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Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and

technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we

demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond

mechanical resonances into self-oscillations with amplitude >200 nm. The resulting internal stress field

is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers.

The mechanical resonances have a quality factor >7 × 105 and can be tuned via nonlinear frequency

renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5 fm=
ffiffiffiffiffiffi

Hz
p

sensitivity.

In combination, these features make this system a promising platform for interfacing light, nanomechanics,

and electron spins.

DOI: 10.1103/PhysRevX.5.041051 Subject Areas: Nanophysics, Photonics

I. INTRODUCTION

Nanophotonic optomechanical devices [1–4] enable
on-chip optical control of nanomechanical resonators with
a precision reaching the standard quantum limit [5–8],
enabling tests of quantum nanomechanics [7,9–11], as well
as technologies for sensing [4,12–14] and information
processing [15–17]. Single-crystal diamond devices are
particularly exciting for these applications. In addition to
possessing desirable mechanical and optical properties,
diamond hosts color centers [18] whose electronic and
nuclear spins are promising for quantum technologies.
Recently, nanomechanical devices with embedded

color centers [19–23] and quantum dots [24,25] have been
used for phononic control [26] of electron spins. These
hybrid quantum devices [27] harness the vibrations of
nanomechanical resonators to control electron spins via their
electronic coupling to internal strain. To date, these experi-
ments have relied on piezoelectric mechanical actuation.
Optomechanical devices offer an attractive alternative for
mechanical actuation. They use light, the preferred medium
for transferring quantum information, to create optical forces
that are sensitive to the mechanical resonator position.
In combination with coupling between nanomechanical

resonator strain and electron spins [19–23], this can create

an effective interaction between light and spins. Compared to

piezoelectric actuation, optomechanical coupling is local-

ized, and offers integrated sensitive readout of mechanical

displacement. Although optomechanical devices have been

realized from a broad range of materials [2,6,7,17,28],

demonstrating single-crystal diamond optomechanical devi-

ces has been delayed by challenges in fabrication. Here, we

report demonstration of single-crystal diamond optomechan-

ical devices. These devices allow low-power optical actua-

tion of diamond nanomechanical resonators [29–33], and

are predicted to enable optical control at wavelengths

determined by the device geometry of spin transitions not

accessible using traditional radio or microwave frequency

techniques [19]. They could also enable proposals for

creating hybrid quantum devices for transducing quantum

information between disparate quantum systems [34–36],

creating quantum sensors [37], generating spin squeezing

and entanglement [38], and using quantum emitters for

nanomechanical cooling [39,40].
The single-crystal diamond optomechanical system we

demonstrate here incorporates several features that together
make it a promising platform for hybrid optomechanical
quantum devices. This system is based on ultrahigh
mechanical quality factor (Qm > 7.2 × 105) nanobeam
waveguide resonators fabricated from bulk diamond chips
using a scalable process. The nanobeams are coupled
evanescently to a fiber taper waveguide, and can be excited
into self-oscillation via a combination of optomechanical
coupling and a stress-enhanced photothermal force that is
significant (>pN) even for sub-μW absorbed power levels.
We observe self-oscillations with amplitude >200 nm for
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∼100 nW of absorbed power, and predict that this results
in an oscillating internal stress field of ∼70 MPa. This

corresponds to a strain coupling rate of G=2π ∼ 0.8 MHz

to diamond nitrogen-vacancy (NV) center electron spins,

indicating that these oscillations can drive coherent

transitions between ms ¼ �1 states [19–23]. The self-

oscillation frequency is observed to be renormalized

200 kHz by nonlinear nanomechanical effects, providing

a tunability that would be beneficial for such experiments,

as well as a measure of internal stress and nanobeam

buckling. The optomechanical interaction underlying this

system operates over a 150 nm bandwidth, and is charac-

terized by a dissipative optomechanical coupling coeffi-

cient that can reach 45 GHz=nm (0.48 MHz per photon),

and a displacement sensitivity of 9.5 fm=
ffiffiffiffiffiffi

Hz
p

. This sensi-

tivity is less than a factor of 3 above the quantumuncertainty

in position of the highest Qm nanobeams demonstrated

in this work, and can be improved with further device

optimization.
In combination, these properties make the demonstrated

system promising for realizing optomechanical spin con-
trol, as well as fundamental studies of modification of
nanomechanical resonator dynamics by coupling to elec-
tronic spins [39,40]. The analysis of the device properties
and behavior presented here will guide future work to
maximize strain coupling to electronic spins, and to harness
the large photothermal force for optomechanical cooling
and manipulation of nanobeam motion.

II. WAVEGUIDE-OPTOMECHANICS

Experiments in diamond nanophotonics and nanome-
chanics have recently been advanced by the availability of
high-quality diamond chips grown using chemical vapor
deposition. While optomechanical devices can be fabricated
from polycrystalline diamond films [32], single-crystal
diamond thin films that retain the desirable combina-
tion of optical, mechanical, and quantum electronic proper-
ties introduced above are not commercially available and
must be manufactured using ion-implantation [41–43]
or wafer-bonding [30,31,44,45] techniques. Fabrication
of devices directly from bulk single-crystal diamond chips
is desirable, and until now has relied on either ion beam
milling [46] or less damaging and more scalable inductively
coupled plasma reactive-ion (ICPRIE) Faraday cage angled
etching [33,47]. In this work, we demonstrate an ICPRIE
process that does not require a Faraday cage, and instead
utilizes diamond undercut etching to fabricate nanobeams
from bulk single-crystal diamond, such as those shown
in Fig. 1(a) that support optical and mechanical modes
summarized in Figs. 1(b) and 1(c), respectively. This
process, outlined in Fig. 2 and discussed in more detail
in Appendix A, is inspired by earlier bulk silicon nano-
fabrication [48] and relies on an oxygen-based ICPRIE
process operated with zero-rf power, high-ICP power, and
an elevated sample temperature (250 °C) to etch diamond
quasi-isotropically along diamond crystal planes. The proc-
ess is uniform over the diamond chip area, can produce

FIG. 1. Diamond nanobeam waveguide-optomechanical system. (a) SEM images of a single-crystal diamond nanobeam waveguide.
Dark high-contrast regions are due to variations in thickness of titanium deposited for imaging purposes. (b) Schematic of fiber taper
evanescent waveguide coupling geometry and illustration of the waveguide-optomechanical coupling process. Nanobeam mechanical
resonances, whose typical displacement profiles are shown, modulate the distance between the input waveguide, changing κðhÞ.
(c) Dispersion of neff of the waveguide modes of the fiber taper (diameter 1.1 μm) and diamond nanobeam (w × d ¼ 460 × 250 nm2)
when they are uncoupled (fiber taper shown by red dashed line, nanobeam shown by blue dashed line) and coupled with h ¼ 300 nm
(solid lines). Shaded region indicates the laser scan range used in the experiments. Insets: Mode profiles (x-y plane, dominant electric
field component jEyj) of the symmetric (þ) and antisymmetric (−) coupled modes.
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horizontal undercut surfaces, and is fully compatible
with standard commercial etching tools. Eliminating the
need for a Faraday cage allows the process to be employed
at a wider range of nanofabrication facilities, while the
flat undercutting property allows fabrication of structures
such as the high-quality factor microdisk optical cavities
in Ref. [49].
Using this diamond undercutting process, nanobeams

are fabricated with widths w ¼ 300 − 540 and 750 nm
and lengths L ¼ 50 − 80 μm on the same chip. Nanobeam
thickness d is adjusted by controlling the etching times
togetherwith the nanobeamwidthw. For the etch parameters
used here, the nanobeam thickness is d ∼ 250–350 nm,
depending on w. Because of the crystal-plane sensitive
nature of the undercut etch, for the etch parameters used
here the narrow nanobeams have a flat bottom surface,
while the w ¼ 750 nm nanobeams have a triangular bottom
surface mimicking the ridge visible in Fig. 1(a), as shown
in Appendix A. These bottom surfaces can be flattened
by longer undercut etching, consistent with observed
behavior of microdisks undercut using this process [49].
The fabricated nanobeams support mechanical resonan-

ces, the lowest order of which are illustrated in Fig. 1(b),
with frequencies and effective mass in the MHz and
pg range, respectively. The nanobeams also support wave-
guide modes, which can be evanescently coupled with
high efficiency to an optical fiber taper [50], as shown
schematically in Fig. 1(b), by tuning the device geometry to
match the nanobeam mode phase velocity with that of a
fiber taper mode. Despite the refractive index difference
of the SiO2 fiber taper and diamond, phase-matching is
realized in nanobeams with subwavelength cross section.
This is illustrated in Fig. 1(c), which shows the effective
refractive index dispersion, neffðλÞ, of the fundamental TE
modes of a fiber taper and of a diamond nanobeam,
together with that of the “supermodes” of the evanescently

coupled waveguides (n�eff) [51]. Phase-matching occurs at

λ0 ∼ 1570 nm, where an anticrossing in n�effðλÞ indicates

that the waveguide modes are coupled.
Evanescent waveguide coupling, which has been well

studied in the context of photonic and optoelectronic
devices [51,52], is shown here to provide sensitive

optomechanical read-out of mechanical fluctuations that
modulate the waveguide separation h. In contrast to cavity-
optomechanical systems, which exploit dispersive coupling
between mechanical fluctuations and narrow-band optical
resonances [53], waveguide-optomechanical coupling
utilizes wideband dissipative optical transduction of the
nanobeam mechanical position. The sensitivity of the
evanescent waveguide-optomechanical coupling can be
derived from coupled-mode theory (Appendix C) and is
determined by the dependence of the normalized fiber
taper transmission T on the separation h between the
waveguides:

Tðh; λÞ ¼ cos2ðsLcÞ þ
�

Δβ

2

�

2 sin2ðsLcÞ
s2

: ð1Þ

Here, Lc is the coupler interaction length determined by the
fiber taper geometry, ΔβðλÞ ¼ ΔneffðλÞ2π=λ is the propa-
gation constant mismatch of the uncoupled waveguide

modes, s2 ¼ κ2 þ Δβ2=4. κðhÞ is the per unit length
amplitude coupling coefficient, which depends on the
overlap of the evanescent fields of the coupled waveguides.
The theoretical displacement sensitivity achievable by
monitoring fluctuations in T is

soxðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Tðh; λÞPdℏωo=ηqe þ S
ðdetÞ
P

P2
dð∂T=∂κÞ2ð∂κ=∂hÞ2ð∂h=∂xÞ2

s

; ð2Þ

where S
ðdetÞ
P is the single-sided noise equivalent optical

power spectral density (units of W2=Hz) of the detector and
technical noise, and Pd is the detected output power in the
absence of coupling (T ¼ 1). The first term in the numerator
accounts for photon shot noise, where ηqe is the detector

quantum efficiency. This expression neglects radiation
pressure backaction, which is not significant for the mea-
surements we present here, but will ultimately limit sox .
The impact of coupler geometry, operating condition, and
waveguide design on detection sensitivity is described by
the denominator of Eq. (2). Sensitivity is maximized for
mechanical resonances whose displacement x efficiently
modulates h, i.e., j∂h=∂xj ∼ 1. Strong evanescent overlap

FIG. 2. Process flow for creating diamond nanobeams using quasi-isotropic reactive-ion undercut etching.

