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Motivation for this research

• Potential cathode material for zero emission and plug-in hybrid electric vehicles
– Holy grail of higher energy and power densities

– High voltage cathode material of operating at ~ 5V

– Cathode suited to use with Li4Ti5O12 for a  safer cell with reasonable voltage (>3V)

– Long cycling life

– Simple to prepare 

– Low cost

– Environmentally friendly

• Literature data suggested that LiMn1.5Ni0.5O4 seemed to meet most of these 

criteria

– Cycle life, particularly at high temperatures or charging  rates, seemed to be the main 
unresolved issue [ref. B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H-J. Kim and S. Choi, 
Electrochem. Comm., 6, 821-826 (2004)]



• Variation of sol-gel method described previously2,3,4

• Mn acetate, Ni acetate or Ni nitrate and Li hydroxide dissolved in distilled 
water, with small amount of carbon black.

• pH adjusted to 9 using ammonium hydroxide

• Mixture stirred for 1 hr at RT, heated at 80ºC until viscous gel obtained.

• Gel fired in dry air at 850ºC for 12 hrs, annealed at 600ºC for 24hrs

2. K. Amine, H. Tukamoto, H. Yasuda & Y. Fujita, Journal of the Electrochemical Society  143, 
1607-1612 (1996).

3. X. Wu & S. B. Kim,  Journal of Power Sources  109, 53-57 (2002).
4. Q. Zhong, A. Bonakardarpour, M. Zhang, Y. Gao & J. Dahn, Journal of the Electrochemical 

Society 144, 205-213 (1997).

Synthesis of LiNi0.5-xMn1.5+xO4
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Characterization of LiNi0.5Mn1.5O4

• Composition Li1.08Ni0.51Mn1.49O4.17 by 
AA analysis – close to stoichiometric

• SEM – very distinct crystal facets –
critical to capacity retention in 
conventional electrolytes

• Rietveld analysis 
• 88 wt% ‘stoichiometric’, 9 wt% Ni-

deficient and 3 wt% NiO
• Excess NiO → over Ni solubility 

limit
• ~2% Li on TM site but no TM on Li 

site in stoichiometric phase
• Ni oxidation state +2.08

6µm



Electrochemical evaluation of LiNi0.5-xMn1.5+xO4

• 4V plateau on charge and discharge 
disappears when Ni content close to 
0.5 – no Mn3+ present

• Good resolution of Ni2+ to Ni3+ and 
Ni3+ to Ni4+ in dQ/dV vs V up to 100 
cycles
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Electrochemical evaluation of LiNi0.5Mn1.5O4

•Galvanostatic cycling between 3.5 – 4.9 or 4.95V at 88 mA/g (C/2 rate) with 
conventional electrolyte (1M LiPF6 in 3:7 EC:DEC) at RT is shown

• Long term cycleability at C/2 rate charge and up to 5C rate discharge at RT

• Capacity retention and coulombic efficiencies decrease at elevated 
temperatures  (60oC)



Possible ways to resolve these issues

• Alternative methods of synthesis – larger crystals would probably be 

more stable at high temperatures or high state of charge

• Coatings :  oxides of Al, Zr and Bi etc…

• Doping with other elements that might improve the structural  and/or 

electrochemical stability

• It has been suggested that partial substitution of Mn4+ with Ti4+ can 

improve cycle life  [ref. R. Alcantara et al, Chem. Mater., 15, 2376-2382 (2003)]



Synthesis of LiNi0.5Mn1.5-xTixO4 (x=0.05, 0.1, 0.3)

1. Mn acetate, Ni acetate or Ni nitrate, ammonium titanyl
oxalate and LiOH dissolved in distilled water, with small 
amount of carbon black.

2. pH  10 using NH4OH

3. Mixture stirred for 1 hr at RT, heated at 80ºC  viscous 
gel obtained.

4. Gel fired in dry air @850ºC for 12 hrs, annealed @600ºC 
for 24hrs.

1 µm



• Chemical analysis - atomic 

absorption spectroscopy and 

XRF

• HR SEM on Hitachi FEG SEM

• Very crystalline – distinct 

crystal facets visible

Characterization of LiNi0.5Mn1.5-xTixO4

LiNi0.5Mn1.4Ti0.1O4

50 μm

1 μm

5 μm



• XRD – Bruker-AXS D8 

diffractometer using Cu Kα or Cr 

Kα radiation.

