
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Report (National Research Council of Canada. Radio and Electrical Engineering
Division : ERB), 2000-06

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=c363fd94-46dc-492e-9987-31da85483e51

https://publications-cnrc.canada.ca/fra/voir/objet/?id=c363fd94-46dc-492e-9987-31da85483e51

NRC Publications Archive
Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.4224/8914100

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Using inspection technology in object-oriented development projects
Laitenberger, O.; Atkison, C.; El-Emam, Khaled

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Using Inspection Technology in Object-Oriented

Development Projects *

Laitenberger, O., Atkison, C., El-Emam, K.
June 2000

* published as NRC/ERB-1077. June 2000. 9 pages. NRC 44143.

Copyright 2000 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Using Inspection Technology
in Object-oriented
Development Projects

Oliver Laitenberger, Colin Atkison, and

Khaled El Emam

June 2000

ERB-1077

NRC 44143

2

Using Inspection Technology in Object-Oriented Development

Projects

Oliver Laitenberger , Colin Atkison

Fraunhofer Institute for Experimental Software Engineering

Sauerwiesen 6

67661 Kaiserslautern, Germany

+49 6301 707 200

{Oliver.Laitenberger, Colin.Atkinson}@iese.fhg.de

Khaled El Emam

National Research Council, Canada

Institute for Information Technology

Building M-50, Montreal Road

Ottawa, Ontario, Canada K1A OR6

Khaled.El-Emam@iit.nrc.ca

ABSTRACT

Software inspection is a proven approach for detecting and

removing defects immediately after software documents are
created. However, the advance of software technologies,

processes, and methods, such as the widespread adoption of

object-orientation, raises new problems regarding software

quality assurance with inspections. These primarily relate

to the question of how managers can organize a software

inspection in object-oriented development projects with

respect to the examined documentation and, once it has

been organized, how developers can perform the defect

detection activity in a systematic manner. This paper

presents the architecture-centric strategy for inspection

organization and the perspective-based reading technique to
address the two problems. The integration of these

approaches in the inspection approach allows practitioners

to set up and run cost-effective inspections in their object-

oriented development projects. To support this claim with

quantitative findings, this paper presents the results of a

controlled experiment to determine the feasibility and cost-

effectiveness of the approaches when used for the

inspection of UML-based design documents.

Keywords

Software Quality Assurance, Inspections, Unified

Modeling Language, Empirical Study

1 INTRODUCTION

A software inspection involves activities in which qualified

personnel should find the most defects in a cost-effective

manner. Despite the large body of inspection experience

accumulated over the last 20 years, the increasing adoption

of object-oriented development principles in the software

industry raises new issues regarding software quality

assurance with inspections. These issues require further

work on the question of how managers can organize a

software inspection with respect to the examined

documentation and, once it has been organized, how

developers can perform the defect detection activity in a
systematic manner.

The importance of the first question stems from the fact

that today’s software development projects face many

challenges due to their scale. They usually involve a large

number of developers who are all working together to

manufacture a single product. In doing so, the developers

create documents that together describe what the software

system is to do and how it does it. These documents, once

they are created, may consist of hundreds of pages that
obviously cannot be handled in a single inspection. Object-

oriented development principles. Particularly, the recent

publication of the Unified Modeling Language (UML)

accentuates this problem, since crucial information about

the software is distributed across several documents and

diagrams. Hence, the challenge consists of organizing

several inspections on the right document fragments.

However, this requires a rationale for partitioning and

grouping the documents and diagrams.

Once an inspection has been organized, the second question

addresses the process that inspectors follow to scrutinize
the selected document fragments for defects. In this

inspection phase, inspectors read the documentation to

determine whether quality requirements, such as

correctness, consistency, testability, or maintainability,

have been fulfilled. "Reading" implies the systematic

examination of the software documents to extract, gain, and

understand certain information about the software. Many

existing inspection implementations assume that inspectors

have the reading skills required for defect detection.

However, these skills are seldom developed in any

systematic manner in the education or training of software

professionals or students. Adequate technical support for
inspectors during defect detection can compensate for the

lack of reading skills and, thus, potentially result in

dramatic improvements in the cost-effectiveness of an

inspection. Therefore, not only are more procedural reading

techniques needed to alleviate this problem, but they must

also be tailored to the inspection organization strategy.

In this paper, we present a new approach to inspection

organization. The new strategy is based on the principle of

organizing inspections around logical entities from the

software architecture rather than around particular (types

of) documents. The choice of the logical entities determines
the document fragments that contain relevant information

to be scrutinized for defects in one particular inspection.