SINGLE-CRYSTAL DIAMOND NANOBEAM WAVEGUIDE … PHYS. REV. X 5, 041051 (2015)

041051-3



enhances j∂κ=∂hj, while phase-matching and operation
near κðhÞLc ∼ π=4; 3π=4;… maximizes j∂T=∂κj.
Experimental observation of the optomechanical proper-

ties of the diamond waveguide-optomechanical system is

performed by measuring TðtÞ ¼ T þ δTðtÞ of a dimpled
optical fiber taper [50] positioned in the nanobeam near–
field for varying h and λ. The efficiency of the evanescent

coupling determines the time-averaged transmission T.
Fluctuations of the nanobeam position, together with other

noise, are imprinted on δTðtÞ. Figure 3(a) shows TðλÞwhen
the fiber taper is positioned at h ∼ 200 nm above the center

of a nanobeam (w × d ¼ 460 × 250 nm2). Minimum trans-

mission To ¼ 0.05, corresponding to a coupling efficiency

of 1 − To ¼ 0.95 assuming negligible insertion loss, is
observed near λ0 ¼ 1560 nm. The 3 dB bandwidth Δλ >

150 nm is consistent with predictions from the n�effðλÞ
anticrossing in Fig. 1(c), and increasing w is observed
to increase λ0 [Fig. 3(a), inset], consistent with expected
behavior.
The coherent nature of the waveguide coupling is

revealed by ToðhÞ. As shown in Fig. 3(b), ToðhÞ is
minimized at h ∼ 200 nm, where κLc ¼ π=2. For

h < 200 nm, To increases with decreasing h due to the
codirectional coupling undergoing more than a half “flop”
and light coupled into the nanobeam being outcoupled back

into the fiber taper [52]. In contrast, incoherent scattering
loss increases monotonically with decreasing h [54] and is
small in the system studied here. As shown in Fig. 3(b),

Eq. (1) fits ToðhÞ well with an exponentially decaying κðhÞ
as a fitting parameter, which in turn agrees closely with
κðhÞ predicted from coupled-mode theory for interaction
length Lc ∼ 7 μm. This Lc is consistent with the observed
curvature in optical images of the fiber taper dimple.
The optomechanical properties of the coupled wave-

guides are observed from the power spectral density SvðfÞ
of the photodetected signal generated by fluctuations in
output power PdδTðtÞ. Figure 4(a) shows the equivalent

displacement spectral density sxðfÞ (units m=
ffiffiffiffiffiffi

Hz
p

) of the
nanobeam motion when the fiber taper is positioned
h ∼ 100 nm above the nanobeam. Peaks from thermally
driven nanobeam resonances are clearly visible at frequen-
cies fm ¼ ½1.3; 3.1; 4.2� MHz, corresponding to the funda-
mental out-of-plane (v1), fundamental in-plane (h1), and
second-order out-of-plane (v2) resonances, whose simu-
lated displacement profiles are shown in Fig. 1(b).
Resonance labels are determined by comparison of fm
with simulations and by measuring transduction sensitivity
as a function of in-plane taper position. Assuming a 35MPa
internal compressive stress, consistent with studies of the
nanobeam response described in the following section, we
find simulated values of 1.3, 3.2, and 4.2 MHz, in good
agreement with observed values. sxðfÞ is obtained by
calibrating SvðfÞ to the theoretical thermomechanical
power spectral density of the v1 resonance (m ¼ 7.6 pg),
as described in Appendix E. The observed technical noise

floor of sox ¼ 9.5� 1.0 fm=Hz1=2 is below that of other
broadband integrated waveguide measurements [32,54,55],
and is more than an order of magnitude more sensitive than
single-pass free-space reflection measurement techniques
used with diamond nanomechanical structures [33]. Fiber
interferometers incorporating low-finesse optical cavities
[56,57] have reached similar sensitivity. This sensitivity can

be further improved to the sub-fm=Hz1=2 range by increas-
ing Lc and Pd, or by terminating the nanobeams with
photonic crystal mirrors to introduce optical feedback at the
expense of optical bandwidth, as in the multipass cavity-
fiber-interferometer system of Ref. [58]. Uncertainty in sox
is derived from uncertainty in m resulting from possible
variations from the nominal device geometry and material
parameters.
The h dependence of SvðfmÞ1=2 and sox for the v1

resonance, shown in Fig. 4(b), provides a direct measure
of the optomechanical coupling. The on-resonance signal

is directly related to the slope of TðhÞ: Svðh; fmÞ1=2 ∝
jdT=dhj, with a distinct minimum when κLc ¼ π=2.
Highest sensitivity is observed at h ¼ 100 nm (κLc ¼
3π=4), and soxðhÞ agrees well with predictions from the

experimentally characterized TðhÞ and Eq. (2). As
described in Appendix E, the predicted sensitivity assumes
a shot-noise-limited laser source over the measurement

FIG. 3. Efficient evanescent waveguide coupling. (a) Fiber
taper transmission TðλÞ versus wavelength for h ¼ 200 nm.

Inset: Variation of T with nanobeam width w and λ for
approximately constant h. (b) Dependence of fiber taper trans-

mission on fiber height. Experimentally measured values for To

(red points) are fit with the model described by Eq. (1) (red line).
The corresponding κðhÞ extracted from the fit (blue line) and
predicted from simulation (blue points) are also shown.
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bandwidth of interest (i.e., the MHz range) and a photo-

detector noise equivalent power S
ðdetÞ
P ¼ 2.5 pW=

ffiffiffiffiffiffi

Hz
p

corresponding to the nominal specification for the detector
used here. The minimum soxðhÞ in Fig. 4(b) is degraded
compared to the sensitivity of the measurement in Fig. 4(a)
due to operating at lower Pd.
As discussed in Appendix D, the optomechanical trans-

duction dT=dh is related to the dissipative optomechanical

coupling coefficient g
ðeÞ
γ , defined by the optomechanical

modulation of tunneling rate γe of photons from the
nanobeam to the forward propagating fiber taper mode.
Assuming the coupler demonstrated here is integrated

into a cavity of length L ¼ Lc, we predict g
ðeÞ
γ =2π >

45 GHz=nm, where c=ng is the group velocity of light in

the coupler. The corresponding per photon optomechanical
coupling rate is go=2π ∼ 0.48 MHz for the v1 resonance of a
nanobeam of length Lc and cross section of the device in
Fig. 4(b) (fm ∼ 66 MHz, zero-point motion xzpf ¼ 11 fm).

In addition to being tunable via adjustment of h, this
dissipative coupling is significantly larger than in previously
studied systems [59–62]. However, note that when the
dissipative coupling is maximized, it is accompanied by
large γe. Also note that the coupler introduces dispersive

coupling, discussed in Appendix D, which is small com-

pared to g
ðeÞ
γ ðhÞ for h > 200 nm.

Unlike dispersive optomechanical coupling, dissipative
optomechanics [59] can be used to cool nanomechanical

resonances in cavity-optomechanical systems operating in

the sideband-unresolved regime [63,64]. This is a poten-

tially useful tool for optomechanical cooling of relatively

low-frequency nanomechanical resonances. Realizing dis-

sipative cooling of the devices studied here would require

further device fabrication development in order to integrate

the fiber-coupled nanobeam into a cavity. Furthermore, as

discussed in Appendix D, it is necessary that the cavity

mode can be coupled unidirectionally [53] to the fiber taper

waveguide via the nanobeam [64] and have internal loss

rate γi ≪ γe. Oval racetrack resonators similar to those

demonstrated by Burek et al. [47], modified to incorporate

clamped diamond nanobeams with L ¼ Lc ¼ 21 μm a

supporting traveling-wave resonance, are promising in this

regard. We predict in Appendix D that over a narrow range

of h, which balances small γe and large g
ðeÞ
γ , optomechan-

ical reduction of the fundamental nanobeam normal-mode

phonon population to close to 102 quanta, limited by

optomechanical backaction, may be possible in such a

FIG. 4. Nanomechanical and optomechanical properties. (a) Measured sxðfÞ when the fiber taper is coupled to a nanobeam

(L × w × d ¼ 50 × 0.46 × 0.25 μm3) in ambient conditions, with Pd ∼ 100 μW. The vertical axis and noise floor (dashed line) of

sox ¼ 9.5 fm=
ffiffiffiffiffiffi

Hz
p

are calibrated from the fit to the f ¼ 1.3 MHz mechanical resonance thermomechanical displacement spectrum

(red solid line). (b) Top: Svðf1Þ1=2 observed (points) and fit with a function ∝ jdT̄=dhj (solid line). Bottom: Displacement sensitivity
soxðhÞ of the fundamental out-of-plane resonance from measurement (blue points) and predicted from the measured TðhÞ for varying
input power (solid lines). The starred point corresponds to the sensitivity and operating condition of the measurement in (a). Measured

