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Abstract

Marker patterns or beacons can be added to scenes or objects and detected
automatically in camera imagery. The detection of markers in images is used
for tracking position for applications such as Augmented Reality and robot
navigation. Recognizing landmarks with passive vision simplifies the hardware
and lowers the cost as compared to position tracking systems that use lasers,
SONAR or RF based methods. A marker system comprises a set of marker
patterns, usually bitonal black and white planar images, and corresponding
computer vision algorithms to recognize them in images where the markers are
in view. This paper details a new marker system that uses special pseudo-
random sequences encoded into linear patterns. These linear patterns can be
recognized with merely a portion visible, removing the reliance on quantized
boundaries as with other marker systems. The theory is explained, descrip-
tions are given of software written applying PLIM, and two specific application
shown where these linear markers are used for linear positioning of a gantry
and robot navigation with panoramic optics.
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1 Introduction

Passive computer vision and the use of markers is a powerful way to achieve object
identification and position measurement with low cost systems. One can mount pat-
terns in a scene or on objects, and then use the corresponding detection algorithms
to find the markers in camera images. Usually a marker system contains a library
of several different patterns, each designed to be unique and different from anything
naturally seen in the desired environment. The term self-identifying refers to the
quality that an algorithm can be designed to locate the markers automatically using
some properties of the marker patterns.

Marker systems can be used for determining the position of objects, with the
number of degrees of freedom (DOF) determining which marker systems and how
many markers are needed. For example, one could print out and mount several
markers to be seen by cameras mounted on a head mounted display (HMD) to use
to measure the HMD’s position and orientation with the full six degrees of freedom.
For this 6-DOF application, a minimum of four distinct non-collinear points would
be needed to find this pose. Alternatively, on a moving machine part which can only
translate in a single direction only one marker would need to be seen at any one time,
and the marker only needs to have one distinct point. Suggested linear positioning
applications of PLIM are detailed in Section 3.1.

The new Pseudo-Random Linear Image Marker system contains several libraries
of markers generated by encoding special digital sequences as linear image strips, one
is shown in Figurel. The PLIM basic system is described in this publication, it can
be used as a building block of other systems or used by itself in applications where
there is known rotation, such as the linear positioning application.

Figure 1: PLIM marker:Marker #0 of the 7-bit family. Pseudo-random binary se-
quence encoded in a bitonal image. This pattern repeats after 127 bits, typically a
minimum threshold (lencheck) of 20-27 bits must been seen at once. Other patterns
repeat in longer periods but require a higher minimum threshold.

Fiducial Marker Systems help solve the problem of finding correspondence between
features seen between images, or between an image feature and a known 3D geometry.
In computer vision one can find the position or pose of objects if seen in one or more
camera views. Camera calibration is a solved problem and so the corresponding 3D
location for a pixel from one or more images can be found without issue (different
scenarios require different numbers of camera views, 3D position from only one camera
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Figure 2: Detection of PLIM markers in image. Fiducial Marker Systems contain
both a pattern library and algorithms/software to find them in images. Markers #/
and #7 of the 7-bit family are located in this image. This is a screen shot from a real-

time program where each image frame is analyzed for PLIM markers. The markers
are assumed to be vertical. The detected region is overlaid with a white boz.



view can only be done if the point lies on an a priori plane or surface). Deciding
what image points correspond is the difficult part which requires the machine to
“understand” the image to some degree. However, if distinct markers can be added
to the environment which are unlikely to be confused with each other or environment
features, then the computer vision system can simply look for these markers. The
location of the markers, and possibly several points on the marker, in the image can
be corresponded reliably between images or implicitly between an image and where
the marker is known a prior: on an object of known geometry. For example, if a series
of markers are put in known locations then the associated marker detection algorithm
can be applied to camera images, and when enough points are correlated the position
of the camera(s) can be computed. An example of this is given in Section 5 where a
robot with three degrees of motion (rolling around on a flat floor) can localize itself
whenever 3 or more PLIM markers are seen in its camera. Another example is the
ARToolkit [13, 15] or ARTag [10] systems, where special square patterns with four
distinct points are used to find camera pose in order to add virtual objects into the
scene (Augmented Reality).

Fiducial marker systems have two components; marker patterns to be mounted in
the environment, and associated algorithm (usually software) to find the projection
of the markers in camera images taken of the environment. Usually the markers
have to be seen in their entirety for detection, a result of the quantized property
defined below. The marker system reports the location of these markers in each
camera image (for example marker #4 was seen in a camera image with its center
at pixel coordinates (100,200), marker #12 was seen at..., etc for markers with only
one distinct point) from which the position could be calculated. A screenshot of a
program implementing the PLIM system is shown in Figure 2, where the marker ID’s
and four corners are reported by the detection algorithm (another parameter called
PPB is explained later).

Metrics describing performance of fiducial marker systems are; 1) the false positive
rate, 2) the inter-marker confusion rate, and 3) the false negative rate. The false
positive rate is the rate of falsely reporting the presence of a marker when none is
present. The inter-marker confusion rate is the rate of when a marker is detected,
but the wrong id was given, i.e. one marker was mistaken for another. Finally, and
possibly the least serious, is the false negative rate, where a marker is present in an
image but not reported. The false positive and false negative rates are at odds with
one another, and represent a tradeoff between missing a marker and seeing a non-
existent one. Depending on the application either the false-positive or false negative
rate may be more problematic and effect how a marker system should be designed or
selected, and configured.

Marker systems are described in this paper by the terms uniqueness, identity,
quantization, and trackerless. The term uniqueness defines the fact that the markers



don’t resemble anything in the expected environment. A circular dot, for example,
is not a good marker in that other round objects could be seen in the operating
environment. A circular dot with a bar-code beside or encircling it could be a good
marker system because something resembling it would not likely appear naturally in
a room, industrial setting, etc.

