass for
the planet increases, making distinguishing between cold,
warm, and hot starts difficult.

When we compare the model spectra directly to the planet
SED, the surface is qualitatively similar to that made with the
luminosity but shifted to higher mass and with the 1σ contours
and best-fit models favoring lower entropy. According to the
Mordasini (2013) models, the fits presented here would be
consistent with a planet having core masses ranging from 15
to 127MÅ.

Compared to other directly imaged companions (see figures
in Marleau & Cumming 2014), 51Erib is the only planet
compatible with very low initial entropy and the cold-start case.
Tighter constraints on the bolometric luminosity or higher S/N
data will help to reduce the width of the two branches, and
independent mass constraints from dynamical measurements
will enable us to infer the initial entropy and possible formation
route. Atmospheric retrievals or higher resolution spectra
aimed at exploring and characterizing the planet’s chemical
composition might also help us understand whether the planet
has higher C/O ratios than the star, since planetary C/O can be
used to understand planet formation (Öberg et al. 2011;
Konopacky et al. 2013).

6. Conclusion

In this paper, we have presented the first spectrum of
51Eridanib in the K band obtained with the GPI (K1 and K2
bands) as well as the first photometric measurement of the
planet at MS obtained with the NIRC2 Narrow camera. We also
obtained an additional LP photometric point that agrees very
well with the LP measurement taken in the discovery paper
(Macintosh et al. 2015). In addition, we revised the stellar
photometry by observing the star in the near-IR and estimating
its photometry in the mid-IR through an SED fit. The new data
are combined with the published J and H spectra and the LP
photometry to present the SED spanning 1–5μmfor the
planet.
As part of the data analysis, we calculated the covariance for

each of the spectral data sets, that is, J H K, , 1, and K2, using
the formalism presented in Greco & Brandt (2016). The
spectral covariance was used in all the chi-squared minimiza-
tion performed as part of this study, in combination with the
photometric variance. Using the covariance ensured that the
photometric points were weighted in a suitable manner and
resulted in cooler effective temperatures for the best fits.
We compared the planet photometry to field and young

brown dwarfs by fitting their near-IR spectra to 51Erib to
estimate a spectral type of T6.5±1.5. Due to the relative
paucity of known young T-dwarfs, our comparison of the
planet spectrum to young T-dwarfs only included a handful of
objects, and among the sample, 51Erib appears to have the
lowest surface gravity based on a comparison of their spectral
shape and amplitude.
In a comparison of the near- and mid-IR photometry for the

planet to the field and young brown dwarf population via a
range of CMDs, we note that 51Erib is redder than brown
dwarfs of similar spectral types. This was also noted in the
discovery paper, and it was proposed that this might be due to
the presence of clouds, similar to young L-type planetary-mass
companions. In this study, we extended this idea to suggest that
a possible reason for the presence of clouds (compared to the
field) is that the planet is still transitioning from the L-type to
the T-type. This would occur at a lower J magnitude than field
brown dwarfs due to its lower mass when including a gravity-
dependent transition in the evolution (Saumon & Marley 2008).
We also fit the planet SED with two different model

atmosphere grids that varied in the composition of molecules
that could condense in the atmosphere. The best-fitting models
in both cases were those that contained large amount of
condensates in the atmosphere as compared to cloud-free
atmospheres. Through the iron/silicate grid, we estimate that
the planet has a patchy atmosphere with 10%–25% hole

Figure 15. The ten best-fitting cloudy (red) and cloudless (blue) atmospheres
over the wavelength range of the James Webb Space Telescope. The median of
the models is plotted with a thicker line. The models indicate the divergence
between the model fits over the wavelength covered by JWST.

Figure 16. Luminosity of imaged planetary-mass companions as a function of
age. For 51Erib, the red star is the inferred luminosity from the iron/silicate
model grid, while the green square is the inferred luminosity from the sulfide/
salt model grid. Also plotted are evolutionary tracks assuming different starting
conditions: the “hot-start” (dotted lines) and “cold-start” (solid lines) models of
Marley et al. (2007) and Fortney et al. (2008). 51Erib is consistent with both
hot- and cold-start formation models. A subset of known, directly imaged
companions are plotted in the figure, illustrating the difference between
51Erib and other imaged planets. Data for the companions, 2M1207b,
HR8799bcde, HD95086b, and GJ504b, were taken from Patience et al.
(2010), Rajan et al. (2015), Zurlo et al. (2016), De Rosa et al. (2016), and
Skemer et al. (2016), respectively.
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fraction in the surface cloud cover, which is consistent with the
fsed values of 2–3 resulting from the sulfide/salt grid. The
median effective temperature from the two grids is 737 46

39
-
+ K

and 605 66
61

-
+ K for iron/silicate and sulfide/salt, respectively.

This value is slightly cooler than that in Macintosh et al.
(2015), where the best-fit models had temperatures of 700 K
and 750 K, respectively. The surface gravity and metallicity
both appear to be unconstrained by the data, but empirical fits
to young T-dwarfs suggest that the planet has lower surface
gravity.

The two atmosphere grids provide similar luminosity
estimates, which were compared to hot-, warm-, and cold-start
models. 51Erib appears to be one of the only directly imaged
planets that is consistent with the cold-start scenario, and a
comparison of the planet SED to a range of initial entropy
models indicates that cloudy atmospheres with low initial
entropies provide the best fit to the planet SED.