SvðfÞ for a nanobeam with L × w × d ¼ 60 × 0.75 × 0.3 μm3 (c) in vacuum (d) at 5 K. Insets: Fits to observed mechanical resonances,
and corresponding Qm. Unlabeled peaks in (a), (c), and (d) below 1 MHz are related to fiber vibrations.
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device if an internal loss rate of γi=2π ¼ 1 GHz and an
internal backscattering rate less than γi can be achieved.
Nanobeam mechanical dissipation in the measurements

discussed above is dominated by damping from the
ambient air environment. To assess the nanobeam mechani-
cal properties, measurements are performed in vacuum and
low-temperature conditions. Generally, after reducing air
damping, Qm is observed to increase above 104 in all

device geometries, with the lowest dissipation (Qm > 105)
observed in the larger cross-section (w × d ¼ 750×

300 nm2) devices. Figures 4(c) and 4(d) show mechanical
resonances of a high-Qm nanobeam measured in vacuum
(80 μTorr) and in cryogenic conditions (T ¼ 5 K and

5 μTorr). In vacuum, the v1 and h1 resonances have Qm ≈

1.4 × 105 and 2.0 × 105, respectively. At low temperatures,

dissipation is further reduced, such that Qm ≈ 1.7 × 105

and 7.2 × 105 for the v1 and h1 modes, respectively. These
values of Qm are higher than previous reports of nano-
mechanical devices fabricated from single-crystal optical
grade diamond [30,31,33].Allmeasurements aremade at low
power to avoid inducing optomechanical linewidth narrow-
ing, and spectral diffusion is not observed on the few-second
measurement time scale. The observed increase in Qm with
increasing nanobeam mode order and type (v versus h),
together with data presented below for a larger L, smaller
cross-section nanobeam with lower Qm than the device in
Figs. 4(c) and 4(d), indicates that clamping loss is not the
dominant dissipation mechanism for these structures [65].
This behavior, and other possible sources of loss including
surface dissipation [31], requires further investigation in
order to understand how to increase Qm in future devices.
Two possible approaches include fabricating devices from
electronic grade material or with larger dimensions [31].
Given the demonstrated device performance, the meas-

urement precision required to reach the standard quantum

limit is s
SQL
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏQm=ðmω2
mÞ

p

¼ 3.1 fm=
ffiffiffiffiffiffi

Hz
p

, where

m ¼ 23 pg is the effective mass of the h1 resonance [9].
While this is ∼3 times smaller than the measurement
sensitivity demonstrated here, promising approaches for

reducing sox below s
SQL
x include improving the optome-

chanical coupling by increasing Lc, and fabricating higher-
Qm devices.

III. TUNABLE NONLINEAR DYNAMICS

Backaction from waveguide-optomechanical coupling
can dramatically modify the nanobeam dynamics, and is
shown here to amplify the nanobeam motion and reveal
nonlinear nanomechanical properties of the device. These
effects can be tuned by adjusting the waveguide position,
and depend critically on the presence of internal stress in
the nanobeam. Demonstration of optomechanically modi-
fied nanobeam dynamics is shown in Fig. 5(a), where
time-resolved TðtÞ of a fiber taper coupled to a high-aspect-
ratio nanobeam (L × w × d ¼ 80 × 0.48 × 0.25 μm3) in a

vacuum environment is recorded while h is discretely
stepped (30 nm/step, 0.8 steps/s, Pi ∼ 300 μW). For
large h, ToðhÞ behaves similarly to the ambient condition
measurements in Fig. 4(a). However, at h ∼ 400 nm fluc-
tuations δTðtÞ become large-amplitude self-oscillations
with a peak-to-peak change ΔT > 0.3, corresponding to
nanobeam displacement exceeding 200 nm, as illustrated in
the inset of Fig. 5(a). To the best of our knowledge, this
amplitude is larger than in previous reports of on-chip
externally driven single-crystal [66] and polycrystalline
[32] diamond nanobeams. Note that calibration of the
observed nanobeam mechanical displacement is enabled
by the tunable nature of the optical coupling and the use of
encoded nanopositioning of the fiber taper. Finite element
simulations predict a variation of axial stress at the center
of the nanobeam on the order of 70 MPa for the v1

resonance of the compressed nanobeam oscillating with
this amplitude, corresponding to a strain to NV electronic
spin-coupling rate of G=2π ∼ 0.8 MHz, enabling optome-
chanical control of their quantum state [20,21]. When
h < 225 nm, the self-oscillations stop. Figure 5(b) shows
a spectrograph of these data, where the v1 resonance

near fm ¼ 430 kHz with Qm ¼ 2.5 × 104 is observed
to increase in amplitude, shift to lower frequency, and
generate harmonics.
Unlike previously observed diamond nanobeam oscil-

lations driven by electrostatic [66] or optical modulation
[32], the observed oscillations are regenerative in nature.
These self-oscillations are driven by the dynamic inter-
action between a delayed photothermal force [67,68] and
the waveguide-optomechanical coupling. They have not
been previously observed in waveguides, and can possess
large amplitudes owing to the large dynamic range and
bandwidth of the waveguide-optomechanical system. The
resulting optomechanical backaction renormalizes the
mechanical dissipation rate from γm to γ0m,

γ0m
γm

¼ 1 −Qm

F

k

ωmτ

1þ ω2
mτ

2

dT

dx
PiζLi; ð3Þ

where τ is the photothermal force response time and F is
the photothermal force strength per unit absorbed power
Pabs ¼ ð1 − TÞPiζLi, defined by the corresponding nano-

beam deflection and spring constant k ¼ mω2
m of the mode

of interest. Li is the distance over which input light
propagates in the nanobeam before being outcoupled
and ζ is the waveguide absorption coefficient per unit
length. Figure 5(c) compares experimentally observed
γ0mðhÞ with theoretical values obtained from Eq. (3) input
with measured TðhÞ as well as parameters discussed below.
Predicted γ0mðhÞ agrees well with experiment, particularly
in reproducing the range of h over which the optomechan-
ical coupling (jdT=dxj) is sufficiently large such that
γ0m < 0, resulting in self-oscillations.
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For h < 200 nm, photothermal damping broadens γm.
However, coupling between ωm and the fiber taper position
for this range of h (see Appendix G), combined with
fluctuations in fiber position due to external vibrations,
artificially broadens γm and makes accurate measurement
of the cooling rate challenging. If Pi were increased to
3 mW, γ0m=γm ∼ 10 is theoretically possible. If applied to a
higher-Qm device, such as the structures in Fig. 4(d), larger
photothermal normal-mode cooling may be possible at this
power level.
In addition to exhibiting high Qm and strong dissipative

optomechanical coupling, the nanobeams have two proper-
ties that make them sensitive to optomechanical photo-
thermal actuation. The nanobeam thermal time constant
τ ∼ 0.7 μs, calculated using finite element simulations, is
on the same time scale as ωm. As seen from Eq. (3), this
is a necessary condition for significant feedback from the
photothermal force [67–70]. A more subtle but equally
important property is the presence of compressive stress
and accompanying buckling in the nanobeam, which as
discussed below, dramatically enhances F .
For the nanobeam geometry studied here, finite element

analysis presented in Appendix G indicates that F can be
enhanced by over 2 orders of magnitude in a compressed

and buckled nanobeam. The level of compressive stress in a
nanobeam can be estimated from the deviation of ωm from
the nominal value expected for an uncompressed device
[33]. The nanobeam we study in Fig. 5 is observed to be in
a postbuckled state with measured ωm=2π ∼ 430 Hz, lower
than the nominal value expected (680 kHz) for an uncom-
pressed nanobeam. Matching finite element simulated and
observed ωm predicts an internal compressive stress of
∼37 MPa and an accompanying buckling amplitude of
x̄ ¼ −122 nm. For this value of internal stress and buck-
ling, a photothermal force of F ¼ −26 pN=μW is pre-
dicted, which is over 100 times larger than predicted for an
uncompressed device, and as a result is significant even for
low optical absorption within the nanobeam. This enhance-
ment originates from more efficient conversion of axial
stress to transverse deflection in buckled nanobeams
(see Eq. (G7)), and is also present to a lesser degree in
compressed prebuckled nanobeams with small amounts of
bending. This effect may be effective for photothermal
actuation of compressed optomechanical crystal [2] and
ring or racetrack devices [47]. The negative signs of F and
x̄ indicate that the photothermal force and buckling
amplitude are downward, consistent with all of the self-
oscillation behavior discussed in this section. Note that the

FIG. 5. Nanobeam self-oscillations. (a) Time-resolved TðhðtÞÞ of a phase-matched fiber taper nanobeam (L × w × d ¼
80 × 0.50 × 0.25 μm3) system as h is reduced in discrete steps (visible as sharp steps in T). Inset: Large-amplitude oscillation of
the nanobeam position. (b) Spectrograph showing the power spectral density of the data in (a). (c) Predicted renormalized mechanical
dissipation rate compared with measured values. (d) Scatter plot of shift in nanobeam resonance frequency versus oscillation amplitude
squared for data in the inset regions from (b) at the onset of self-oscillation. The solid line is a linear guide to the eye.
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buckled nanobeam shape and resulting variation of h along
the nanobeam length is not included in waveguide coupling
calculations since this curvature is small compared with
that of the dimpled fiber taper.
Given the above device parameters (summarized in