The identity property is that the marker system contains more than one marker
pattern, and each can be assigned a unique ID and is not likely to be confused with
another. The set of possible markers in a marker system constitute a [tbrary and
the term inter-marker confusion refers to when one is mistaken for another by the
detection algorithms. Ideally this library constains as many different marker types as
possible, and has a low inter-marker confusion rate.

Quantization describes the property of some markers systems where the marker
exists as a distinct complete indivisible unit. All of the marker systems described in
Section 2 have property. The markers have a defined boundary, of which one needs
to see all or most of the marker to be able to detect and identify it.

The trackerless property is simply that each image frame is processed separately,
and that there is no past history of previous frames influencing the detection and
identification decisions. Attempting to compensate for errors by somehow combining
decisions made in previous frames is potentially fraught with danger and should be
done at the application level. Complex unknown behaviours can be generated with
feedback systems. A marker system should be robust enough to report the correct
answer most of the time and its error probabilities should be characterized, then it is
up to the system designer to integrate this information in attempts to improve the
total system performance.

The new Pseudo-Random Linear Image Marker (PLIM) marker system has the
properties of uniqueness, identity, is trackerless but is not quantized. PLIM markers
are continuous linear patterns of which only a section needs to be imaged to allow its
detection and ID determination. The threshold of how much of the pattern needs to be
seen depends on the library and the desired false-negative rate. This paper describes
how one can design the threshold to achieve a mathematically justified minimum
predictable false-negative rate. There are several libraries of PLIM markers one can
use, with varying numbers of markers and implications on this minimum threshold.
The marker patterns repeat with different lengths, depending on the library, the
longer patterns require a larger minimum threshold of detectable bits to achieve the
same false-negative rate.



2 Other Fiducial Marker Systems

Most markers systems use planar patterns, ones that are mounted flat. The most
practical ones use only greyscale (no colour) and furthermore use only two shades;
black and white. This provides robustness for classifying the image pixels and obviates
the need to account for different transfer functions between marker reflectance and the
pixel value seen in an image. More simply put, simple binary black/white systems are
robust to printing, lighting and image capture by using the full extent of the available
contrast and reducing decision making for a pixel to ’0’ or '1’. With the exception of
ARToolkit below, all the of the marker systems listed below use bitonal (only black
and white) shading.

Several 2D pattern systems are available (Section 2), of which A RToolkit [13, 15]
applications constitute a large share of AR systems (ISMAR [8] is an augmented
reality conference with many ARToolkit application papers). Zhang [19] performs a
survey of several fiducial marker systems including ARToolkit with respect to pro-
cesssing time, identification, image position accuracy with respect to viewing angle
and distance. ARToolkit is popular becaue it is simple, robust, and freely available.
It is a successful and popular system consisting of a square black marker on a white
background. If a marker is successfully located, the four corners are used to compute
the camera pose for rendering virtual objects to augment natural imagery.

Many of the practical machine vision systems used in industry use two dimensional
patterns to carry information in a manner similar to the ubiquitious bar code seen
on consumer products. The purpose is to carry information, not to localize as is
needed for augmented reality. The US Postal Service uses the Mazicode marker to
convey shipping information (Figure3). Data matriz and QR (Quick Response) are
two other examples designed to contain information are used in industrial settings for
part labelling (also shown in Figure3). The above three all use or have provision for
error correction methods to recover the data when some of the bits are incorrectly
read. ECC200 [4] is a standard for Data matriz 2D patterns and uses Reed Solomon
error correction, which can recover from situations where part of the information read
from the pattern is corrupted. Data Matrix and QR are used for Direct Part Marking
(DPM) to identify and convey information along an assembly line (see [1] for the
automotive industry).

Datamatrix, Maxicode and QR all have a common thread of encoding data using
binary values for reflectance, the pattern is typically bitonal reducing the decision
made per pixel to a threshold decision. This reduces the lighting and camera sensi-
tivity requirement and removes need for linearization of the signal (i.e. no attempts
are made to identify shades of grey). Another component is that of redundant in-
formation allowing for error detection and correction to increase the overall success
rate.
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Figure 3: Several planar pattern marker systems. Data Matriz, Maxicode and QR are
industrial systems used for carrying data. The circular Intersense markers are used
in position tracking. ARStudio and ARToolkit are patterns designed specifically for
augmented reality applications. ARTag is the new marker system introduced in this
paper.



The steps in the three commercial systems shown at the top of Figure 3 are; 1)
Identification of the marker, 2) Alignment of sampling axis with the marker pattern,
3) Digitization of the image intensity to a binary logic '0’ or '1’, 4) Error Detection
and Correction, and finally 5) Decoding of the corrected bit pattern into usable infor-
mation. The first step, identification, uses some unique identifier to find the marker
in the image, for example the bull’s eye concentric rings in the Maxicode system.
The second stage, alignment, attempts to line up the pattern for digitization. This
second stage is analogous to a linear bar code scanner that uses calibration stripes
at the beginning, end and sometimes middle to use to linearly interpolate positions
within to make binary sampling decisions. Finding the peaks in spatial frequency
plots (usually FFT’s) is used in both linear and two dimensional patterns to identify
the spatial frequency and phase of the dominant repetitive intervals. The third stage
of digitization is a threshold procedure, either absolute or local, to abstract to a field
of 0’s and 1’s. Error detection and possible correction is the last stage where the
extracted digital information is analyzed to determine if it is valid, and possibly to
correct it if a few bits were read incorrectly.

Locating and identifying simple planar patterns is also used by several photogram-
metry, position tracking, and augmented reality systems where less information is
carried in the marker, typically only enough to identify it from others. In applica-
tions such as photogrammetry, the size of the marker is an issue. In general, the less
dense the information is in the marker, the less the minimum pixel requirement is
and as a result, the greater the range of distance that the marker can be from the
camera.