Following the submission of this study for publication, a
paper on 51Erib using spectrophotometry taken with the
VLT/SPHERE was published by Samland et al. (2017). Their
study includes new YJH spectra as well as K K1 2 photometry,
in addition to the H spectrum and LP photometry from
Macintosh et al. (2015). Their results are consistent in parts
with ours, although we note that the SPHERE J-band spectrum
is fainter than the GPI J spectrum, while their K K1 2
photometry is brighter than the GPI spectrum (and corresp-
onding integrated GPI photometry). These differences could
very well be caused by the application of different algorithms,
where Samland et al. (2017) demonstrate that different
algorithms can result in spectra with a range of flux values,
including ones that agree with the GPI J spectrum. Future

studies will need to analyze all the available data sets using a
common pipeline for data processing and analysis to under-
stand whether the differences arise from the algorithms or are
due to other causes.
With future space missions such as the James Webb Space

Telescope, the 3–24μmSED of this planet could be observed
at higher S/N, providing tests of current atmospheric models.
The best-fitting atmosphere models further indicate that the
planet might have a cloudy atmosphere with patchy clouds,
making 51Erib a prime candidate for atmospheric variability
studies that might be possible with future instrumentation.
Further analysis of this data using methods such as atmosphere
retrievals could permit an exploration of other planet
parameters that were not considered in this study, such as
chemical composition of the atmosphere and the thermal
structure.
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Figure 17. Comparison of the planet spectrum and luminosity to a combination of initial entropy (kB/baryon) and planet mass (MJup) from the warm-start evolutionary
models of Spiegel & Burrows (2012). The four different atmospheres tested include cloud-free and hybrid cloud models, with both solar and supersolar metallicity.
Also plotted are the 1σ (solid red), 2σ (dotted cyan), and 3σ (dashed yellow) contours. The entropy plotted in the figure and used in the modeling is not the entropy for
the evolved object but rather the entropy at formation. The best-fitting model fit is indicated by the large circle (white and red circle). The orange filled circles show the
hot-start model limits, while the blue filled circles show the cold-start limits, which are presented as the boundary cases in Spiegel & Burrows (2012). The top row
compares the model luminosity to the inferred luminosity for 51Erib, and the bottom row compares directly the SED to the evolutionary model spectra.
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Appendix
Derivation of Spectral Covariance

We follow the method described in Greco & Brandt (2016)
to measure the interpixel correlation within the PSF-subtracted
images, and we convert these into a covariance matrix. For
each image (J, H, K1, and K2), the correlation ijy between pixel
values at wavelengths il and jl within a 1.5 Dl annulus was
estimated as

I I

I I
, 3ij

i j

i j
2 2

y =
á ñ

á ñá ñ
( )

where Iiá ñ is the average intensity within the annulus at
wavelength il . This was repeated for all wavelength pairs and
at five different separations: 350, 454 (the separation of
51 Eri b), 550, 650, and 750mas. To avoid biasing the
measurement, 51Erib was masked in the 454mas annulus.

The measurements of the correlation ijy at the eight different
separations within the final image were used to fit the
parameterized correlation model of Greco & Brandt (2016):
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where the symbols are as in Greco & Brandt (2016). This
model is based on the assumption that the correlation consists
of three components. The first two terms model the contrib-
ution of the speckle noise and the correlation induced by the
interpolation within the reduction process. The third models
uncorrelated noise, such as read noise, which does not
contribute to the off-diagonal terms of the correlation matrix.
The amplitudes of the first two terms (Ar, Al) were allowed to
vary with separation, while the two correlation lengths (sr, sl)
were fixed. As the sum of the amplitudes must equal unity, Ad
was derived from the other amplitudes. Figure 18 shows an
example of the spectral correlation as a function of the angular
separation for the H-band spectral cube, and cl is the central

wavelength of the spectrum (1.65 μmfor H). The colored lines
in the plot are the best fits to Equation (4).
Due to the high dimensionality of the problem, we use a

parallel-tempered Markov chain Monte Carlo algorithm (Foreman-
Mackey et al. 2013) to find the global minimum. The best-fit
parameters at the separation of 51Erib within the PSF-subtracted
image at each band are given in Table 4. Using these parameters,
the covariance matrix, C, was constructed for each band. The
diagonal elements contained the square of the uncertainties of the
spectrum of the planet, and the off-diagonal elements were
calculated using

C

C C
. 5ij

ij

ii jj

y º ( )

The fitted parameters in Table 4 demonstrate that the primary
cause of correlation at the shorter wavelengths is speckle noise,
with the correlation induced by interpolation becoming more
significant in the K1 and K2 images. In each case, the
amplitude of the speckle noise term (Ar) is significantly higher
than is seen for HD95086b (De Rosa et al. 2016). This can be
attributed to the fact that 51EriA is approximately two
magnitudes brighter at K1 (than HD 95086 A), leading to a
significantly brighter speckle field. The typical correlation
lengths in the PSF-subtracted image for each band are
visualized in Figure 19, with the data being highly correlated

Figure 18. Example of the correlation function at the various angular
separations included in the fit for the H-band spectral cube. The different colors
correspond to the angular separations, with the circles being the value of the
correlation for all of the wavelength pairs, and the lines of the same color
indicate the best fit to the distribution calculated using Equation (4).

Table 4

Correlation Model Parameters

Band Ar Al Ad sr sl
J 0.43 0.43 0.14 0.44 0.05
H 0.70 0.27 0.03 0.45 0.01
K1 0.51 0.41 0.07 0.68 0.004
K2 0.30 0.62 0.08 0.43 0.004
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at the J band at wavelengths separated by up to five spectral
channels.
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