Table I of Appendix G), the only free-fitting parameter
needed to match Eq. (3) with experiment is the waveguide
absorption coefficient, which is found to be ζ ¼ 0.12 cm−1,
corresponding to an optical loss rate effective quality factor

of Qo ∼ 6.6 × 105. This absorption rate is consistent with
loss in other diamond nanophotonic devices fabricated
with both this process [49] and other techniques [47], and
indicates that only a fraction (∼100 nW) of the input power
is absorbed and responsible for driving the self-oscillations.
This absorbed power level corresponds to an average of
approximately 0.04 photons absorbed per transit time of
the coupler region. While small, this absorption rate is
higher than expected in bulk diamond. This is possibly a
result of etching-related surface state absorption or impu-
rities in the diamond, and requires further investigation.
Nonlinear coupling between nanobeam oscillation ampli-

tude and ωm provides an additional probe of the internal
stress and buckled state of the device. The high sensitivity
and the time-resolved absolute measurement of nanobeam
position provided by thewaveguide-optomechanical system
allows nanobeam resonance frequency to be studied as a
function of oscillation amplitude. Nonlinear softening of the
mechanical resonance frequency by ΔωmðhÞ is observed at
the onset of self-oscillations, as highlighted in Fig. 5(b).
Nanobeam softening and hardening is an indicator of
internal stress [32,66], and the softening observed here is
found to be closely related to the buckled nanobeam state.
Nanobeam buckling breaks the device vertical symmetry
and introduces a nonlinear softening term to the nanobeam
dynamics, which counteracts the hardening effect described
by the intrinsic Duffing nonlinearity [71]. This competition
between nonlinear effects is given by

Δωm ¼ v2

ωm

�

3

8
α3 − x̄2

15

4ω2
m

α23

�

; ð4Þ

where v is the oscillation amplitude and α3 is the Duffing
coefficient of the unbuckled nanobeam, as described in
Appendix G. Equation (4) clearly shows the softening
influence of x̄. The optomechanical system we study here
provides a direct measurement of Δωm and v for varying h,
allowing x̄ to be estimated experimentally. Figure 5(d)

shows a scatter plot of measured Δωm as a function of v2

for varying fiber taper position. As predicted from Eq. (4),

Δωm and v2 are found to be linearly related, and from these
data and Eq. (4), x̄ ¼ −98 nm is estimated, which is in
excellent agreement with finite element simulation predic-
tions of x̄ given above. This approach for simultaneously
actuating nanomechanical motion and directly monitoring
the nonlinear response of nanomechanical devices can easily

be applied to other material systems. For example, fiber
taper coupling to silicon and other semiconductor nanowire
[72] and photonic crystal [52] waveguides is possible.
During the self-oscillation limit cycle, a low fundamental

self-oscillation frequency of ∼180 kHz is measured, con-
sistent with the behavior of a nanomechanical resonator
oscillating between buckled states, as observed by Bagheri
et al. [15]. Further evidence of this behavior is found in

Fig. 5(a), which shows that during self-oscillations T
decreases, indicating that the nanobeam, initially in a
buckled down state, moves on average closer to the fiber
taper while self-oscillating. Note that harmonics which
emerge during self-oscillation, becoming stronger and
more numerous as v increases, result from both the non-

linear response of TðhÞ and nonlinearities of the nano-
beam [73].

IV. DISCUSSION AND CONCLUSION

We have demonstrated an optomechanical system from
single-crystal diamond and have shown that it possesses a
unique combination of high sensitivity, broad bandwidth,
high-quality single-crystal diamond material, high Qm,
and low-power self-oscillation threshold. It has potential
to enable measurement of quantum motion of nanobeam
resonances and fundamental studies and technologies
based on hybrid quantum devices. Excitation of nano-
mechanical self-oscillations with nW absorbed power
illustrates the sensitivity of the diamond nanobeams to
small driving forces, and their nonlinear dynamical soft-
ening provides a glimpse of the changing stress within
the nanobeam during large-amplitude oscillations. This
demonstration of optomechanical excitation of the diamond
nanomechanical environment is a step towards control of
quantum electronic systems such as nitrogen vacancies
using optomechanical actuation of classical nanomechan-
ical oscillators [19–21,26,38]. Future devices may be
designed to operate at visible (637 nm) wavelengths
resonant with NV center optical transitions, creating addi-
tional opportunities for realizing hybrid quantum devices.
The detailed analysis and understanding of the devices

presented here allows prediction of the internal strain
dynamics and self-oscillation threshold of nanobeams used
for creating hybrid quantum systems. This analysis reveals
that the threshold can be surprisingly low, and that photo-
thermal forces do not require large absorption or an optical
cavity to introduce significant backaction in the waveguide-
optomechanical system. This understanding will guide
further optimization of device geometry and operating
conditions needed to improve the measurement sensitivity
in order to resolve quantum motion of the nanobeam and to
harness the photothermal forces for optomechanical cool-
ing. Reducing the nanobeam length may allow coupling to
nanomehanical modes with frequencies sideband resolved
from spin transitions or resonant with higher-energy dia-
mond nitrogen-vacancy spin transitions tuned by external
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magnetic fields [19,34,38]. If the nanobeams studied in
Figs. 4(c) and 4(d) were shortened to L ¼ Lc ¼ 7 μm, the
three lowest-order resonances would shift to fm ∼ 135, 275,
and 366 MHz, and the absolute optomechanical read-out
sensitivity would remain constant. However, note that
the photothermal actuation would become less efficient
[see Eq. (G7)], and resonant optical modulation may
be required to drive large-amplitude oscillations of these
nanobeams.
This system is also promising for implementations of

optically actuated classical logic based on buckled nano-
mechanical states [15] and can be extended to use the
optical gradient force for optomechanical nanobeam actua-
tion, enabling excitation of higher-frequency resonances of
smaller structures [2]. Finally, the scalable nanofabrication
technique demonstrated here is widely applicable to dia-
mond nanophotonic devices for sensing, nonlinear optics,
and quantum information processing, and can be easily
adopted by researchers with access to standard nanofabri-
cation tools. Extending this approach to integrate the
waveguide-optomechanical system into an optical cavity,
for example, a racetrack resonator [47], may allow
dissipative optomechanical cooling of the nanobeam
resonances [64]. Similarly, replacing the fiber taper with
an on-chip waveguide optomechanically coupled to the
nanobeam may be possible; such a system will retain the
features demonstrated here, trading stability inherent to
monolithic systems in exchange for tunability provide by
fiber taper coupling.
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APPENDIX A: FABRICATION PROCESS

The fabrication process flow is outlined in Fig. 2. A
chemical-vapor-deposition-grown, h100i-oriented single-
crystal diamond optical grade substrate (Element Six) is
cleaned in boiling piranha (3∶1H2SO4∶H2O2) and coated
with a 300 nm thick layer of plasma-enhanced chemical
vapor deposition (PECVD) Si3N4 as a hard mask. Next,
2–5 nm of titanium is deposited as an anticharging layer.
Nanobeam structures with axes aligned along the h110i
direction are patterned in ZEP520A electron-beam lithog-
raphy resist and developed at −15 °C in ZED-N50. The
resulting ZEON electron-beam positive (ZEP) resist pattern
is transferred to the nitride hard mask using an inductively-
coupled plasma reactive-ion etch (ICPRIE) process with
C4F8=SF6 chemistry. An anisotropic oxygen plasma
ICPRIE step transfers the pattern to the diamond, followed
by a 160 nm thick conformal coating of PECVD Si3N4 to
protect the vertical diamond sidewalls. A short anisotropic
C4F8=SF6 ICPRIE step clears the nitride from the bottom of
the windows while keeping the side and top surface of the
devices protected. To create suspended nanobeams, a quasi-
isotropic oxygen plasma etch [74] is performed at 2500 W
ICP power, 0 W rf power, and elevated wafer temperature
of 250 °C. This etch step is relatively slow, requiring ∼5 h
to undercut the nanobeams studied here. Figure 6(a) shows
cross sections of fabricated devices with varying nominal
widths. The undercut etch rate is observed to increase at
higher ICP power; however, this option is not available for
the devices fabricated for this report. An Oxford Plasmalab
is used for all plasma etch steps. Finally, the titanium and
nitride layers are removed by wet-etching in 49% HF, and
the sample is cleaned a second time in boiling piranha. Note
that adding a second vertical diamond etching step immedi-
ately prior to the quasi-isotropic etch is expected to reduce
the necessary undercut time, as in the related single-crystal

FIG. 6. (a) Nanobeam cross sections, created by focused ion beam (FIB) milling, of two nanobeams with different w patterned on the
same chip. Note that the FIB milling process rounds the nanobeam edges, resulting in some apparent curvature in the nanobeam profiles.
(b) SEM image of typical nanobeams observed to self-oscillate. Dashed straight lines are guides to emphasize the direction of nanobeam
buckling.
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reactive etching and metallization (SCREAM) silicon
process [48].

APPENDIX B: MEASUREMENT SETUP

The optomechanical properties of the diamond nanobeam
waveguides are studied by monitoring the optical trans-
mission of a dimpled optical fiber taper positioned in the
near field of devices of interest. The dimpled fiber taper is
fabricated by modifying the procedure presented in Ref. [50]
to use a ceramic mold for creating a dimple. Measurements
performed in ambient conditions use high-resolution (50 nm)
dc stepper motors to position the fiber taper. Vacuum (room
temperature) and cryogenic measurements are performed
in a closed-cycle cryostat (Montana Systems Nanoscale
Workstation) whose sample chamber is configured with
stick-slip and piezo-positioning stages (Attocube) for con-
trolling the sample and fiber taper positions. Before cooling, a
turbopump is used to evacuate the chamber to pressures in the

10−5 Torr range. Room-temperature vacuum measurements
are performed in these conditions. At 5 K, cryopumping

reduces the chamber pressure to the 10−6 Torr range. During
the low-temperature measurements, the fiber taper is posi-
tioned in contact with lithographically defined supports
on the diamond chip to reduce coupling of vibration from
the cryostat cooling stages to low-frequency resonances of
the optical fiber taper. These supports, visible in Fig. 6(c),
allow the fiber taper to be positioned in the nanobeam near
field without contacting the nanobeam.
Two external cavity tunable diode lasers (New Focus

Velocity 6700) are used to probe the fiber taper trans-
mission T over a wavelength range from 1475 to 1625 nm.
A New Focus 1811 photodetector (PD1) with a noise

equivalent power s
ðdetÞ
P ¼

ffiffiffiffiffiffiffiffiffiffi

S
ðdetÞ
P

q

¼ 2.5 pW=
ffiffiffiffiffiffi

Hz
p

is used

to monitor the average (P̄d) and fluctuating (δPdðtÞ) output
power from the fiber taper. A New Focus 1623 detector

(PD2) is also used in some measurements of P̄d.
A Tektronix RSA5106A real-time spectrum analyzer

(RSA) allows fast spectral analysis during the experiments
and recording of in-phase and quadrature (IQ) time series of
the PD1 output voltage VðtÞ. All of the SvðfÞ data we
present here are generated in postprocessing from VðtÞ
data. By choosing a low center (demodulation) frequency
(typically 0 or 2.5 MHz), and sampling VðtÞ with a
bandwidth exceeding the nanobeam resonance frequencies

(typically 5 MHz), both δTðtÞ and T can be recorded by the
RSA. To avoid damaging the RSAwith a large dc input, a
pair of bias tees (Minicircuits ZFBT-6GWB+) together
with electrical attenuators are used to reduce the low-
frequency (<100 kHz) components of VðtÞ. The self-
oscillation data in Fig. 5 is then acquired in a single
45 s time series while the fiber height above the sample is
stepped in 30 nm increments. Attenuation of the low-
frequency signal is compensated for in postprocessing.