Small markers can be made by encoding a ring of segments around a circular dot.
Several commercially available circular fiducial marker systems exist using a single
broken annular ring around a circular dot such as Photomodeler’s ”Coded Marker
Module” [7], or positioning products from Aicon[2], Capture3D [3], and others. These
systems are used for photogrammetry applications such as measuring the ”as built”
measurements of industrial plants or the deformation of automobile parts after crash
tests. Several use special photoreflective material in the markers which reflect light
from a light source mounted on the camera [5]. The number of possible markers is
limited, the camera resolution will limit the number of segments that the annular
ring can be broken into. Typically there is no more than 8 segments that are present
and absent, limiting to a handful the size of the marker library. Any error checking
redundancy will reduce this set further. Knyaz and Sibiryakov [16] divide the space
between a central circle and a ring into 10 sites for solid dot to sit, since each dot
requires an empty space beside this is equivalent to dividing an annular ring into
20 segments. However, after addressing rotation and reflection, only 76 ID’s are
possible. The Intersense markers [18, 6] in Figure3 extend this concept to several
radii. However, all these circular fiducial markers must be seen in sets (more than
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one at a time) to allow pose calculation and hence the total pixel size required starts
to grow.

The distinguising feature of systems designed for augmented reality such as AR-
Toolkit, ARSTudio [17] and ARTag [?] is that only one marker is usually visible so
the fiducial marker must have some distinct points, at least four, so as to extract ori-
entation with perspective distortion. ARToolkit, for example, uses the quadrilateral
outline to accurately locate the four corner points to a sub-pixel accuracy. These four
points are on the furthest extent of the pattern to get as much orientation accuracy
as possible.

The data carrying planar pattern systems Datamatrix, Maxi-code, QR and 2D
barcodes such as PDF417 are not as useful for use as a fiducial marker system due to
their size, and reliance on a fixed orientation and/or a narrow field of view (reduced
perspective distortion). The smaller markers systems such as ARToolkit, ARSTudio,
ARTag and the circular marker systems can be used as fiducial markers for positioning
and are appropriate where 2D areas in the environment can be used. PLIM does not
have the quantization property of all the above marker systems, and open up a new
range of possibilities.

3 Pseudo-Random Linear Image Marker (PLIM)

The previous section explored some available marker systems and described why a
subset of these are usable as fiducial marker systems. The section also motivated the
use of bitonal planar markers and suggested that having a marker system available
that dosen’t require the quantization property can be useful when only a portion of
a marker pattern may be visible at a given time. A bitonal one-dimensional pattern
with changes only in one linear direction can be made by encoding a binary sequence
as bars of white and black.

The above background sets the stage for designing a new marker system, one
that can be recognized from only having a section visible. Several applications could
benefit from a long, linear marker such as linear positioning or robot navigation.
PLIM was designed to address all these considerations.

Bar codes, as seen on consumer products, would be the first response of many
readers to satisfy this type of system requirement. Code 39, code 128, BC412 and
1-2-0f-5 are the most popular systems that are designed for fast moving wands or
laser scanners. However, these barcodes do not have the required quantization-free
property, one must see the entire barcode to decode it. Also, the high number of
discrete intervals necessary to be imaged to decode a standard bar code requires a
high resolution, some 500-1000 pixels or more would be required to read even barcodes
with small data content such as Code 39.

11



Since the bars in a linear pattern will be decoded into '1’ and ’0’ symbols, the
challenge of a quantization-free marker system can be abstracted to that of finding
binary sequences where seeing a small consecutive window is enough for detection
and identification. Pseudo-random sequences are well suited for this, they are in
fact defined by a property that a fixed relationship is true within several consecutive
symbols. These sequences are labelled pseudo-random because of one of their other
properties, containing a flat frequency content. A DFT performed on a pseudo-
random sequence returns a magnitude constant for all frequencies. These sequences
are often used as random number generators in digital computers. These pseudo-
random sequences are also attractive for our application in that they have a close to
50% balance of 1’s and 0’s, and have many transitions which produce edges which
can be used to find the pattern spacing in the image.

The detection system has two main parts; recognition and extraction of a sequence
of binary symbols from a linear image strip, and the detection within this extracted
sequence of a subsequence of a pseudo-random pattern. Sections 3.1-3.2 below de-
scribe the pseudo-random digital sequences selected, how digital symbol sequences
are extracted from an image, and show an example of the entire process at work.

3.1 Digital Processing: Pseudo-Random Sequences

PLIM uses pseudo-random binary sequences since they have the property of being
unique over a window of consecutive symbols. Specifically, the pseudo-random se-
quences used are those that would generate the longest non-repeating sequence by
applying the criterion that there is an even number of logic 1’s within selected spots
within a fixed length window of length N. It can be implemented in digital circuitry
with a Linear Feedback Shift Register (LFSR) where N — 1 bits of past history are
stored in an N — 1 bit long shift register, and new bits added sequentially to the
sequence by determining if the number of 1’s at specific shift register intermediate
outputs are odd with an XOR logic gate. An example is shown in Figure4 for the 7-bit
library member whose generating polynomial is 10101011 (ID#6 from Table 1). The
selecting of shift register intermediate outputs can be done with a N — 1 bit logical
mask (logical AND gates) with values set to this generating polynomial as opposed
to hard-wired output taps as in the figure. The generating polynomial is said to have
a degree of M where M = N — 1.

PLIM was originally invented for use as a vertical marker system in a panoramic
robot navigation system [11] as detailed in Section 5. Due to the low resolution of
panoramic images, the system was made to provide reliable recognition for linear
samples of 40 pixels or less.

The marker technology has two parts, digital codes that can be recognized from
only a small sequence of unknown start point, and the ability to extract digital codes

12
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Figure 4: A LFSR (Linear Feedback Shift Register) is a digital circuit that can cre-
ate the pseudo-random sequences used in PLIM. This LFSR implements the 7-bit
generating polynomial 10101011.

from an image. Unique digital sequences of 0’ and ’1’ symbols can be created with
Modulo-2 mathematics (or by simulating the LFSR circuit above with varying shift
register taps) and pseudo-random number theory. These sequences can be identified
with a high degree of confidence by seeing only a small subset of the total sequence
of the marker. The sequence of symbols itself can be extracted from the image using
spatial frequency analysis which allows operation in sharp or blurry images.