Although this approach, dubbed architecture-centric

inspection organization, is generally applicable for

inspection organization, we consider it particularly valuable

for the inspection of documents developed according to

object-oriented principles.

To address the second problem, we discuss reading

techniques that inspectors use during the defect detection

activity of an inspection. One of the reading techniques -

perspective-based reading (PBR) - will be explained in

more detail, since this technique represents a natural
complement to the architecture-centric strategy for

inspection organization and, at the same time, can be

tailored for defect detection in any kind of object-oriented

documentation. To demonstrate the cost-effectiveness of

this technique, we describe a controlled experiment to

compare the checklist-based reading approach (CBR) for

defect detection in UML design documents to the

perspective-based reading technique. The results of this

experiment indicate that inspection teams discovered, on

average, 58 percent of the defects in a software document

using PBR and 43 percent using CBR. Moreover, while

PBR teams exhibit an average cost per defect ratio of 56
minutes per defect, CBR teams exhibit an average cost per

defect ration of 132 minutes per defect. In this way,

inspection teams using PBR for defect detection have a

higher effectiveness than CBR, as well as a lower cost per

defect ratio than those applying CBR.

The remainder of this paper is organized as follows.

Section 2 presents a short description of the inspection

methodology. It explains the process and defines the

terminology. Section 3 describes the architecture-centric

strategy for inspection organization. Section 4 elaborates

upon reading techniques for software inspections and
perspective-based reading. Section 5 explains a controlled

experiment to validate this approach. Section 6 concludes.

2 INSPECTION PRINCIPLES

Software inspection is an approach that allows the detection

and removal of defects immediately after software

documents are created. Since the seminal introduction of

the generic notion of inspection to the software domain in

the early 1970s [9], it has evolved into one of the most

cost-effective methods for early defect detection and

removal [18]. Its proponents claim that inspections can lead

to the detection and correction of anywhere between 50 and

90 percent of defects [10]. Moreover, rework cost can be
reduced considerably, since defects are typically found

directly after they are introduced. Finally, early defect

detection and removal improves the predictability of

software projects and helps project managers stay within

schedule, since problems are unveiled throughout the early

development phases and costly rework cycles at the end of

the development or maintenance project are therefore

avoided. Considering the many benefits and the fact that

low defect density is not one of the strong points of the

object-oriented paradigm [13], object-oriented methods

would benefit enormously from a systematic inspection
method.

An inspection involves activities in which qualified

personnel determine whether software documents are of

sufficient quality for subsequent development activities.

Figure 1 illustrates a typical software inspection approach.

Figure 1: A Software Inspection

In this paper, we model an inspection in terms of its main

activities, that is, inspection planning, defect detection,

defect collection, and defect correction. There are two

reasons for using this terminology. First, we want to

emphasize that the problems and solutions we present in

this paper are independent of any particular inspection

implementation, such as that of Fagan [9] or Gilb and

Graham [10]. Second, by modeling the inspection process

in terms of its main activities we avoid ambiguity in the
terminology.

Inspection planning is performed by an organizer who

schedules all subsequent inspection activities. The

organizer is often the project manager, since he or she

organizes all activities for the software development

project. The defect detection and defect collection activities

can be performed either by inspectors (i.e., developers)

individually or in a group meeting. Since recent empirical

findings reveal that the synergy effect of inspection

meetings is rather low in terms of defects [11], [21], [24],

defect detection should be considered an individual rather

than a group activity. In this case, the individuals must
receive guidance in the form of systematic defect detection

or reading techniques. Defect collection, on the other hand,

is often performed in a team meeting (i.e., an inspection

meeting) lead by an inspection moderator. The main goals

of the team meeting are to agree on anomalies that

inspectors have detected individually, to eliminate false

positives, and to specify the defects for correction. Since a

team meeting is effort consuming and since some

development projects are performed at different sites or

even in different countries, a synchronous team meeting

may be replaced with another form of consolidation
activity, such as depositions [24]. An inspection usually

ends with the correction of the documented defects by the

author.

3 ARCHITECTURE-CENTRIC INSPECTION

 ORGANIZATION

This section addresses the question of how to organize an

inspection with respect to the examined documentation.