APPENDIX C: WAVEGUIDE

COUPLED-MODE THEORY

Numerical prediction of the coupling coefficient κðhÞ
describing the interaction between the nanobeam and fiber
taper waveguide modes can be obtained from the optical
dispersion of the eigenmodes of the coupled waveguides
(“supermodes”). This process is described below.
The field propagating through the coupled waveguide

system can be represented as a superposition of modes of
the uncoupled optical fiber taper and diamond nanobeam.
In the case of waveguides with two nearly phase-matched
copropagating (positive group velocity) modes, this evo-
lution can be approximately described by coupled-mode
equations describing the field amplitude af;nðzÞ in the fiber
and nanobeam waveguides, respectively, as a function of
propagation distance z through the coupling region:

daf

dz
¼ −jðβf þ κffÞaf − jκan; ðC1Þ

dan

dz
¼ −jðβn þ κnnÞan − jκaf; ðC2Þ

where βf and βn are the λ-dependent propagation constants

of the uncoupled fiber and nanobeam modes, respectively.
Also included in this model are “self-term” corrections
κff;nnðhÞ to βf;n resulting from the modification of the local

dielectric environment by the coupled waveguides. The
coupler response can also be predicted by solving Eqs. (C1)
and (C2) with boundary condition corresponding to unity

input power to the fiber taper (jafð0Þj2 ¼ 1, janð0Þj2 ¼ 0),

resulting in the taper transmission Tðλ; hÞ given by Eq. (1)
in the main text.
Numerically, prediction of κðhÞ and κaa;bbðhÞ can be

realized from the dispersion of the supermodes of the
coupled waveguides. These modes can be modeled as
superpositions of the uncoupled modes of waveguide

a and b. Their z dependence is of the form e−iβ�z, which
satisfies Eqs. (C1) and (C2) for

β� ¼
~βf þ ~βn

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

~βf −
~βn

2

�2

þ κðhÞ2
s

; ðC3Þ

with ~βf;n ¼ βf;nðλÞ þ κff;nnðhÞ [51].
Intrawaveguide and self-coupling coefficients κðhÞ and

κff;nnðhÞ are determined by fitting β�ðh; λÞ with Eq. (C3).

β�ðh; λÞ of the coupled waveguides and βf;nðλÞ of the

uncoupled waveguides are calculated numerically with a
mode solver (Lumerical MODE Solutions) and are shown
in Figs. 1(c) and 7. The resulting values for κðhÞ and
κff;nnðhÞ, shown in Fig. 8, are found to decay exponentially
with h. For simplicity, it is assumed that κff ¼ κnn during

the fitting process, and that λ dependence is assumed to be
small over the coupling bandwidth of interest. Note that
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while κðhÞ decays over a length-scale comparable to the
waveguide evanescent field decay, κff;nnðhÞ are near-field

terms that decay much more quickly and do not signifi-
cantly impact the predicted values of κðhÞ for h > 100 nm.
For a given h, β�ðλÞ can be converted to an effective

index dispersion curve, n�ðλÞ ¼ β�ðλÞλ=2π, as shown in
Fig. 1(c), which clearly exhibits an anticrossing near βf ¼
βn whose width scales with jκj. The excellent agreement
between the numerically calculated β� and the semianalytic
model described by Eq. (C3) indicates that this model is
suitable for predicting the waveguide coupling.

APPENDIX D: OPTOMECHANICAL

COUPLING AND BACKACTION

A cavity optomechanical system with both dissipative
and dispersive optomechanical coupling can be realized by
incorporating the fiber-coupled diamond nanobeam within
an optical resonator. Although not demonstrated in this
paper, such a system could be achieved by either terminat-
ing the nanobeam waveguide with photonic crystal mirrors
or fabricating a racetrack structure incorporating a nano-
beam along each side. Both approaches require further
development of the fabrication process. In this appendix,
dissipative and dispersive coupling coefficients are derived
for such a system, and the potential for using this system for
optomechanical cooling is analyzed.

1. Dissipative optomechanical coupling coefficient

The rate of “external” coupling of light between a
nanobeam and the forward propagating mode of a fiber
taper waveguide γe can be determined from T and the
round-trip time of light circulating in the hypothetical
cavity in which the nanobeam is integrated. A standing-
wave cavity formed from a nanobeam terminated by end
mirrors couples bidirectionally to the fiber taper, as light
passes through the coupling region twice per round-trip:
once propagating in the forward direction and once
propagating in the backward direction. In this system,

γe ¼
vg

2L
ln ð1=TÞ ∼ vg

2L

1 − T
ffiffiffiffi

T
p ; ðD1Þ

whereL is the total nanobeam length, vg is the group velocity

of light in the nanobeam, and the right-hand expression

is a good approximation when T ∼ 1 [75]. The “parasitic”
coupling rate into the backward propagating fiber taper
mode is γp ¼ γe, and the total output coupling rate is 2γe.

Parasitic loss can limit the effectiveness of dissipative
optomechanical cooling, as discussed below.
The corresponding dissipative optomechanical coupling

coefficient into the forward propagating fiber taper mode is
given by

g
ðeÞ
γ ¼ ∂γe

∂h
χ ∼ −

vg

2L

1
ffiffiffiffi

T
p 1þ T

2T

∂T

∂h
χ: ðD2Þ

Here, 0 ≤ χ ≤ 1 is a dimensionless parameter accounting
for imperfect correspondence between nanobeam displace-
ment and change in waveguide separation h; i.e., χ is the
average value of dh=dx across the coupler region for the
mechanical resonance of interest. The parasitic dissipative
coupling coefficient to the backward propagating fiber

mode for a standing-wave cavity is g
ðpÞ
γ ¼ g

ðeÞ
γ .

A nanobeam integrated within a traveling-wave cavity,
e.g., a racetrack resonator, can be coupled unidirectionally
to the fiber taper, assuming that backscattering within the
resonator is small compared to internal loss. In this

FIG. 7. Propagation constants (β�) of the even and odd
supermodes of the coupled nanobeam and fiber taper wave-
guides, as a function of waveguide separation h, for varying λ.
Points indicated by open squares and circles where calculated
using Lumerical MODE Solutions. Solid lines are fits using the
coupled mode theory model described in Appendix C.

FIG. 8. Waveguide coupling coefficients as a function of fiber
taper and nanobeam waveguide separation h. Each data point is
obtained by fitting β�ðλÞ with the coupled-mode theory model.
Solid lines are single exponential fits to the data points.
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configuration light passes through the coupling region
once per round-trip, 2L represents the total round-trip

path length, and both γp ¼ 0 and g
ðpÞ
γ ¼ 0, while g

ðeÞ
γ is

unchanged from the standing-wave configuration.

2. Dispersive optomechanical coupling coefficient

The dispersive optomechanical coupling coefficient gω is
determined by the h dependence of the round-trip phase
ϕðhÞ accumulated by light circulating in the nanobeam.
In general, ϕ depends on the waveguide mode mixing
within the coupling region. However, at phase-matching
it can be shown that the h dependence of ϕ arises
solely from κnn and κff discussed in Appendix C. For a

standing-wave cavity geometry,

ϕ

2
¼ βoLþ κff þ κnn

2
Lc: ðD3Þ

The contributions to ϕ from κff and κnn are due to a

renormalization of the dielectric environment of each
waveguide due to its neighbor. The corresponding dis-
persive optomechanical coupling coefficient is given by

gω ¼ vg

2L

∂ϕ

∂h
χ ¼ vg

Lc

L

∂

∂h

�

κff þ κnn

2

�

χ: ðD4Þ

Note that for κ2 ≫ ðκff − κnnÞ2, we can use Eq. (C3) to

write

gω ¼ ω

ng

Lc

L

∂

∂h

�

nþ þ n−

2

�

χ; ðD5Þ

where ng ¼ c=vg. This expression provides a convenient

means to calculate gω from n�ðhÞ of the coupled wave-
guide supermodes at phase-matching. As discussed in
Appendix F, Eq. (D5) also shows that gω is proportional
to the optical gradient force, as in standard cavity opto-
mechanical systems [53].
Equations (D3)–(D5) can be modified for the case of a

traveling-wave cavity, where circulating photons interact
with the coupling region once per round-trip, by changing
Lc → Lc=2.

3. Predicted optomechanical coupling

The optomechanical coupling coefficients of the system
studied in the main text can be predicted from Eqs. (D2)
and (D5) using measured values of TðhÞ and simulated

n�ðhÞ. Figure 9(a) shows g
ðeÞ
γ ðhÞ, gωðhÞ, and γeðhÞ pre-

dicted for the device with the fit of TðhÞ used in Fig. 4(b),
assuming L ¼ Lc ¼ 7 μm and χ ¼ 1.0. This shows that gω

is small compared to g
ðeÞ
γ for h > 200 nm. For the device

geometry we study here, dispersive coupling is predicted to
vanish at a critical value of h ∼ 450 nm. The maximum
dissipative coupling into the forward propagating fiber

mode is g
ðeÞ
γ =2π ¼ 45 GHz=nm.