Space does not permit a full explanation of Modulo-2 algebra, but the practical
result is one can find if a piece of a unique sequence exists in an input sequence,
and of which of several orthogonal sequences it belongs to. Each marker pattern is a
vertically encoded sequence corresponding to the repeating sequence one can generate
from a generating polynomial. There are 18 possible generating polynomials of the
?Tth degree” which satisfy a relation in a window of 8 symbols, each polynomial
satisfies an equation with any consecutive 8 symbols anywhere along the repeating
127 symbol long sequence. Each polynomial and it’s sequence is assigned a label 0-17
in the experimental system created for this paper (see Table 1 below). Similar tables
for the 8,9, and 10-bit sequences are given at the end (Figures 3,4,7).

The usage is best explained with an example. Looking at the first row of Table
1 we see the generating polynomial 10000011. If we take any 8-bit long window of
the corresponding pseudo-random sequence and do a bit-wise logical AND between
the window and the generating polynomial we get an 8-bit binary number. If we
XOR all the bits in this number we get logic '0’ as the result. This holds true
for any 8-bit long window in the pseudo-random sequence, including where it wraps
around and repeats. Visually one could make an opaque mask and cut holes where the
generating polynomial is ’1’, then when one slides this opaque mask over the sequence,
the number of visible logic 1’s will be even. The number of visible logic ’1’s should
be even. This will be true in all locations for a given mask with its corresponding

13



pseudo-random sequence. This will be true in only some of the positions if the mask
is put over another sequence.

Marker | Generating Pseudo-Random Sequence

ID Polynomial
10000011 | 10000001111111010101001100111...
10001001 | 10000001001001101001111011100...
10001111 | 10000001100110110001110011101...
10010001 | 10000001000100110001011101011...
10011101 | 10000001011000001110100001001...
10100111 | 10000001101111100000101100001...
10101011 | 10000001110110111110011111110...
10111001 | 10000001001111111000101010111...
10111111 | 10000001100001001001111111011...
11000001 | 10000001000001100001010001111...
10 11001011 | 10000001110101000101110001111...
11 11010011 | 10000001111011001100010010011...
12 11010101 | 10000001010000110110010000011...
13 11100101 | 10000001010110111111100110110...
14 11101111 | 10000001100101000111000011111...
15 11110001 | 10000001000111110100110100010...
16 11110111 | 10000001101011101001010101101...
17 11111101 | 10000001011011000101000001110...

© 00 IO Tl i W = O

Table 1: The 18 orthogonal sequences possible with a 7th degree Modulo-2 pseudo-
random polynomial. The first 28 bits only are shown, the sequence repeats after 127
bits

An important feature is uniqueness, each pseudo-random sequence will only satisfy
this relation for N (N=8 in table 1 and the above discussion) window positions in a row
if it is a correct match. Typically the sequence is checked in more than N positions,
the window test is performed for a number of times len pe., Wwhere lencpecr > N. A
random binary sequence has a low probability of meeting this relation if we make
lenchecr large. Specifically, the probability of an arbitrarily lengpe bit long sequence
matching one generating polynomial of degree M is @%Zﬁ For one of our 7th degree
polynomials (M = 7,N = 8), the probability of a randomly created len pe, = 20 bit
sequence satisfying the relation across it’s entire length is 2;7—01 = 0.0122%.

Thus we can determine if an arbitrary sequence contains part of any of these 18
sequences by checking in turn, the number of positions along the sequence that the
above relation is true. In the system implemented, this is performed by a function
which takes a binary sequence as input and a minimal comparison length thresh-

14



old (lencpecr) and outputs either a polynomial number corresponding to a detected
sequence or reports that none are found.

The above describes what is done when a sequence of symbols is available, there
remains the issue of how to extract such a sequence from a vertical strip of an image.
The pattern is encoded with a black bar for a ’1’ and a white bar for a ’0’, but in an
image it is not known what the correct spacing and offset is of the pattern bars in
the image, due to an unknown pose between the linear marker. The Discrete Fourier
Transform (DFT) is employed to find the dominant spatial frequency and phase of the
edge transitions. This is analoguous to clock and data recovery in telecommunications
electronics.

3.2 PLIM Processing Stages

The PLIM system examines an image for image encoded pseudo-random sequences.
The system detailed in this paper cannot find fiducial markers with any arbitrary
pose. The rotation must be known, only the position and scale can be variable, this
paper only describes the processing after the marker direction is known or implicit.

The system for marker detection will now be described in all its steps. First
image areas are pre-processed to identify potential markers according to the presence
of many edges parallel to strip length and an absence of edges crossing the width of the
strip. This pre-processing reduces the computational burder of the DFT (even with
its Fast Fourier Transform (FFT) version). The second stage combines neighbouring
strips that touch end-to-end that pass this test to produce a single linear sample.
By processing strips thicker than one pixel wide averages out pixel noise and reduces
the computations. The third stage is the actual DFT algorithm (implemented with
fast lookup tables) where a dominant frequency and phase is extracted, this stage
includes digital sampling of the linear sample at this phase and half the frequency
to create a sequence of ’0’,’1’ symbols. The fourth stage is the pseudo-random code
verification stage described above which reports either one or none of the marker
patterns are present for len.per symbols in a row. The fifth and final stage involves
combining neighbouring strips with the same extracted code and attempts to grow
the boundaries of the marker in the image to find its full extent.