3.1 The Unit of Inspection

Before performing an inspection, the inspection organizer

must determine the subject of the inspection, that is, the

unit to be inspected. The term "unit" refers to the set of

information that inspection participants scrutinize for

defects in one particular inspection. The selection of the

"right" unit represents a problem in the software domain

because large software development projects have special

problems due to their scale. The volume of the developed

documentation is just too large to be handled in a single

inspection. Hence, several inspections must be organized

on different document fragments. However, this requires a
rationale for partitioning and grouping them. This problem

is comparable to the situation in other engineering

disciplines. The various plans for a bridge, for example,

cannot be inspected in a single inspection. Hence, they

need to be partitioned and grouped into smaller units for

which an inspection can be organized and performed.

Most existing inspection variations follow a document-

oriented strategy for inspection organization. This strategy

means that a particular inspection is organized around a

particular type of document, such as a requirements,

design, or code document (or parts of it), rather than the
structure or content of the information represented in the

documents.

Although at first sight the document-oriented approach

appears to be a good strategy, it leads to two difficulties.

First, crucial information is often distributed across various

parts of a document or even across different document

types. Thus, if the inspection is limited to a particular (part

of a) document, an inspector may miss crucial information

for a sound inspection. Object-oriented development

methods [4], [6], [23] and the recent appearance of the

Unified Modeling Language (UML) accentuate this

problem because they usually use different types of
diagrams to represent various sets of information. Hence,

information about a given logical entity, such as a class or

an object, can be described in many different documents,

and a specific document can contain information about

many different logical entities, that is, there is a many-to-

many relationship between logical entities and diagrams.

An inspection whose goal is to check a particular (part of a)

document may end up either having to analyze many

logical entities, or may only partially cover a logical entity

that it describes.

The second difficulty arises when the document or parts of
it is still too large after decomposing it. Hence, some

authors recommend the use of size information alone as a

further splitting criterion [8]. However, this

recommendation causes some problems as the following

example illustrates. Let us assume a code document (as part

of a larger system) has 20000 LOC after following the

document-oriented strategy for inspection organization. As

suggested in the literature [8], this partition obviously is
still too large to scrutinize for defects in a single inspection.

Hence, the document needs to be partitioned further. One

approach would be to split it into partitions of 500 LOC,

which is recommended in the literature [10], and inspect

the first 500 LOC in the first inspection, the next 500 LOC

in the second inspection, and so on. However, the first 500

LOC provides information about the definition and

declaration of variables, which are a necessary prerequisite

for inspecting the other code fragments. This example

demonstrates that the document-oriented approach and the

use of size information alone to decide upon the unit of

inspection do not solve the unit of inspection problem in
each and every case.

3.2 Architecture-centric Principle

Software is unique among engineering products in that,

strictly speaking, it is invisible and has no concrete material

manifestation [5]. Whereas a civil engineer, for example,

can inspect both the documentation of a bridge and the

actual elements of it, or a mechanical engineer can inspect

the documentation of an engine as well as the physical parts

that he or she builds, a software engineer cannot actually

look at a piece of a software system per se. He or she can

only inspect the representations, the descriptions, or the
documentation of it (or parts of it). This observation leads

to a new solution to the unit of inspection problem.

The new solution distinguishes between a logical entity and

the physical documentation of the entity. This situation is

graphically depicted in Figure 2.

Figure 2: Logical Entities and their Documentation

A triangle, or a line between two triangles, represents a

logical entity. A square, on the other hand, represents the

documentation of one or more logical entities. The new

strategy suggests that an inspection be organized around

logical entities rather than the physical documentation of

the logical entities. The choice of the logical entity or the

logical entities determines the document fragments that

contain relevant information to be scrutinized for defects in

one particular inspection.

Although the majority of modern software engineering

methods, such as the Unified Process [14] or the Object

Modeling Technique [23], explicitly separate logical

entities from their documentation, this has never been

considered useful for inspection organization. Of course,

each method uses its own terminology, which may be

different from the one used in this paper. The Unified

Process, for example, distinguishes between structural

elements, such as subsystems or classes, and models that

describe the structural elements, such as use-case or

collaboration diagrams [14]. Hence, the Unified Process

uses the term "structural element" instead of logical entity
and "model" instead of documentation of the logical entity.

We recognize that various terms could have been used in

this paper to describe this difference. Examples are "unit"

or "concept" instead of "logical entity" and "model",

"representation", or "description" instead of documentation.

We decided to use the word "logical entity", since it best

conveys the conceptual and invisible nature of software,

and "documentation", since it best conveys the idea of

something tangible that can be used for the purpose of

inspection.

In a more general sense, the logical entities making up a
system, and the relationship between them, are collectively

viewed as the architecture of the system. The architecture

encompasses the significant decisions about the

organization of a software system, the major structural

elements and their relationship that will comprise the

system, and the composition of the elements into

progressively larger subsystems. Due to the importance of

the architecture, we call the new strategy the architecture-

centric approach for organizing inspections.

