

NRC Publications Archive Archives des publications du CNRC

Influence of Ti substitution in LiNi0.5Mn1.5O4 on electrochemical performance and evaluation of LiNi0.5Mn1.5-xTixO4 (x= 0.05, 0.1) as a cathode material

Niketic, Svetlana; Whitfield, Pamela; Duncan, Hugues; Abu-Lebdeh, Yaser; Davidson, Isobel J.

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=c2f7f916-e205-45f8-ace3-e233e29215c5 https://publications-cnrc.canada.ca/fra/voir/objet/?id=c2f7f916-e205-45f8-ace3-e233e29215c5

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

NRC · CNRC

From Discovery to Innovation...

Influence of Ti Substitution in LiNi_{0.5}Mn_{1.5}O₄ on Electrochemical Performance and Evaluation of LiNi_{0.5}Mn_{1.5-x}Ti_xO₄ (x= 0.05, 0.1) as a Cathode Material

Svetlana Niketic, Pamela Whitfield, Hugues Duncan, Yaser Abu-Lebdeh and Isobel Davidson

IMLB 2010 in Montreal, June 28 – July 2, 2010

Outline of Presentation

- Motivation for this work
- Characterization of near stoichiometric and nickel deficient LiNi_{0.5-x}Mn_{1.5+x}O₄
 - Crystallography and morphology
 - Electrochemical performance
- Characterization of LiNi_{0.5}Mn_{1.5-x}Ti_xO₄
 - Crystallography and morphology
 - Electrochemical performance
- Summary and conclusions

Motivation for this research

• Potential cathode material for zero emission and plug-in hybrid electric vehicles

- Holy grail of higher energy and power densities
- High voltage cathode material of operating at ~ 5V
- Cathode suited to use with $Li_4Ti_5O_{12}$ for a safer cell with reasonable voltage (>3V)
- Long cycling life
- Simple to prepare
- Low cost
- Environmentally friendly
- Literature data suggested that LiMn_{1.5}Ni_{0.5}O₄ seemed to meet most of these criteria
 - Cycle life, particularly at high temperatures or charging rates, seemed to be the main unresolved issue [ref. B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H-J. Kim and S. Choi, Electrochem. Comm., 6, 821-826 (2004)]

- Variation of sol-gel method described previously^{2,3,4}
- Mn acetate, Ni acetate or Ni nitrate and Li hydroxide dissolved in distilled water, with small amount of carbon black.
- pH adjusted to 9 using ammonium hydroxide
- Mixture stirred for 1 hr at RT, heated at 80°C until viscous gel obtained.
- Gel fired in dry air at 850°C for 12 hrs, annealed at 600°C for 24hrs
 - 2. K. Amine, H. Tukamoto, H. Yasuda & Y. Fujita, Journal of the Electrochemical Society 143, 1607-1612 (1996).
 - 3. X. Wu & S. B. Kim, Journal of Power Sources 109, 53-57 (2002).
 - 4. Q. Zhong, A. Bonakardarpour, M. Zhang, Y. Gao & J. Dahn, Journal of the Electrochemical Society 144, 205-213 (1997).

Characterization of LiNi_{0.5}Mn_{1.5}O₄

- Composition Li_{1.08}Ni_{0.51}Mn_{1.49}O_{4.17} by AA analysis – close to stoichiometric
- SEM very distinct crystal facets critical to capacity retention in conventional electrolytes
- Rietveld analysis
 - 88 wt% 'stoichiometric', 9 wt% Nideficient and 3 wt% NiO
 - Excess NiO → over Ni solubility limit
 - ~2% Li on TM site but no TM on Li site in stoichiometric phase
 - Ni oxidation state +2.08

Electrochemical evaluation of LiNi_{0.5-x}Mn_{1.5+x}O₄

- 4V plateau on charge and discharge disappears when Ni content close to 0.5 – no Mn³⁺ present
- Good resolution of Ni²⁺ to Ni³⁺ and Ni³⁺ to Ni⁴⁺ in dQ/dV vs V up to 100 cycles

NRC · CNRC

Electrochemical evaluation of LiNi_{0.5}Mn_{1.5}O₄

- Galvanostatic cycling between 3.5 4.9 or 4.95V at 88 mA/g (C/2 rate) with conventional electrolyte (1M LiPF₆ in 3:7 EC:DEC) at RT is shown
- Long term cycleability at C/2 rate charge and up to 5C rate discharge at RT
- Capacity retention and coulombic efficiencies decrease at elevated temperatures (60°C)

- Alternative methods of synthesis larger crystals would probably be more stable at high temperatures or high state of charge
- Coatings : oxides of Al, Zr and Bi etc...
- Doping with other elements that might improve the structural and/or electrochemical stability
- It has been suggested that partial substitution of Mn⁴⁺ with Ti⁴⁺ can improve cycle life [ref. R. Alcantara et al, *Chem. Mater.*, **15**, 2376-2382 (2003)]

- 1. Mn acetate, Ni acetate or Ni nitrate, ammonium titanyl oxalate and LiOH dissolved in distilled water, with small amount of carbon black.
- 2. $pH \rightarrow 10 \text{ using } NH_4OH$
- 3. Mixture stirred for 1 hr at RT, heated at $80^{\circ}C \rightarrow viscous$ gel obtained.
- 4. Gel fired in dry air @850°C for 12 hrs, annealed @600°C for 24hrs.