3.3 Strip Segment Pre-Processing

The image is processed a strip segment at a time. In the real-time versions of this
program, the strips are divided into segments of 128 pixels long. the strip segments
are first pre-processed to determine if they contain the correct edges. The sobel filter
mask pair is passed over the strip and the sums of all edge results added for the strip.
An ”edge score” is calculated for each pixel location computed by adding the edge

15



intensity along the direction of the strip minus twice the edge sum perpendicular
to it. If the average edge score over all the pixels in the strip is greater than 5
(the original image has 256 grey levels), then the region is passed to the next level.
Typically about 50% of image strip segments pass this first test. This pre-processing
step reduces the processing time, but in a more developed system the following stages
could be optimized to eliminate the need for this step.

3.4 Spatial Frequency and Digital Sequence Analysis

Figure 5 below shows the stages on one vertical strip. The strip (rotated horizontally
in the figure) is thresholded, by an adaptive thresholding technique in our implemen-
tation. The columuns of this horizontal strip (equivalent to rows in the original image
in Figure 5 are added together to convert this 2-D strip into a 1-D signal.

This one-dimensional signal is then processed in a method analoguous to clock
and data recovery of an electronic telecommunications circuit. The edge transitions
from light to dark contain energy at a specific spatial frequency and phase, Fourier
techniques are used to find this frequency and phase. The Discrete Fourier Transform
(DFT) is employed on a band-pass filtered version of this one-dimensional signal.
Typically an FFT Fast Fourier Transform would be used if the image strip length
was of length 2° (i is an integer).

Note that this frequency method assumes equal spacing, what would occur if the
plane of the marker in the environment is parallel to the image plane. Either this
must be the case, as in the application of a robot translating on a floor looking at
vertically mounted markers, or some other pre-processing step must be done to warp
the image into such a rotation-free form.

The band-pass filtering removes a region of high and low frequency components,
what’s left is turned into a frequency spectrum and the peak is observed. The filtering
is done in two stages in Figure 5, first a Gaussian low pass filter is applied, followed by
a simple high-pass filter of subtracting each sample from its neighbour. The Fourier
Spectrum of each of the stages is shown in the figure.

A peak is found in the band passed signal spectrum and the magnitude and
phase is extracted. This represents the dominant edge frequency, which is twice the
binary symbol rate. The original one-dimensional signal is then sampled at half the
dominant spatial frequency with a 90 degree phase shift to catch the signal between
edges. A threshold operation turns each sample into a binary 1’ or ’0’ symbol at the
sampling points. The symbols are aggregated into a sequence and then examined for
pseudo-random codes.

If there is a valid PLIM marker in the strip, then a continous subset of minimal
length lencpecr 0f the sequence will satisfy one of the pseudo-random sequences. In
Figure 5, the section of the sequence that satisfies one of the pseudo-random polyno-
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mials (that the algorithm is looking for) is drawn with a box around to demonstrate
which bits out of the total sequence are believed to belong to a PLIM marker. The
start and end points of this sub-section is mapped back to the image to denote the
ends of the marker.

3.5 False Positive Detection Rates

A marker is detected if a strip or strip segment contains a dominant frequency compo-
nent which when used to extract a binary sequence contains at least len peq Sequential
bits satisfying one of the PLIM polynomials. If the pre-processing step is used, then
the strip must pass that test also. The chance of a group of pixels in the image not
formed from the projection of a PLIM marker is the probability of all these tests been
passed.

Typically background image features will be non-repeating or completely repeat-
ing, a random background will not often add coherently to produce a high frequency
peak in the spectrum. A low frequency dominant component will yield a small number
of binary symbols which may even be below len peqx itself. A high frequency dominant
component would likely correspond to a uniformly tiled or patterned region which will
sample to either all 0’s or 1’s or a repeating 0101010101..., 0011001100..., etc pattern
which will not satisfy any generating polynomials. This is based on intuitive and
provided without proof, but tells us that at minimum, the false detection probability
will be reduced at bit by this phenomenon.

The worst case scenario is that a complex random binary sequences can appear
often in the background, that all binary sequences have equal probability. The prob-
ability of a random sequence passing the PLIM test sets the worst case highest prob-
ability. The real probability would be more complex where each possible sequence
would be weighted by the probability of it appearing, which the author contends
would be lower for more random sequences. This is very situation and camera de-
pendent and is thereform difficult to calculate. The following calculations finds the
upper ceiling of the false detection probability, that of equal likelihood of all sequence
possibilities.

Each randomly created sequence S will only satisfy one of the generating poly-
nomial relations if len e bits in a row satisfy a 50% chance for each bit giving a

probability of m However, S has to be compared to all 2 — 1 positions along

the sequence. The probability of an arbitrarily len.pe bit long sequence matching
. . . M

one generating polynomial of degree M is 212%7,;1%

When using PLIM, we configure the system by loading the patterns we want to
search for into memory in an initialization step. The number of patterns loaded is P,
and therefore the final probability of S passing one of the generating polynomials is
K--22-L_ For one of our 7th degree polynomials (M = 7) loaded with all 18 patterns,

olencheck *
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the probability of a randomly created len pe., = 27 bit sequence satisfying the relation
across it’s entire length is 18- 2;2_71 = 1.7221075 = 0.0017%. The system can be made
to fail and produce false positives by lowering lencpeck- If lencpecr is lowered to 13
bits as in Figure 6, then the probability rises to 18 - 2;%1 = 0.279 = 28%. Figure 6
shows 9 false detections, this is a 320x240 image with strip segments of width=10,
length=100 pixels giving about 64 strips in the image. 69—4 = 14% which is lower
than the predicted maximum probability of 28%, which (although one sample is not
statistically significant) supports the assertion that the PLIM sequences are less likely

to occur than those extracted from a random image.

Figure 6: False PLIM markers detected in the image by lowering lencpeck. The lencpeck
variable directly determines the upper bound of the probability of falsely reporting a
marker when one is not present.