3.3 The Benefits of the Architecture-centric Solution

The architecture-centric solution for inspection

organization is beneficial for three reasons: First, the set of
information for each logical entity by definition is logically

self-contained and conceptually complete. It therefore

provides an inspector with all crucial information for

performing a sound inspection and, at the same time,

represents the appropriate set of information that is

intellectually manageable. The latter prevents inspectors

from being swamped with a lot of unnecessary

information. Second, the architecture-centric approach is

scalable. If the documentation of a logical entity is still too

large, an inspection organizer can look at the substructure

of the logical entity and choose an appropriate logical
entity of smaller granularity. This process can be repeated

until the right scope for a single inspection is determined.

Finally, the architecture-centric approach has been

implicitly embedded in conventional structured

development processes that use decomposition as a

principle for structuring software systems. The most

prominent example for such a process is the Cleanroom

Process [15]. However, the use of the architecture-centric
solution is not limited to conventional design principles. It

can also be applied in the context of object-oriented

development methods. This is important because over the

past decade, object-oriented development methods have

replaced conventional structured approaches as the

embodiment of goodness in software development, and are

now the approach of choice in most new software

development projects. Software inspections must be

tailored to this new situation.

3.4 Example: Architecture-centric Inspection

Organization in the Unified Process

The Unified Process (UP) proposed by Jacobson,
Rumbaugh, and Booch [14], is a generic process

framework that can be specialized for a very large class of

software systems. A specific instance of it is the Rational

Unified Process. The UP is component-based, which means

that the software system being built is made up of software

components. The distinguishing aspects of the UP are

captured in three key phrases – “use-case driven”,

“architecture-centric”, and “iterative and incremental”.

For organizing an inspection, the use-case driven and

architecture-centric properties of the UP are the most

important. In the UP, use-cases are the driver for the
architecture. The knowledge of the architecture in turn

helps capture the requirements as use-cases. Hence, the

development of both the use-cases and the architecture can

be regarded as an iterative process.

Architecture-centric software inspections in the context of

the UP can be organized around components, their

interfaces, and their interactions. Components as seen from

the development point of view are subsystems that have

high internal cohesion and low external coupling and are

reusable by other developers. A component as part of the

architecture is best represented by multiple, coordinated

architectural views. An architectural view is an abstraction
of a use-case, design, implementation, process, and

deployment model that focuses on its structure and

essential elements. If, in the context of the development

project, some of the models are not yet available, the

inspection can be organized with the available models. For

example, at the beginning of the project, there may only be

the use-case model in the form of use-case diagrams as well

as the design model in the form of class diagrams.

An example of the architecture-centric approach in the

context of the UP is depicted in Figure 3, in which the top-

level component, i.e., the system, is partitioned into two
sub components. After partitioning, an inspection can be

organized for each of the subcomponents.

Figure 3: Architecture-centric Inspection Organization

for the Unified Process

Figure 3 depicts the documentation of a software system. It

consists of a use-case model, a design model, an

implementation model, and a deployment model. Under the

assumption that the size of the documentation is too large

to handle it in one inspection, the documentation needs to

be partitioned. A document-oriented strategy would suggest

performing an inspection for the use-case models, the

design models, the implementation models, and the

deployment models. The architecture-centric strategy, on

the other hand, considers the logical structure of the system

for partitioning. In this example, the system consists of two
components: Component A and component B. Hence, the

architecture-centric principle suggests performing an

inspection for the documentation of component A (subset

of the use-case model and the implementation model) and

an inspection for the documentation of component B

(subset of the use-case model and the implementation

model, design model and deployment model).

4 READING TECHNIQUES FOR DEFECT

 DETECTION IN INSPECTION

This section addresses the problem of how to provide

defect detection support for inspection participants.

4.1 The Lack of Systematic Reading Techniques for

Defect Detection

Although each of the presented inspection activities is

important for a successful inspection, the most important

one is the defect detection activity. In this phase of an

inspection, inspectors read the software document(s) to

determine whether quality requirements, such as

correctness, consistency, testability, or maintainability,

have been fulfilled. "Reading" implies the systematic

examination of a document to extract, gain, and understand

certain information about the inspected software. The

ability to read, and to understand what has been read, are
therefore critical skills for the participant of an inspection.

Understanding itself is a necessary prerequisite for finding

more crucial defects in the software documentation. These

defects are often the expensive ones if detected in later

development phases, and the most difficult to detect in an

inspection, since they usually go well beyond more trivial

defects, such as spelling mistakes.