For cavity-optomechanics applications, it is desirable to

operate in a regime of small γe and large g
ðeÞ
γ . This may be

achieved in future studies by increasingLc. Experimentally,
this requires modifying the fiber taper dimple profile or
using a straight fiber taper as in Ref. [52]. Figure 9(b)
shows the predicted optomechanical coupling when Lc ¼
L ¼ 21 μm, assuming the same κðhÞ and slightly imperfect
phase-matching extracted from fits to the experimental data

used in Fig. 4(b). The corresponding simulated TðhÞ is

shown in Fig. 9(c). For this system, low-loss and g
ðeÞ
γ ≫ gω

are possible, for example, near h ∼ 370 nm.

4. Considerations for dissipative optomechanical

cooling using a cavity

Dissipative optomechanical coupling has been shown
theoretically [64] and experimentally [63] to allow cooling
of a mechanical resonator in an unresolved sideband cavity-
optomechanical system. Unresolved sideband cooling

requires tuning of the relative strength of g
ðeÞ
γ , gω, and γe.

This is possible in the system studied here by adjusting h,

FIG. 9. Predicted optomechanical coupling coefficients for
varying fiber height when (a) Lc ¼ 7 μm, as in the experiment,
and (b) Lc ¼ 21 μm, for a nanobeam of length L ¼ Lc.
Also shown is the coupling rate between the nanobeam and
the forward propagating fiber taper waveguide mode γeðhÞ.
(c) Corresponding transmission functions for Lc ¼ 7 μm and
Lc ¼ 21 μm.

BEHZAD KHANALILOO et al. PHYS. REV. X 5, 041051 (2015)

041051-12



as shown in Figs. 9(a) and 9(b). However, dissipative
optomechanical cooling performance is limited by optical
loss γi þ γp into channels other than the input or output

channel, and cooling to the quantum ground state requires
that γe ≫ γi, γp [64].

Waveguide absorption, scattering loss, and leaky mirrors
typically determine γi in nanophotonic cavities; these
losses are <10 GHz in state-of-the-art diamond devices
[47]. Eliminating γp is possible through development of

traveling-wave optical cavity devices incorporating the
diamond nanobeam, such as an oval racetrack resonator
[47]. Note that such cavities would additionally require low
backscattering rates to satisfy this criteria. Alternatively,
implementing dissipative waveguide coupling between
on-chip waveguides may allow replacing the fiber taper
waveguide with a “single-sided” input-output coupling
waveguide, as in Ref. [72], preventing leakage into a
parasitic backwards propagating waveguide mode at the
expense of the tunable nature of the coupling demon-
strated here.
To evaluate the potential for dissipative optomechanical

cooling using the demonstrated interface integrated within
a cavity, we use the formalism in Refs. [64]. We assume
that the nanobeam discussed above is incorporated into one
half of an oval racetrack optical resonator with sides of
length Lc ¼ 21 μm and semicircular ends of radius 10 μm,
and is unidirectionally coupled to the fiber taper with no
backscattering. Figure 10 shows the predicted minimum
phonon number n achievable as a function of h, assuming
γi=2π ¼ 1 GHz and γp ¼ 0, Pi ¼ 2 mW of power input to

the fiber taper, and a bath temperature of 5 K. Other device
parameters are given in the figure caption. For this system,

dissipative optomechanical cooling from a phonon occu-
pancy of nph ∼ 15000 to nph ∼ 200 is predicted when the

fiber taper is positioned on either side of the transmission

“recovery” point h ∼ 370 nm, where T → 1. Reducing
γi=2π to 0.1 GHz, a technically challenging but potentially
attainable value, would allow n ¼ 16 to be reached.
For extremely small γi=2π ¼ 1 MHz, n < 1 is possible.
These results highlight the key role of γi, and also show that
for the purposes of optomechanical cooling, operating the

waveguide coupler near maximum g
ðeÞ
γ is not optimal due

to accompanying large γe.
This calculation is performed using nph ¼ ðnthγmþ

nbaγomÞ=ðγm þ γomÞ, where nth is the thermal phonon
occupancy, nba ¼ SFFð−ωmÞ=½SFFðωmÞ − SFFð−ωmÞ� is
the phonon population created by optomechanical back-

action, and γom ¼ x2zpf ½SFFðωmÞ − SFFð−ωmÞ� is the opto-
mechanical damping rate. xzpf is the zero-point fluctuation

amplitude of the resonator, and SFFðωÞ is the total
optomechanical force power spectral density acting on
the nanobeam, given in Ref. [64] as

SFFðωÞ ¼
~B2N

4x2zpf

�

γe
½ωþ 2Δ − 2γt

~A
~B
�2

ðωþ ΔÞ2 þ γ2t =4

þ ðγi þ γpÞ
½ðΔ − 2

~A
~B
γtÞ2 þ γ2t

4
�

ðωþ ΔÞ2 þ γ2t =4

�

: ðD6Þ

Here, NðhÞ is the intracavity photon number, ~BðhÞ ¼
g
ðeÞ
γ xzpf=γe and ~AðhÞ ¼ gωxzpf=γe are the normalized opto-

mechanical coupling coefficients, and γt ¼ γe þ γp þ γi.

For the calculations shown here, we set the detuning
between the cavity mode and input power to

Δ ¼ Δopt ¼ ωm=2þ ~A= ~Bγt, which causes cancellation

between the dissipative and dispersive backaction at the
input port of the cavity.

APPENDIX E: OPTOMECHANICAL

TRANSDUCTION SENSITIVITY

This appendix describes the procedure for predicting the
theoretical measurement sensitivity of the optomechanical
waveguide read-out and for extracting the experimentally
observed measurement sensitivity from measured thermo-
mechanical signals. Single-sided power spectral densities
are used throughout.

1. Theoretical sensitivity

The displacement sensitivity of the waveguide-
optomechanical system is determined by the minimum
mechanical motion to actuate a signal larger than the noise
floor of the measurement apparatus. For direct photo-
detection of the optical power transmitted by the wave-
guide, the power spectral density S

ðsÞ
v ðfÞ of the transduced

FIG. 10. Predicted achievable phonon number via optomechan-

ical cooling of a fiber taper coupled nanobeam incorporated
into an oval racetrack resonator (γp ¼ 0). Device parameters are
γi=2π¼ 1GHz, Lc ¼L¼ 21 μm, ωm=2π¼ 7.3MHz,m ¼ 3.1pg,

Qm ¼ 106, 5 K bath temperature. For the oval racetrack cavity,
2L ¼ 2Lc þ 2πRc, where Rc ¼ 10 μm is the radius of curvature
of the cavity end.
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signal from a mechanical displacement described by
spectral density SxðfÞ is

S
ðsÞ
v ðfÞ ¼ SxðfÞ

�

gtiPd

∂T

∂x

�

2

; ðE1Þ

where gti is the detector transimpedance gain, Pd is the
detected power in the absence of coupling (T ¼ 1), and
j∂T=∂xj describes the optomechanical actuation of the
coupler. Similarly, the measurement noise can be written as

S
ðnÞ
v ðfÞ ¼ S

ðSNÞ
v ðfÞ þ S

ðdetÞ
v ðfÞ: ðE2Þ

S
ðdetÞ
v describes noise intrinsic to the detector and is related

to the detector’s noise equivalent power figure (S
ðdetÞ
P ) by

S
ðdetÞ
v ¼ g2tiS

ðdetÞ
P . The contribution from photon shot noise

is given by

S
ðSNÞ
v ðfÞ ¼ g2ti

2ℏωoTPd

ηqe
; ðE3Þ

where ηqe is the detector quantum efficiency. Note that the

impact of shot noise is affected by the operating point T of
the coupler. This analysis does not consider optomechan-
ical backaction, which is small for the optical powers used
in the high-sensitivity measurements presented here.
To calculate the minimum detectable spectral density

Sox , we require unity signal-to-noise ratio, S
ðsÞ
v ¼ S

ðnÞ
v ,

resulting in

Sox ¼
2ℏωoTPd=ηqe þ S

ðdetÞ
P

ðPd
∂T
∂x
Þ2 : ðE4Þ

Sox has units of nm2=Hz and is related to the minimum

detection sensitivity given in the text by sox ¼
ffiffiffiffiffi

Sox
p

. In the
case of a codirectional evanescent coupler, ∂T=∂x can be
calculated from Eq. (1) in the main text. For perfect phase-
matching (Δβ ¼ 0),

∂T

∂x
¼ − sinð2κLÞ ∂κ

∂h

∂h

∂x
: ðE5Þ

Alternately, ∂T=∂x can be measured experimentally by
recording TðhÞ and determining dT=dh. This approach is
used together with Eq. (E4) to generate the predicted
measurement sensitivity in Fig. 4, assuming that
∂h=∂x ¼ −1.

2. Thermomechanical calibration

The observed thermal nanobeam motion is used to
calibrate the measurement noise floor using a standard
procedure described in, for example, Refs. [61,76].
Thermomechanical resonances in SvðωÞ are fit using

SvðωÞ ¼ S
ðnÞ
v þGS

ðthÞ
x ðωÞ, where S

ðthÞ
x ðωÞ is the single-

sided power spectral density of a thermal oscillator,

S
ðthÞ
x ðωÞ ¼ 4kBTeωm

Qm

1

m½ðω − ω2
mÞ2 þ ðωωm=QmÞ2�

; ðE6Þ

and G is a constant determined by the transduction gain of
the measurement, as described theoretically by Eq. (E1),
and treated as a fitting parameter for the purpose of the
calibration procedure. Here, kB is Boltzmann’s constant, Te

is the operating temperature, and m is the effective mass
of the resonance, as defined in Ref. [77]. From the fit
values, spectra can be converted from electrical (W=Hz) to

displacement (m2=Hz) power spectral density: Sx ¼ Sv=G.