3.6 Combining Strip Segments

PLIM was realized in several real-time software systems using USB webcams, NTSC
video camera inputs, and an IEEE 1394 (firewire) camera. The programs all expect
the PLIM markers to be vertical in the image. The program divides the image into 5-
pixel wide strips (strip width arbitrarily chosen), each of which is processed as shown
above. Figure 7 shows the result, each strip is processed separately and a list of
marker start and end points is given. Adjacent strips with the same extracted code
and similar endpoints are combined.

To alleviate the quantization introduced in the detected marker position due to
the image being divided into fixed strips, a second stage is performed to attempt to
widen the marker. The one-dimensional signal is used as a profile, and a search done
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to each side of the marker to see how far (within one strip) that the profile correlates
well with the image.
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Figure 7: Each image strip is processed differently (left). If a PLIM marker is found
in each strip, an ID and endpoints are reported. They are then combined to form
(right) a combined view.

In Figure 7, the rectangular regions are annotated with two numbers. At the top
is the ID of the PLIM marker, this is the ID as given in Table 1. The number at the
bottom is "PPB”, pizels-per-bit, the number of image pixels along the strip for every
binary symbol in the linear marker. This is obtained from the spatial frequency used
when sampling the one-dimensional signal (extracted from the thresholded image
strip). This number is useful for filtering out outliers if the minimum and maxi-
mum expected marker image sizes are known. The PPB measurement can also be
used to approximate distance, since it is inversely proportional to the marker/camera
distance.

4 PLIM Application: Linear Position Sensor

The pseudo-random binary sequences can be used to indicate position within the
sequence as well as identifying the presence of the sequence. This behaviour can be
exploited for position measurement. The PLIM marker system in the form detailed
in this paper can determine position for translational degrees of freedom.

One application is a linear position detector, a long pattern could be mounted
along the extent of an object’s motion, and a camera could be mounted with a sec-
tion of this pattern in its field of view. An application could be an axis on a gantry
robot arm. A gantry consists of several linear motion axis, typically two rails sup-
port a tranverse member which moves back and forth over the workspace. Another
element rides along this tranverse member and contains a third linear component
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that translates up and down. A warehouse robot can pick up and stack containers
by moving in the three cartesian directions overhead. Quite often if this system is
automatic it has a position encoder that provides relative positioning and it has to
return to a "home” position every now and then to zero any accumulated error. With
a PLIM pattern and camera mounted along these linear axis, the position could be
measured in absolute terms with no mechanical contact.

Figure 8 below shows an application where the position within an 8-bit linear
pattern is found by finding the bit position within the linear pattern.
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Figure 8: PLIM markers can be used to measure the absolute position of moving parts
with a single degree of freedom. An 8-bit pattern (length=255 bits) is being viewed by
a camera seeing only a lower portion of the pattern. The bit position is determined
and overlaid over the image. One can verify the correctness by seeing the matching
pattern shown printed next to the PLIM marker on the paper.

The desired accuracy and length of linear motion would determine which library
of PLIM markers one would use. If millimetre accuracy is desired over a range of
50 metres, then a 16-bit PLIM marker should be used which has a pattern length of
216 — 1 = 65535 bits = 65 metres long if the pattern is printed at 1 bit/mm. lencpec
could be set to 32 and only one pattern initialized for that image position giving a
false detection probability of 21263;1 = 1.52107° = 0.0015%. The field of view should
set so the camera view includes 32 mm of the pattern.

A practical system would likely have several parallel patterns for different reso-
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lutions to allow position detection during motion. Motion blur will likely render the
highest resolution pattern unrecognizable but a choice of lighting, exposure time and
bit width in mm will determine at what speeds the PLIM system can still determine
position. The system would likely provide its own illumination, LED’s placed on the
same mount as the camera, both under a shroud would provide consistent operation.
The cleanliness of the operating conditions and the choice of where the patterns and
camera are placed would be a design decision, material obscuring the pattern could
provide problems. A smart camera implementation would have all the image pro-
cessing occuring in the camera so only a final position is reported back to the gantry
controller.

5 PLIM Application: Panoramic Robot Naviga-
tion

Another application of the PLIM fiducial marker system is as landmarks in a mobile
robot navigation system. If the robot motion is constrained to translating and rotat-
ing on a flat surface, a typical indoor robotics scenario, then PLIM markers can be
mounted vertically and will hence have constant spacing in the image. The patterns
can be seen obliquely by the camera up to a certain angle from the perpendicular
and still provide reliable detection (in this application the no-rotation restriction for
PLIM is relaxed slightly). This summarizes the work published in [11].

One fundamental component for an autonomous mobile robotic platform is to
determine its position and orientation with respect to it’s environment. Available
systems include those based on sonar sensors, motor odometry and radio beacons.
Using a passive vision-based system would be very advantageous over these, and
increase the practical utility and scalability of mobile robotics. Hager and Rasmussen
define a framework for robot navigation using standard perspective cameras [14]. If
this vision system was panoramic, objects all around the robot could be used for
finding and updating the position estimate. A ring of cameras partially or completely
covering 360° could achieve the same result but not as inexpensively and elegantly as
a single panoramic camera.

This work follows on previous research [12, 9] involving mobile robot localization
and navigation. [12] was a tracking based approach following intersections of hori-
zontal and vertical edges in the environment. The localization was iterative, and the
system would get lost once the previous estimate was inaccurate. This could happen
often due to the non-uniqueness of the landmarks, a common problem with tracking
based methods. With tracking by using a corner detector in the image, the frame rate
has to be high enough to use a small enough search window such that a given corner
is not confused with other corners. Even with the second corner tracking method
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in this paper, which replaced the corner detection step with an improved method of
tracking the lines which met to form the corners, the system could still under certain
conditions falsely identify these landmark corners leading to an erroneous robot posi-
tion estimate. Using unique markers as landmarks that can be robustly identified in
a single frame, requiring no knowledge of past history, was the focus of [9] and [11].