4.2 Existing Reading Techniques
In practice, most industrial inspection implementations use

either no specific reading approach (often termed ad-hoc)

or checklist-based reading (CBR) during defect detection

[9], [10]. Ad-hoc reading, as its name implies, provides no

explicit advice for inspectors as to how to proceed, or what

specifically to look for, during the reading activity. Hence,

the results of the reading activity in terms of potential

defects or problem spots are fully dependent on human

experience and expertise. Checklists offer stronger support

mainly in the form of yes/no-questions that inspectors need

to answer while reading a software document. Gilb and

Grahams' manuscript on software inspection states that
checklist questions interpret specified rules within a project

or an organization [10]. Although a checklist provides

advice about what to look for in an inspection, it does not

describe how to identify the necessary information and how

to perform the required checks. Moreover, for CBR as well

as for ad-hoc it remains unclear as to what degree a

systematic reading process was applied.

Recently, Vic Basili proposed scenario-based reading [1] to

offer more procedural support for defect detection. The

basic idea of a scenario-based reading technique is the use

of so-called scenarios. A scenario can be defined as an
algorithmic guideline for the inspector that describes how

to go about finding the required information in a software

document, as well as what that information should look

like. Hence, a scenario-based approach is more prescriptive

than either the ad-hoc or the checklist-based technique. A

particular promising scenario-based reading technique is

perspective-based reading [2] [15].

4.3 Perspective-based Reading

Goal of Perspective-based Reading

The basic goal of PBR is to examine the documentation of

a software entity from the perspectives of the entity’s
various stakeholders for the purpose of identifying defects.

An inspector in a perspective-based inspection reads the

documentation from the perspective of a particular

stakeholder in such a way as to determine whether it

satisfies the stakeholders’ particular needs. A stakeholder

perspective may be, for example, a future user of the

system who wants to ensure the completeness of the

inspected analysis documents. If the documentation of the

software entity meets the stakeholders’ quality

requirements, the end product, that is the final software

system will meet the specified quality goals. The reading
process itself is driven by a perspective-based reading

scenario.

Perspective-based Reading Scenarios

Throughout the reading process, an inspector follows the

instructions of a perspective-based reading scenario (in

short: scenario). A scenario tells the inspector how to go

about reading the documentation from one particular
perspective and what to look for.

A scenario consists of an introduction, instructions, and

questions framed together in a procedural manner. The

introductory part describes the stakeholder's interest in the

logical entity and explains the quality factors most relevant

for this perspective. The instruction part describes what

kind of document an inspector is to use, how to read the

document, and how to extract the appropriate information

from them. While identifying, reading, and extracting

information, inspectors may already detect some defects.

However, the motivation for providing guidance for

inspectors in the form of instructions on how to perform the
reading activity is three-fold. First, instructions help an

inspector gain a focused understanding of the entity.

Understanding involves the assignment of meaning to

information in a particular document and is a necessary

prerequisite for detecting more subtle defects which are

often the expensive ones if detected and removed in later

development phases. Second, the instructions require an

inspector to actively work with the documentation rather

than passively scanning it. Third, the architecture-centric

strategy ensures that the relevant information for all

stakeholders is available for scrutiny. However, since the
attention of an inspector is focused on the information most

interesting for a particular stakeholder, the inspector is not

swamped with details irrelevant for the stakeholder’s

perspective. A process for scenario development is

described in [15], [19].

Tester’s Scenario

The main goal of a tester is to ensure the testability of the system. High quality thus

corresponds to full testability. Assume that you have to develop some test cases for

the system in order to perform

acceptance testing. A test case consists of a set of input values plus a set of output

values and/or state changes expected for each combination of values. Follow the

instructions below and answer the questions carefully.

Locate the operations for the system under inspection. Identify the input and output

parameters for each single operation. Define equivalence classes for these parameters.

Use these classes to define a minimal set of test cases to fully exercise the operations.

While following the instructions answer the questions:

1. Are the input and output parameters as described in the document represent

the input and output parameters intended by the operation?

2. Can all possible equivalence classes of input values be properly addressed

by the operation?

3. operations’ preconditions indicated to help define input parameters for test-

cases?

Figure 4: Reading from a tester’s perspective.

Once an inspector has achieved an understanding of the

documented information about an entity chosen by the

architecture-centric approach, he or she can examine and

judge whether it fulfils the required quality properties. For

making this judgement an inspector is supported by a set of

questions that are answered while following the

instructions. Figure 4 shows an example for reading from

the perspective of a tester.