APPENDIX F: OPTICAL GRADIENT FORCE

Dielectric objects in an evanescent field experience an
optical gradient force. The optical gradient force between
coupled waveguides can be predicted from n�ðhÞ using
the formalism of Ma and Povinelli [78]. Following this
formalism, the force induced by power P� in each of the
supermodes is given by

F� ¼ P�Lc

c

∂n�
∂h

�

�

�

�

ωo

¼ −
P�Lc

c

∂n�
∂x

�

�

�

�

ωo

: ðF1Þ

Operating at phase-matching with power Pi input into the
fiber taper, the power in the even and odd supermodes is
P� ¼ Pi=2, and the total optical gradient force on the
nanobeam is

Fg ¼
PiLc

2c

�

∂nþ
∂h

þ ∂n−

∂h

�

; ðF2Þ

where positive (negative) Fg indicates a repulsive (attrac-

tive) force. Figure 11 shows the predicted FgðhÞ=LcPi for

varying alignment of the fiber taper with the center axis of
the nanobeam. Corrections due to the curvature of the

FIG. 11. Optical gradient force as a function of h, when the
fiber taper is aligned along the nanobeam axis, and offset 500 nm
laterally, approximating the position in the self-oscillation
measurements.
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dimpled fiber taper are not considered explicitly and are
assumed to be accounted for by the effective coupler length
Lc extracted from the experimental measurements. Given
this approximation, Fg is constant over the interaction

length of the ideal two-port waveguide coupler and
vanishes outside of the coupling region.

APPENDIX G: NANOBEAM PHOTOTHERMAL

AND NONLINEAR DYNAMICS

Waveguide-optomechanical coupling is observed to
induce nanobeam self-oscillations, as shown in Fig. 5 of
the main text. Here, we analyze this effect by modeling the
nanobeam as a nonlinear harmonic oscillator interacting
with the optical field of the coupled waveguides through a
dynamic photothermal force and an instantaneous optical
gradient force [1,70,79,80].

1. Nanobeam equation of motion

The dynamics of the nanobeam resonance driven by a
stochastic thermal force FsðtÞ and coupled to the optical
fiber taper are approximately described by the following
equation of motion:

ẍþ ωm

Qm

_xþ ðω2
mðx̄Þ þ α3x

2 þ α2xÞx

¼ 1

m
ðFgðxÞ þ Fptðx; tÞ þ FsðtÞÞ; ðG1Þ

where xðtÞ is the displacement amplitude of the nanobeam
mechanical resonance of interest, defined relative to the
position of the undriven nanobeam. Changes in x modulate
the nanobeam and the fiber taper spacing h, and for the
case of the v1 resonance, hðxÞ ¼ ho − xðtÞ if the fiber taper
is positioned ho above the center of the nanobeam.
Optomechanical coupling arises from the dependence of
the optical gradient force, FgðhðxÞÞ and the photothermal

force FptðhðxÞÞ on nanobeam position. In addition, ωm

varies due to internal strain resulting from optically induced
changes in static deflection x̄ and local nanobeam temper-
ature relative to the environment Θ. For sufficiently large
jxðtÞj, the nanobeam response becomes nonlinear, as
described by α2 and α3.

2. Thermal effects

Local heating of the nanobeam by waveguide optical
absorption occurs on a time scale determined by the
nanobeam geometry and material properties. The thermal
dynamics of the nanobeam, defined by the maximum
temperature change Θ, relative to the operating temper-
ature, are assumed to follow

dΘ

dt
¼ −κtΘþ RLiζPn; ðG2Þ

where τ ¼ 1=κt is the nanobeam thermal time-constant and
Pn is the optical power coupled into the nanobeam. In the
absence of delayed optical feedback (i.e., a cavity), Pn

instantaneously follows x and is given by

Pn ¼ ½1 − TðhðxÞÞ�Pi; ðG3Þ

with TðhÞ described by Eq. (1) in the main text. Here, ζ is
the per unit length absorption coefficient of the nanobeam
waveguide and R is the heating power per unit of absorbed
optical power. Ideally, ζ is determined by the material
properties of diamond, but in nanophotonic devices it
can be modified by imperfect surfaces. The effective
nanobeam waveguide optical interaction length is given

by LiðhÞ ¼
R

L
0
janðzÞj2dz=jafð0Þj2 and represents the dis-

tance over which light propagates in the nanobeam. It can
be calculated from Eqs. (C1) and (C2).
Local heating of nanobeam waveguides induces deflec-

tions in the nanobeam position. We write the corresponding
photothermal force as

Fptðx; tÞ ¼ FΘðx; tÞ κt
R
; ðG4Þ

where F is the force per unit absorbed power (LiζPn) in
steady state. The resulting change in nanobeam deflection

is δx̄pt ¼ Fpt=k, where k ¼ ω2
mm is the nanobeam spring

constant.
Local heating and accompanying thermal expansion

of the device also modifies ωm. This effect is represented
by

dωm

dΘ
¼ Ct

κt

R
; ðG5Þ

where Ct is a constant related to the elastic properties of the

nanobeam and has units rad s−1W−1.

3. Static response of compressed nanobeams

In general, Ct and F sensitively depend on both the
nanobeam elastic properties and geometry and the internal
residual stress acting on the device. The nanobeams used in
the self-oscillation studies have significant internal stress,
manifesting in smaller ωm than expected from their
nominal dimensions, and can be in a buckled geometry,
as shown in the SEM image in Fig. 6(b). To model
nanobeam behavior in the presence of compressive stress
and buckling, together with imperfect nanobeam shape and
clamping points, we consider both an approximate analytic
model and finite element simulations.
The behavior of an ideal beam under axial compressive

loads has been widely analyzed [81]. For compressive
axial load Fi, ωm of a nanobeam with maximum deflection
x̄ can be expressed as

SINGLE-CRYSTAL DIAMOND NANOBEAM WAVEGUIDE … PHYS. REV. X 5, 041051 (2015)

041051-15



ω2
m ¼ ðωi

mÞ2
�

1 −
Fi

Fc

þ 3x̄2
AE

Fc

π2

ð2LÞ2
�

; ðG6Þ

where ωi
m is the resonance frequency of an ideal unloaded

nanobeam, A is the nanobeam cross-sectional area, E is
Young’s modulus, and Fc is the critical buckling load.
Equation (G6) is equivalent to the model presented in
Ref. [71] and reveals the interplay between deflection,
axial load, and stiffness. For example, we see that
dωm=dx̄ ∝ x̄, which is a result of more efficient conversion
of transverse actuation to axial strain with increasing
nanobeam curvature. Locally heating the nanobeam modi-
fies Fi → Fi þ ηϵEΘ, where ϵ is the thermal expansion
coefficient of the nanobeam and 0 < η ≤ 1 is a geometric
factor that accounts for nonuniform heating distribution of
the nanobeam. In general, Fi and x̄ are not independent.
However, in an ideally buckled nanobeam [81], we can
show that

dx̄

dΘ
¼ F

k

κt

R
¼ x̄

ηϵwdE

2mω2
mL

; ðG7Þ

indicating that photothermal deflection can be enhanced in
buckled nanobeams with jx̄j > 0.
Although the ideal nanobeam buckling model is instruc-

tive, it fails to reproduce experimental features such as
deflection for axial load below the critical buckling load
and effects related to imperfect elastic clamping points
and beam deformation [82]. To predict F and Ct while
including nanobeam nonidealities, we use finite element
ANSYS software to simulate ωm and x̄ as a function of axial
and transverse loads and for specified absorbed power. The
results, summarized in Fig. 12 and Table I, indicate that
significant enhancement of F compared to an unloaded
nanobeam is expected.
The simulations are conducted as follows. The simulated

structure consists of a nanobeam with dimensions L × w ×

d ¼ 80 × 0.48 × 0.25 μm3 and includes the surrounding
diamond chip. Clamping-point geometry is found to
significantly affect the simulated nanobeam properties.
In fabricated nanobeams, the undercut process results in
relatively complex clamping-point geometry. Here, the
clamping points are modeled with a triangular vertical
profile roughly approximating that of fabricated structures,
extending 0.5 μm on the nanobeam bottom surface and
1.0 μm vertically along the undercut sidewall, as shown in
Fig. 12(a). ωm and x̄ are then calculated as a function of Fi,
as shown in Fig. 12(b). Agreement between simulated and
experimental ωm is realized at two values of Fi, corre-
sponding to prebuckled and postbuckled nanobeam states,
with x̄ ¼ −9 and −123 nm, respectively, where negative x̄
indicates buckling down.
F and Ct are estimated by simulating changes to x̄ and

ωm when power Pabs is uniformly absorbed across half of
the nanobeam. During these simulations the bottom surface

of the diamond substrate is fixed at constant temperature,
and only conductive heat loss is considered. The corre-
sponding temperature distribution is used to predict R
and κt, as summarized in Table I. The photothermal results
are shown in Fig. 12(c), which plots the changes Δx̄
and Δωm in deflection and frequency, respectively, for
Pabs ¼ 1 μW. These results clearly illustrate the sensitivity
of photothermal effects on compressive stress and deflec-
tion and indicate that F varies by over 2 orders of
magnitude depending on the compressive axial loading
of the nanobeam.
Simulations of Δωm when a vertical transverse load

mimicking the optical gradient force is distributed along the
coupling region of the nanobeam (length Lc) are also
performed and are shown in Fig. 12(d). These results show
that dωm=dFg varies by nearly 3 orders of magnitude

depending on the compressive axial load.