Later research chose to remove the reliance on natural corners in the environment
by replacing the corners with ARToolkit markers as landmarks [9]. With panoramic
cameras the resolution is low and the markers had to be quite large. The use of
markers introduced into the environment permits more unique landmark matching
and hence the navigation system is more robust. The two dimensional area pat-
terns used in [9] are reasonably well recognized but due to the limited resolution of
panoramic systems, have to be quite large. The desire to create a marker system that
was both more robust and less intrusive motivated the research described herein.
Since indoor man-made environments contain many vertical surfaces and a mobile
robot is likely to travelling on a horizontal plane, narrow vertical patterns could be
mounted that convey identification information in one dimension.

Looking at the weakness of these two approachs, the PLIM system was designed.
The trackerless property of PLIM (each frame independent) reduces the fragility of a
tracking based system, and the thin linear nature makes it more convenient to place
in the environment than giant ARToolkit planar markers.

Figure 9 shows a catadrioptric (containing both mirrors and lenses in the optical
path) panoramic camera, and an image captured from it. All 18 markers from the
7-bit PLIM library were vertically mounted in a room at measured locations. The
panoramic camera was moved to known locations and compared to the triangulated
position found by detecting PLIM markers. A virtual environment was also created
to localize a virtual panoramic camera for simulated experiments.

Linear Markers for Robot Navigation with Panoramic Vision. [11] describes the
localization in detail, a minimum of three markers must be seen simultaneously Figure
10 shows how the panoramic image is warped to a cylindrical image where image
columns can be examined for PLIM markers. The detected markers are used to
triangulate the camera position in the room. Localization error performance is shown
in Table 2.

The system was simulated before testing with a real system. Figure 11 illustrates
this test. The localization results accuracy is detailed in [11].

6 Conclusions

The Pseudo-Random Linear Image Marker (PLIM) system was introduced. Marker
systems were decribed to solve the general camera/position problem by the use of
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Figure 9: (Left) Panoramic camera. (Right) Raw camera image of room with PLIM
markers.

adding markers to the environment to be detected with passive computer vision.

The desirable system attributes of bitonal and minimally sized patterns were used
in making design decisions for the PLIM system. Further qualitative properties for
fiducial marker systems were introduced, of which PLIM was designed to satisfy the
uniqueness, identity, and trackerless properties but be free from the quantization re-
straint. The quantitative metrics of the false positive rate, the inter-marker confusion
rate, and the false negative rate were introduced and the false positive rate for PLIM
analyzed to produce a worst case probability characterization.

Pseudo-random binary sequences were chosen to allow freedom from the quanti-
zation restraint, allowing recognition to be performed even if only a section of the
pattern was seen. The use of different libraries of markers based on different window
sizes and corresponding generating polynomials was introduced.

The PLIM system can only calculate pose without rotation, it is useful directly
for applications such as robot navigation on a level surface or measuring the position
of a objects with only translational degrees of freedom. It can however be used in
other more complex systems as a component.

Finally, two specific applications for the PLIM were explored; linear position mea-
surement and panoramic robot navigation.
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Figure 10: PLIM markers detected in panoramic image. Cylindrical warp image (top)
is created and analyzed for the presence of marker patterns. Detected landmarks

containing these patterns are overlaid on the image (top) and the camera pose is
drawn on the map below.
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Figure 11: (Upper Left) Environment used to create image sequence. 18 vertically
pseudo-random sequence encoded markers are used as landmarks.
Panoramic camera view from synthetic sequence. (Lower Left) Cylindrical warp im-
age annotated with detected vertical markers. (Lower Right) Trajectory of recovered

camera positions.
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Panoramic | Num. | % Avg. Avg. Avg.
Camera Loca | Local | Dist. Std. | markers
-tions | -ized Error Dev. seen
PL-A654 207 | 80% | 9.0 cm | 4.6 cm 3.6
Netvision B
Dragonfly | 214 | 80% | 15.1 cm | 8.9 cm 4.0
Netvision A

Table 2: Results of Localization Experiments. 20 consecutive frames were analyzed
at each of Num. Locations positions of the camera in the instrumented room. %
Localized is the percentage of locations where the camera could localize itself. Avg.
Dist. Error is the average distance between the measured and localized distance.
Awvg. Std. Dev. measures the variability of the localized position over 20 frames. The
number of markers seen is Avg. markers seen.
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Table 3: The 16 orthogonal sequences possible with a 9th degree Modulo-2 pseudo-
random polynomial. The first 28 bits only are shown, the sequence repeats after 511

bits

Marker | Generating Pseudo-Random Sequence

ID Polynomial

0 100011101 | 1000000010110001111010000111...
1 100101011 | 1000000011101100000010011010...
2 100101101 | 1000000010111101100000011100...
3 101001101 | 1000000010111011110110011111...
4 101011111 | 1000000011000100000111101010...
5 101100011 | 1000000011111000100101000100...
6 101100101 | 1000000010101100011001110000...
7 101101001 | 1000000010010100111111110001...
8 101110001 | 1000000010001110001001011100...
9 110000111 | 1000000011011010100010010111...
10 110001101 | 1000000010111000111011110001...
11 110101001 | 1000000010010111111110001101...
12 111000011 | 1000000011111100101001011010...
13 111001111 | 1000000011001111101000110110...
14 111100111 | 1000000011011101001000111111...
15 111110101 | 1000000010100101010100010111...
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Marker | Generating Pseudo-Random Sequence