5 AN EMPIRICAL STUDY

The architecture-centric inspection organization and the

PBR technique are not silver-bullet techniques [5], that is,

they do not cure every inspection-related problems in all

industrial settings. As a consequence, the theoretical

conditions under which these approaches help an inspection

team detect the most defects most rapidly need to be

identified and examined empirically. Such expectations or

conditions may include, for example, statements such as the

following: "when developers have little experience with the

document type, the PBR technique is more effective than a

traditional form of reading". Hence, different conditions
need to be studied empirically to identify the techniques'

strengths and weaknesses. The level of control imposed on

the conditions determines whether a study qualifies as a

case study, quasi-experiment, or controlled experiment [7].

The results of the studies help researchers gain an

understanding of how a technique works and why the

technique is useful. Practitioners, on the other hand, benefit

from those studies because the results help them assess the

leverage they can expect from a particular technique. This

may influence their decision as to whether and how to

adopt it in their projects. In this section, we describe the
essence of a study to compare perspective-based reading

(PBR), for defect detection in object-oriented design

documents (documentation) of software systems (logical

entity) using the notation of the Unified Modelling

Language (UML) to the more traditional checklist-based

approach (CBR). The experiment is described in full detail

in [17].

5.1 Goal of the Study

We focus our evaluations on two important aspects of

software inspections in object-oriented development: their

effectiveness and their cost1. Effectiveness is defined as the

proportion of defects in the document that were found
during an inspection. Cost is defined in terms of the effort

involved in finding a single defect. Effort is the most

important factor in determining the cost of a software

inspection.

We consider in this experiment the team results as our unit

of analysis for the following reason. When using CBR,

individual subjects do not adopt a particular perspective

while reading the documents, whereas they do when they

are implementing PBR. With a perspective, a subset of the

1 Another evaluative criterion of software inspections is

their interval (i.e., elapsed calendar time) [24]. However,

this is not addressed in the study.

defects in the document have a high probability of being

detected, while the remainder of the defects have a

relatively low probability of being detected by that

perspective [19]. Conversely, with CBR one would expect

more uniformity in the probability of detection across
defects. This reasoning makes it clear that we do not

necessarily expect individual PBR inspectors to be more

cost-effective than individual CBR inspectors. Rather, we

expect the benefits of PBR to become apparent at the

overall team level. Indeed, it is the team result that

determines the results of an inspection. One may argue that

individual variability influences the team results. However,

in the context of our experiment, individual variability is

controlled by random assignment of subjects to teams. We

can therefore state the following expectations for the

experiment:

1. The Effectiveness of PBR is Greater than the

Effectiveness of CBR for Teams.

We expect that inspection teams detect more defects

using PBR than CBR. This results from the fact that

the probability of finding a unique defect through PBR

is greater than for CBR [19].

2. Overall Inspection Cost is Lower with PBR than

with CBR.

We would expect that the overall cost per defect for

both phases to be smaller for PBR than for CBR.

Based on our expectations, we investigated the following
two hypotheses for the experiment:

H01 An inspection team is as effective or more

effective using CBR than it is using PBR.

H02 An inspection team using PBR finds defects at

the same or higher cost per defect than a team

using CBR for all phases of the inspection.

In the experiment, we investigate directional null

hypotheses. A directional null hypothesis can be regarded

as a statement that there is a difference between the two

groups opposite to that predicted. According to the logic of

testing statistical hypotheses [25], we are interested in
being able to reject these null hypotheses. The hypotheses

are preceded by a zero to indicate that these are the null

hypotheses being tested. We use standard t-test as well as

permutation tests to validate the hypotheses [11], [25].

5.2 Study Design

The experimental design is depicted in Table 1. We use a

notational system in which X stands for a treatment and O

stands for an observation; subscripts 1 and 2 refer to the

sequential order of implementing treatments.

Experiment

Group 1 XPBR O1 XCBR O2

Group 2 XCBR O1 XPBR O2

Table 1: The design of the experiment.

For the experiment, subjects were randomly assigned to

two groups2: Group 1 and Group 2. The first group (Group

1) performed a reading exercise using PBR first (XPBR), and

then measures were collected (O1). Subsequently, they
performed a reading exercise using CBR (XCBR), and again

measures were collected (O2). The second group followed

the counterbalanced sequence. This is a classic 2x2
repeated measures design described more fully in [25].