Characterization of LiNi_{0.5}Mn_{1.5-x}Ti_xO₄

- Chemical analysis atomic absorption spectroscopy and XRF
- HR SEM on Hitachi FEG SEM
- Very crystalline distinct crystal facets visible

LiNi_{0.5}Mn_{1.4}Ti_{0.1}O₄

XRD characterization of LiNi_{0.5}Mn_{1.5-x}Ti_xO₄

- XRD Bruker-AXS D8 diffractometer using Cu Kα or Cr Kα radiation.
- Minor impurity of a Ni-rich oxide which is probably Ni₆MnO₈ is evident in XRD
- No evidence in Rietveld analysis of ordered P4₃32 structure – spinel phases appear to be disordered Fd-3m structure

XRD characterization of LiNi_{0.5}Mn_{1.5-x}Ti_xO₄

- Since Cu Kα is highly absorbed and poorly scattered by Mn, Cr Kα (2.29 Å) was used for the more detailed XRD analysis
- All samples had small amount of Ni-rich oxide, which is probably Ni₆MnO₈
- Lattice parameters increase linearly with increasing Ti content (x)

Voltage Profile of LiNi_{0.5}Mn_{1.4}Ti_{0.1}O₄

Capacity (mAh /g)

•Substitution with 0.1 Ti increases capacity (red curve)

- •No redox activity at ~4 V due to absence of Mn³⁺
- Irreversible capacity loss higher on first cycle than for undoped LiNi_{0.5}Mn_{1.5}O₄

Electrochemical evaluation of LiNi_{0.5}Mn_{1.4}Ti_{0.1}O₄

- Good capacity retention to > 500 cycles with little change in voltage profile or capacity after the 100th cycle.
- Notable change in dQ/dV vs V plot from 1^{st} cycle to later ones may be indicative of a formation reaction occurring on 1^{st} cycle note discharge voltage
- Clear resolution of the Ni^{2+} to Ni^{3+} and Ni^{3+} to Ni^{4+} steps in dQ/dV vs V plot

$Li//LiNi_{0.5}Mn_{1.5-x}Ti_{x}O_{4}$ (x= 0.05,0.1)

- On galvanostatic cycling, capacity decreases at higher rates
- At x =0.05 Ti, the capacity is lower than for x= 0.1
- Capacity retention is quite good after some loss on early cycling

NRC · CNRC

AC impedance on Li// LiNi_{0.5}Mn_{1.4}Ti_{0.1}O₄

- Impedance at end of charge (4.8 V): filled symbols
- Impedance at end of discharge (3.8V): open symbols
- Impedance it greater at the end of discharge (EOD) than at the end of charge (EOC)
- At 60°C, impedance at both EOC and EOD increase on cycling
- At RT, impedance at EOC is stable after 1st cycle, but decreased on EOD with cycling
- After a few cycles, the impedance is greater at 60 °C than at RT

Longer term cycling – Li//LiNi_{0.5}Mn_{1.4}Ti_{0.1}O₄ at 60°C

- At 60°C, electrolyte solvents have a large impact on cycle life
- Electrolytes with EC:DMC have much better capacity retention than ones with EC:DEC
- Pre-conditioning by cycling at RT seems to improve performance

$Li//LiNi_{0.5}Mn_{1.4}Ti_{0.1}O_4$ with EC/DMC or EC/DEC

 Choice of electrolyte solvent affects rate performance and coulombic effiency

• Electrolyte with EC:DMC performs better at 60°C than does EC:DEC

$Li_4Ti_5O_{12} //LiNi_{0.5}Mn_{1.4}Ti_{0.1}O_4$

- However the capacity of Li₄Ti₅O₁₂//LiNi_{0.5}Mn_{1.4}Ti_{0.1}O₄ cells degrade if charged to voltages > 3.5V
- Plateau above 3.5V is evidence of electrolyte decomposition

- Combining $LiNi_{0.5}Mn_{1.4}Ti_{0.1}O_4$ with $Li_4Ti_5O_{12}$ provides a cell with > 3V output
- Improved safety characteristics

Longer term cycling Li //LiNi_{0.5}Mn_{1.4}Ti_{0.1}O₄

- Very good capacity retention to > 1500 cycles with 0.65C (88mA/g) charge and up to 5 C (675 mA/g) discharge
- CC-CV cycling did not seem to offer much improvement

NRC · CNRC

- Good capacity, capacity retention and coulombic efficencies can be achieved with both LiNi_{0.5}Mn_{1.5}O₄ and LiNi_{0.5}Mn_{1.4}Ti_{0.1}O₄ using quite conventional electrolyte formulations at RT.
- Long term galvanostatic cycling at high discharge rates is possible in coin cells as long as the charging rate is low enough to prevent gassing.
- Unfortunately, partial substitution of Mn with Ti does not resolve the problems the electrochemical performance with conventional electrolytes at elevated temperatures.
- However, careful choice of electrolyte formulation does improve the high temperature performance.

This work was partially supported by Natural Resources Canada's Program on Energy R&D through the Clean Transportation Systems Portfolio. The authors gratefully acknowledge financial support from Defence R&D Canada.

Thank you for your kind attention