ID Polynomial

0 1000010001 | 1000000001000100011001000111...
1 1000011011 | 1000000001110001111011010000...
2 1000100001 | 1000000001000010001100001001...
3 1000101101 | 1000000001011110101001110101...
4 1000110011 | 1000000001111000010100101110...
5 1001011001 | 1000000001001100010110011110...
6 1001011111 | 1000000001100010011101110010...
7 1001101001 | 1000000001001010000111100100...
8 1001101111 | 1000000001100101100101010111...
9 1001110111 | 1000000001101011001011100010...
10 1001111101 | 1000000001011011101111011101...
11 1010000111 | 1000000001101101001111010011...
12 1010010101 | 1000000001010001111011100101...
13 1010100011 | 1000000001111101110011011110...
14 1010100101 | 1000000001010111110010000011...
15 1010101111 | 1000000001100100011100101100...
16 1010110111 | 1000000001101010110011101000...
17 1010111101 | 1000000001011010001001110011...
18 1011001111 | 1000000001100111101010011010...
19 1011010001 | 1000000001000101111000001011...
20 1011011011 | 1000000001110000000100100000...
21 1011110101 | 1000000001010010110011101110...
22 1011111001 | 1000000001001110110000111011...
23 1100010011 | 1000000001111010101101110001...
24 1100010101 | 1000000001010001001000110101...
25 1100011111 | 1000000001100011011000001011...
26 1100100011 | 1000000001111101001100111101...
27 1100110001 | 1000000001000110001101111110...
28 1100111011 | 1000000001110011000000110111...
29 1101001111 | 1000000001100111010110001101...
30 1101011011 | 1000000001110000111011111100...
31 1101100001 | 1000000001000011011101001011...
32 1101101011 |{ 1000000001110111011110010111...
33 1101101101 | 1000000001011111111100101010...
34 1101110011 | 1000000001111001010101011001...
35 1101111111 | 1000000001100000101110011110...
36 1110000101 | 1000000001010101101110101011...
37 1110001111 | 1000000001100110101111110010...

Table 4: The 48 orthogonal sequences possible with a 9th degree Modulo-2 pseudo-
random polynomial. The first 28 bits onl$lare shown, the sequence repeats after 511
bits



Marker | Generating Pseudo-Random Sequence

ID Polynomial

38 1110110101 | 1000000001010011100111111000...
39 1110111001 | 1000000001001111100000110000...
40 1111000111 | 1000000001101100001011100111...
41 1111001011 | 1000000001110101011010010000...
42 1111001101 | 1000000001011101010001011010...
43 1111010101 | 1000000001010000101111110100...
44 1111011001 | 1000000001001100100110110101...
45 1111100011 | 1000000001111100110010111000...
46 1111101001 | 1000000001001010110111000001...
47 1111111011 | 1000000001110010111111000011...

Table 5: ...continued 9-bit sequences from Table 4.
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Marker | Generating Pseudo-Random Sequence

ID Polynomial

0 10000001001 | 1000000000100100100110100110...
1 10000011011 | 1000000000111000111010010000...
2 10000100111 | 1000000000110111100110101111...
3 10000101101 | 1000000000101111010010100101...
4 10001100101 | 1000000000101011001100110100...
5 10001101111 | 1000000000110010110101001010...
6 10010000001 | 1000000000100000010010001000...
7 10010001011 | 1000000000111010001010101111...
8 10011000101 | 1000000000101010011011001100...
9 10011010111 | 1000000000110100100100101000...
10 10011100111 | 1000000000110111011010100100...
11 10011110011 | 1000000000111100110010100101...
12 10011111111 | 1000000000110000001110100011...
13 10100001101 | 1000000000101110011101101001...
14 10100011001 | 1000000000100110100101001110...
15 10100100011 | 1000000000111110100001100001...
16 10100110001 | 1000000000100011000000111110...
17 10100111101 | 1000000000101101011011010111...
18 10101000011 | 1000000000111111011101100101...
19 10101010111 | 1000000000110100111010111101...
20 10101101011 | 1000000000111011101000110010...
21 10110000101 | 1000000000101010110001001100...
22 10110001111 | 1000000000110011010000011000...
23 10110010111 | 1000000000110100000110111010...
24 10110100001 | 1000000000100001011000001111...
25 10111000111 | 1000000000110110000010010100...
26 10111100101 | 1000000000101011010101011011...
27 10111110111 | 1000000000110101111100000011...
28 10111111011 | 1000000000111001011000011001...
29 11000010011 | 1000000000111101011110111001...
30 11000010101 | 1000000000101000101110110000...
31 11000100101 | 1000000000101011101010000110...
32 11000110111 | 1000000000110101001111001001...
33 11001000011 | 1000000000111111010010011001...
34 11001001111 | 1000000000110011100011100111...
35 11001011011 | 1000000000111000010101110101...
36 11001111001 | 1000000000100111001010000011...
37 11001111111 | 1000000000110000011111101100...

Table 6: The 60 orthogonal sequences possible with a 10th degree Modulo-2 pseudo-
random polynomial. The first 28 bits only¥3are shown, the sequence repeats after 1023
bits.



Marker | Generating Pseudo-Random Sequence

ID Polynomial

38 11010001001 | 1000000000100100110010111011...
39 11010110101 | 1000000000101001111001010110...
40 11011000001 | 1000000000100000110110101000...
41 11011010011 | 1000000000111101100001110111...
42 11011011111 | 1000000000110001011000010111...
43 11011111101 | 1000000000101101100100111110...
44 11100010111 | 1000000000110100010111100000...
45 11100011101 | 1000000000101100011000111111...
46 11100100001 | 1000000000100001001100000110...
47 11100111001 | 1000000000100111100010000110...
48 11101000111 | 1000000000110110010011001011...
49 11101001101 | 1000000000101110111011111000...
50 11101010101 | 1000000000101000000100111000...
51 11101011001 | 1000000000100110000001000101...
52 11101100011 | 1000000000111110001110101110...
53 11101111101 | 1000000000101101111101001110...
54 11110001101 | 1000000000101110001000100011...
55 11110010011 | 1000000000111101000001001111...
56 11110110001 | 1000000000100011010100110010...
57 11111011011 | 1000000000111000001010011011...
58 11111110011 | 1000000000111100111101011010...
59 11111111001 | 1000000000100111010010010111...

Table 7: ...continued 10-bit sequences from Table 7.
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