5.3 Perspective-based Reading of Object-Oriented

Design Documents

We identified three perspectives for the inspection of a

design document. Hence, a PBR team consisted of three

inspectors each of which had read the design document

from one of the three perspectives. The three perspectives

were a designer perspective, a tester perspective, and an

implementer perspective An inspector reading the design

documents from the point of view of a designer is primarily

interested in the correctness between the design models and
the analysis documents. Hence, he or she has to extract

relevant information from the design documents and

compare it to the one described in the analysis documents.

An inspector reading the design documents from the

perspective of a tester identifies the different operations

that the system is to perform in the design models and tries

to set up test cases with which he or she can ensure the

correct behaviour of each operation. Then, the inspector is

supposed to mentally simulate each operation using the test

cases as input values and to compare the resulting output to

the description in the analysis documents. Finally, an
inspector reading the design documents from the

perspective of an implementor makes sure that all required

information is provided in the design models to implement

the system. This involves completeness checks as well as

more difficult checks on the feasibility of the design.

5.4 Subjects

The subjects in this experiment were 18 practitioners with

various backgrounds. Before the course they primarily

worked as programmers in industry and had various levels

of experience in object-oriented programming. In the

experiment, they were randomly assigned to one of the two
groups and, within each group, to one of the three

perspectives according to the experimental design.

2 For the random assignment, the subjects drew numbers

from an envelope.

5.5 Results

5.5.1 Effectiveness of Inspection Teams

Figure 5 depicts a box-plot of the defect detection

effectiveness of the inspection teams when applying the

two different reading techniques. Box-plots provide
information about the distribution of data points, such as

the center (mean value), spread (standard deviation), and

minimum/maximum values.

Figure 5: Defect Detection Effectiveness.

(Mean values: CBR: 0.43; PBR: 0.58)

Overall inspection teams found more defects using the PBR

technique than using the CBR technique. Using a matched-

pair t-test the difference is statistically significant (t=3.17,

p=0.025). Since the t-test makes several assumptions, we

also performed a permutation test [11]. The permutation

test revealed an exact p-value of 0.0313. We failed to detect

a carry-over effect for the different sequences. This means

that the sequence of using the various reading techniques
did not influence the results of this study.

Based on these findings, we can reject hypothesis H01 and

conclude that an inspection team is more effective, i.e.,

detect more defects, using the PBR technique than using

CBR.

5.5.2 Cost-Effectiveness of Inspection Teams

Figure 6 depicts a box-plot of the cost per defect ratio of

the overall inspection when using the two different reading

techniques.

The team with the PBR technique had a lower cost per
defect ratio using the CBR technique than using the PBR

technique when considering the effort for the overall

inspection. Using a matched-pair t-test the difference is

statistically significant (t=-6.53, p=0.001). These findings

were also confirmed with the permutation test (p=0.0156).

We failed to detect carry-over effects. The study results

therefore suggest that the PBR technique improve the cost-

effectiveness of inspection teams.

Based on these findings, we can reject hypothesis H02. This

means that PBR teams are more cost-effective, i.e., find

defects at a lower cost per defect ratio, than CBR teams.

Figure 6: Cost per Defect for the Overall Inspection

(CBR: 132 minutes per defect; PBR: 56 minutes per

defect).

6 SUMMARY

Software inspection is regarded as one of the most effective

methods for software quality improvement. To maintain its

cost-effectiveness in the context of object-oriented

development projects, two major inspection-related issues

must be addressed. The first one is the question of how to

organize an inspection with respect to the examined

documentation. The second one is the question of how to

provide systematic reading support for inspection

participants.

In this paper, we have described a new approach for
inspection organization. This approach distinguishes

between logical entities and their documentation. We argue

that logical entities from the software architecture should

be used for inspection organization rather than their

documentation. This helps ensure that inspectors are

provided with appropriate amount of information for a

sound inspection.

To support the defect detection activity of inspection

participants in a systematic manner, we have explained the

perspective-based reading technique. This technique

requires inspectors to analyze the documentation of a
logical entity from various stakeholder perspectives. In

doing so, the technique provides procedural guidance on

what to check and on how to perform the checking.

In a final step, we have presented the essence of a

controlled experiment to compare the effectiveness and the

cost per defect ratio of the perspective-based reading

technique to checklist-based reading. The comparison was

performed through a controlled experiment with

practitioners participating in a course on object-oriented

development. During the experiment the subjects used the

CBR approach as well as the PBR approach for defect

detection in design documents. The design documents were
specified in the UML. Our experimental results indicate

that the effectiveness of teams using PBR is greater than of

those using CBR. Furthermore, we found that the cost per

defect ratio using PBR is smaller than with CBR during the

defect detection phase of inspections. Overall, we found

that the cost per defect for the whole inspection is lower

with PBR than with CBR. Therefore, PBR has
effectiveness and cost advantages when compared to CBR.