• Minor impurity of a Ni-rich oxide 

which is probably Ni6MnO8 is 

evident in XRD

• No evidence in Rietveld analysis 

of ordered P4332 structure  –

spinel phases appear to be 

disordered Fd-3m structure

XRD characterization of LiNi0.5Mn1.5-xTixO4
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XRD characterization of LiNi0.5Mn1.5-xTixO4

• Since Cu Kα is highly absorbed and poorly scattered by Mn, Cr Kα (2.29 Å) was 
used for the more detailed XRD analysis

• All samples had small amount of Ni-rich oxide, which is probably Ni6MnO8

• Lattice parameters increase linearly with increasing Ti content (x)



Voltage Profile of LiNi0.5Mn1.4Ti0.1O4

•Substitution with 0.1 
Ti  increases capacity 
(red curve)

•No redox activity at 
~4 V due to absence 
of Mn3+

• Irreversible capacity 
loss higher on first 
cycle than for un-
doped LiNi0.5Mn1.5O4



Electrochemical evaluation of LiNi0.5Mn1.4Ti0.1O4

• Good capacity retention to > 500 cycles with little change in voltage profile or 
capacity after the 100th cycle.

• Notable change in dQ/dV vs V plot from 1st cycle to later ones – may be 
indicative of a formation reaction occurring on 1st cycle – note discharge voltage

• Clear resolution of the Ni2+ to Ni3+ and Ni3+ to Ni4+ steps in dQ/dV vs V plot



Li// LiNi0.5Mn1.5-xTixO4 (x= 0.05,0.1)

• On galvanostatic
cycling,  capacity 
decreases at  higher 
rates

• At x =0.05 Ti, the 
capacity is lower 
than for x= 0.1

• Capacity retention 
is quite good after 
some loss on early 
cycling



AC impedance on Li// LiNi0.5Mn1.4Ti0.1O4

• Impedance at end of charge (4.8 V): filled symbols
• Impedance at end of discharge (3.8V): open symbols
• Impedance it greater at the end of discharge (EOD) than at the end of charge (EOC)
• At 60oC, impedance at both EOC and EOD increase on cycling
• At RT, impedance at EOC is stable after 1st cycle, but decreased on EOD with cycling
• After a few cycles, the impedance is greater at 60 0C than at RT



Longer term cycling – Li//LiNi0.5Mn1.4Ti0.1O4 at 60oC

• At 60oC,  electrolyte 
solvents have a large 
impact on cycle life

• Electrolytes with 
EC:DMC have much 
better capacity 
retention than ones 
with EC:DEC

• Pre-conditioning by 
cycling at RT seems to 
improve performance 



Li// LiNi0.5Mn1.4Ti0.1O4 with EC/DMC or EC/DEC

• Choice of 
electrolyte solvent  
affects rate 
performance and 
coulombic effiency

• Electrolyte with 
EC:DMC performs 
better at 60oC than 
does EC:DEC



• However the capacity of  

Li4Ti5O12//LiNi0.5Mn1.4Ti0.1O4

cells degrade if charged to 

voltages > 3.5V

• Plateau above 3.5V is 

evidence of electrolyte 

decomposition

Li4Ti5O12 //LiNi0.5Mn1.4Ti0.1O4

• Combining LiNi0.5Mn1.4Ti0.1O4 with Li4Ti5O12

provides a cell with > 3V output

• Improved safety characteristics



Longer term cycling Li //LiNi0.5Mn1.4Ti0.1O4 

• Very good capacity 

retention to > 1500 

cycles with 0.65C 

(88mA/g) charge and 

up to 5 C (675 mA/g) 

discharge

• CC-CV cycling did not 

seem to offer much 

improvement



Summary and Conclusions

 Good capacity, capacity retention and coulombic efficencies can be 
achieved with both LiNi0.5Mn1.5O4 and LiNi0.5Mn1..4Ti0.1O4 using quite 
conventional electrolyte formulations at RT.

 Long term galvanostatic cycling at high discharge rates is possible in coin 
cells as long as the charging rate is low enough to prevent gassing.

 Unfortunately, partial substitution of Mn with Ti does not resolve the 
problems the electrochemical performance with conventional electrolytes 
at elevated temperatures.

 However, careful choice of electrolyte formulation does improve the high 
temperature performance.
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