FIG. 12. (a) Longitudinal cross section of nanobeam used in
ANSYS finite element simulations, showing the “arched” clamping-
point geometry. (b) Finite element simulations of resonance
frequency and nanobeam deflection as a function of axial com-
pressive stress. Dashed lines indicate value of Fi where simulated
ωm approximately matches the experimentally observed value.
(c) Simulated change in resonance frequency and nanobeam
deflection for Pabs ¼ 1 μW of absorbed optical power. (d) Simu-
lated change in resonance frequency from a Fg ¼ 1 pN transverse

load applied across the coupling region of the nanobeam (length

Lc). Nanobeam dimensions are L×w×d¼ 80×0.48×0.25 μm3,
as in the self-oscillation measurements.
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4. Dynamics: Small-amplitude oscillations

For small mechanical oscillation amplitude, the power
in the nanobeam waveguide can be approximated by
Pn ¼ PnðhoÞ − PiðdT=dxÞjho ½xðtÞ − x̄�. Inserting this into

Eq. (G2) and retaining only terms that are linear in x allows
the Laplace transform of Eqs. (G1) and (G2) to be
combined into a single linear equation:

− ω2xðωÞ − i
ωmω

Qm

xðωÞ þ ω2
mxðωÞ

¼ FsðωÞ
m

þ
�

dFg

dx
þ dFpt

dx

iωτ þ 1

ω2τ2 þ 1

�

xðωÞ
m

; ðG8Þ

where constant force terms resulting in changes to
static nanobeam deflection x̄ have been left out for clarity
but are included implicitly in ωmðx̄Þ. Rearranging terms
reveals the optomechanical renormalization of the nano-
beam dynamics,

−ω2xðωÞ − iγ0mωxðωÞ þ ω02
mxðωÞ ¼

FsðωÞ
m

; ðG9Þ

with

ω02
m

ω2
m

¼ 1 −
1

1þ ω2τ2
dFptðhoÞ

dx

1

k
−
dFgðhoÞ

dx

1

k
; ðG10Þ

γ0m
γm

¼ 1þQm

ωmτ

1þ ω2τ2
dFptðhoÞ

dx

1

k
; ðG11Þ

where dFpt=dx ¼ −FζLiPidT=dx. Static effects modify

the unperturbed resonance frequency ωo
m according to

ωm ¼ ωo
m þ CtζLiPnðhÞ þ

dωm

dFg

FgðhÞ: ðG12Þ

Equations (G10)–(G12) illustrate that combinations of
mechanical softening or hardening and amplification or
damping are possible. Higher-order thermoelastic effects
[70] are predicted to be small and are not included in this
analysis.

5. Nonlinear dynamics: Large-amplitude oscillations

When γ0m approaches zero, the amplitude of mechanical
oscillations about the static (i.e., buckled) position grows
and nonlinear contributions to the system dynamics
become significant. These nonlinear modifications origi-
nate from mechanisms intrinsic to the nanomechanical
device geometry, or to the optomechanical response of the
system, and are characterized here by nonzero α2;3 and

dnT=dxn (n > 1), respectively. Two nonlinear features
observed in Fig. 5 are a softening in ωm at the onset of
self-oscillation and frequency harmonics in the self-
oscillation region. While the latter effect is significantly
affected by the nonlinear response of the optomechanical
system, the analysis of Zaitsev et al. [70] shows that the
optomechanical nonlinearity plays a negligible role in
softening ωm for the optomechanical system studied here.
Rather, this softening is dominantly due to geometric
nonlinearities of the deflected nanobeam.
Nonlinear coefficients α2 and α3 in Eq. (G1) can

be derived from the Euler-Bernoulli equation for a
nanobeam with static deflection x̄, as in Refs. [83,84].
Using an approximate ansatz for the static nanobeam shape,
expressions for α2 and α3 can be derived [71]. For
oscillations about x̄, if we group the nanobeam deforma-
tions into time-dependent and time-independent parts
according to

ϕðl; tÞ ¼ ðxðtÞ þ x̄Þ 1
2
ð1 − cosð2πl=LÞÞ; ðG13Þ

where l is the coordinate running the length of the
undeflected nanobeam, the Euler-Bernoulli equation yields
Eq. (G1), with nonlinear coefficients

α2 ¼ x̄
E

6ρ

�

2π

L

�

4 3

8
; ðG14Þ

TABLE I. Parameters input to model for γ0mðhÞ and ω0
mðhÞ.

Values in brackets are predictions from simulations and are
included for comparison with values determined from experi-
mental fits.

Parameter
Input
value Units Source

κt 1.4 μs−1 Finite element
method (FEM)
simulation

R 0.11 K=μW μs FEM simulation

ωi
m=2π 680 kHz FEM simulation

m 10 pg FEM simulation

x̄ −122 nm FEM simulation

α=2π −16ð−28Þ Hz=nm2 Fit (FEM)

Ct 1.0 kHz=μW FEM simulation

ζ 0.12 cm−1 Fit

F=k −0.36 nm=μW FEM simulation

F −26 pN=μW FEM simulation

Fg Figure 11 Optical mode
solver

dωm=dFg −7163 (−377) rad=s pN−1 Fit (FEM)

Pi 300 μW Experimental
parameter

Qm 25 000 Experimental
parameter
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α3 ¼
E

18ρ

�

2π

L

�

4 3

8
; ðG15Þ

where ρ is the density of the nanobeam material. Note that
while α2 vanishes in a straight nanobeam, it is nonzero in
deflected nanobeams (jx̄j > 0).
Assuming that the solution to Eq. (G1) may be written

as a combination of harmonic functions, the method of
successive approximations [83–85] shows that to first order
the fundamental frequency of oscillation is

ω ¼ ωmðx̄Þ þ
v2

ωmðx̄Þ

�

3

8
α3 −

5

12ω2
mðx̄Þ

α22

�

ðG16Þ

¼ ωmðx̄Þ þ v2α; ðG17Þ

where v is the amplitude of oscillation and α is the effective
nonlinear frequency shift coefficient. The first term in
brackets is the well-known Duffing frequency modifica-
tion, whereas the second term results from nonlinearities
induced by static deflection of the nanobeam.

6. Parameter estimation and comparison

with experiment

To compare the model described above with experimen-
tally measured γ0mðhÞ, as shown in Fig. 5(c), a combination
of known simulated and fit parameters are input into
Eq. (G11), as summarized in Table I and described below.
For a given coupler operating condition, the photo-

thermal force and the resulting γ0ðhÞ described by
Eq. (G11) scales linearly with ζF . Neither F or ζ are
known a priori. However, using finite element simulations
to determine F , as well as other parameters such as κt and
R, allows ζ to become the sole fitting parameter when
comparing experimental and predicted values of γ0ðhÞ.
To determine F from finite element simulations, it is

necessary to determine whether the nanobeam is in a
prebuckled or postbuckled state. Insight into the buckling
configuration of the nanobeam is provided by the observed
nonlinear softening at the onset of self-oscillations, which

is directly proportional to v2 [Fig. 5(d)]. From these data
and Eq. (G17), the nonlinear coefficient α given in Table I
can be measured. Together with Eqs. (G14) and (G15),
the corresponding nanobeam deflection amplitude of jx̄j ¼
98 nm is inferred, in good agreement with x̄ ¼ −122 nm
predicted from finite element simulations of the nanobeam
in its postbuckled configuration (Fi=A ∼ 37 MPa), as
shown in Fig. 12(b). When the nanobeam is in this
postbuckled configuration, finite element simulations
shown in Fig. 12(c) indicate that F ¼ −26 pN=μW
(F=k ¼ −0.36 nm=μW). Negative F and x̄ indicate that
the photothermal force and nanobeam deflection, respec-
tively, are in the down direction.

Inputing F and other finite element simulated parame-
ters summarized in Table I into Eq. (G11), good agreement
between predicted and observed γ0mðhÞ is found for

ζ ∼ 0.12 cm−1. The corresponding optical absorption
rate can be described by quality factor Qo ¼ 2πng=ζλ

∼6.6 × 105, where the group index ng ∼ 2.0 of the nano-

beam is predicted from numerical simulation. This absorp-
tion rate is smaller than combined absorption and radiation
loss rates in other single-crystal diamond nanophotonic
structures [47].
Given the value of ζ obtained from fitting γ0ðhÞ, ω0

mðhÞ
predicted from Eq. (G10) can be compared with measure-
ments. This is shown in Fig. 13, in which the predicted
ω0
mðhÞ is generated with dωm=dFg as a fitting parameter,

and other parameters set as in the model for γ0ðhÞ and listed
in Table I. Static and dynamic thermal effects are found to
be significantly smaller than the maximum experimentally
observed shift to ωm. Rather, the monotonic decrease in
ω0
m, which becomes significant for h < 200 nm, follows an

h dependence consistent with static tuning by the attractive
optical gradient force FgðhÞ pulling up on a down-buckled

nanobeam. This is in contrast to the static thermal tuning
described by Ct, which is proportional to the power coupled
into the nanobeam, and is expected to decrease in magni-
tude with decreasing h for h < 200 nm.
There is good agreement between the model and

experimental observation in Fig. 13; however, the fit value
for dωm=dFg is larger than expected from finite element
simulations [Fig. 12(d)] and predictions of FgðhÞ (Fig. 11).
As shown in Fig. 12(d), dωm=dFg is found in simulations

to be highly variable, spanning over 3 orders of magnitude,
depending on compressive stress and resulting buckling
configuration. It is possible that imperfect nanobeam and
clamping-point shape result in an enhanced sensitivity
[84,86]. For example, including the triangular “arched”
clamping points to approximate the fabricated structure, as
shown in Fig. 12(a), enhances dωm=dFg by a factor of ∼2

compared to the case of ideal clamping points. Other effects
not included here include reflection of light from the end of
the waveguide resulting in enhanced optical interactions,
dynamic and static displacement of the fiber taper due
to optical forces [87], low-frequency fiber vibrations and
possible parametric driving for small h, breakdown of

FIG. 13. Predicted ω0
mðhÞ generated using the model in

Eq. (G10) and the parameters in Table I.
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the coupler two-mode representation and the influence of
higher-order modes for small h, and short-range effects
such as the Casmir force [88].
In conclusion, the analysis we have presented here serves

to illustrate the influence of compressive loading and
buckling on the photothermal response of nanobeams
and to show that significant photothermal forces are present
at relatively low optical absorption levels. Note that
imperfect nanobeams have significantly altered prebuck-
ling and postbuckling behavior when subject to an
compressive load [89], and taking into account these
nonidealities is necessary to more accurately predict the
nanobeam behavior.
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