Our findings provide evidence that the architecture-centric

strategy and the perspective-based reading technique is a

promising approach for achieving high quality in object-

oriented development projects.

ACKNOWLEDGEMENT

We would like to thank Maud Schlich from Fraunhofer

IESE, Germany, for her contribution to the success of the

empirical study.

REFERENCES

1. V.R. Basili. Evolving and Packaging Reading

Technologies. Journal of Systems and Software, 38(1),

July 1997.

2. V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F.

Shull, S. Sorumgard, and M.V. Zelkowitz. The

Empirical Investigation of Perspective-based Reading.

Journal of Empirical Software Engineering,

2(1):133­164, 1996.

3. J. Barnard and A. Price. Managing Code Inspection

Information. IEEE Software, 11(2):59­69, March 1994.

4. G. Booch. Object Oriented Analysis and Design with

Applications. Benjamin/Cummings, Redwood City,

California, 2nd edition, 1994.

5. F. P. Brooks, Jr. No Silver Bullet: Essence and

Accidents of Software Engineering. IEEE Computer,

20(4):10­19, April 1987.

6. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H.

Gilchrist, F. Hayes, and P. Jeremaes. Object-Oriented

Development: The Fusion Method. Prentice Hall,

1993.

7. T.D. Cook and D.T. Campbell. Quasi-

Experimentation: Design and Analysis Issues for Field

Settings. Rand McNally College Publishing Company,

Chicago, 1979.

8. D. A. Christenson, H. T. Steel, and A. J. Lamperez.

Statistical Quality Control applied to Code Inspections.

IEEE Journal Selected Areas in Communication,

8(2):196­200, February 1990.

9. M. E. Fagan. Design and Code Inspections to Reduce

Errors in Program Development. IBM Systems

Journal, 15(3):182­211, 1976.

10. T. Gilb and D. Graham. Software Inspection. Addison-

Wesley Publishing Company, 1993.

11. P. Johnson and D. Tjahjono, Does Every Inspection

Really Need a Meeting. Journal of Empirical Software

Engineering, 3(1):9-35, 1998.

12. P. Good. Permutation Tests: A Practical Guide to

Resampling Methods for Testing Hypotheses. Springer

Verlag, 1994.

13. Les Hatton. Does OO Sync with How We Think?

IEEE Software, 15(3):46­54, May 1998.

14. I. Jacobson, G. Booch, J. Rumbaugh, The Unified

Software Development Process, Addison Wesley,

1998.

15. O. Laitenberger, Cost-effective Detection of Software

Defects through Perspective-based Inspection. PhD-

Thesis, University of Kaiserslautern, 2000.

16. O. Laitenberger and C. Atkinson. Generalizing

Perspective-based Inspection to handle Object-

Oriented Development Artifacts. In Proceedings of the

21nd International Conference of Software Engineering,

1999.

17. O. Laitenberger, C. Atkinson, M. Schlich, and K. El

Emam. An Experimental Comparison of Reading

Techniques for Defect Detection in UML Design

Documents. Accepted for Publication in the Journal of

Systems and Software, also published as ISERN-

Technical Report 001.00/E, 2000.

18. O. Laitenberger and J.-M. DeBaud. An Encompassing

Life-Cycle Centric Survey of Software Inspection.

Journal of Systems and Software, jan. 2000.

19. O. Laitenberger, K. El Emam, and T. Harbich. An

Internally Replicated Quasi-Experimental Comparison

of Checklist and Perspective-based Reading of Code

Documents. IEEE Transactions on Software

Engineering, 2000.

20. R. C. Linger, H. D. Mills, and B. I. Witt. Structured

Programming: Theory and Practice. Addison-Wesley

Publishing Company, 1979.

21. A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta.
An Experiment to Assess the Cost-Benefits of Code

Inspections in Large Scale Software Development.

IEEE Transactions on Software Engineering,

23(6):329­346, June 1997.

22. Rational Software Coperation. Unified Modeling

Language Documentation Set, Version 1.1, September

1997.

23. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and

W. Lorensen. Object-Oriented Modeling and Design.

Prentice Hall, 1991.

24. L. G. Votta. Does Every Inspection Need a Meeting?

ACM Software Eng. Notes, 18(5):107­114, December

1993.

25. B. J. Winer, D. R. Brown, and K. M. Michels.

Statistical Principles in Experimental Design, 3rd

edition. McGraw Hill Series in Psychology, 1991.

