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Abstract

Parametric embedding methods such as paramet-
ric t-SNE (pt-SNE) have been widely adopted
for data visualization and out-of-sample data em-
bedding without further computationally expen-
sive optimization or approximation. However,
the performance of pt-SNE is highly sensitive
to the hyper-parameter batch size due to con-
flicting optimization goals, and often produces
dramatically different embeddings with different
choices of user-defined perplexities. To effec-
tively solve these issues, we present parametric t-
distributed stochastic exemplar-centered embed-
ding methods. Our strategy learns embedding pa-
rameters by comparing given data only with pre-
computed exemplars, resulting in a cost function
with linear computational and memory complex-
ity, which is further reduced by noise contrastive
samples. Moreover, we propose a shallow em-
bedding network with high-order feature interac-
tions for data visualization, which is much easier
to tune but produces comparable performance in
contrast to a deep neural network employed by
pt-SNE. We empirically demonstrate, using sev-
eral benchmark datasets, that our proposed meth-
ods significantly outperform pt-SNE in terms of
robustness, visual effects, and quantitative evalu-
ations.

1 Introduction

Unsupervised nonlinear dimensionality reduction methods,
which embed high-dimensional data to a low-dimensional
space, have been extensively deployed in many real-world
applications for data visualization. Data visualization is

an important component of data exploration and data an-
alytics, as it helps data analysts to develop intuitions and
gain deeper understanding about the mechanisms underly-
ing data generation. Comprehensive surveys about dimen-
sionality reduction and data visualization methods can be
found in van der Maaten et al. (2009) [26] and Burges
(2010) [3]. Among these approaches, nonparametric neigh-
bor embedding methods such as t-SNE [25] and Elastic
Embedding [4] are widely adopted. They generate low-
dimensional latent representations by preserving neigh-
boring probabilities of high-dimensional data in a low-
dimensional space, which involves pairwise data point com-
parisons and thus has quadratic computational complexity
with respect to the size of a given data set. This prevents
them from scaling to any dataset with a size beyond several
thousand. Moreover, these methods are not designed for
generating the embedding of out-of-sample data that are
prevalent in modern big data analytics. To generate out-of-
sample data embedding given an existing sample embed-
ding, computationally expensive numerical optimization or
Nyström approximation is often performed, which is unde-
sirable in practice [2, 29, 5].

Parametric embedding methods, such as parametric t-SNE
(pt-SNE) [22] employing a deep neural network (DNN),
learn an explicit parametric mapping function from a high-
dimensional data space to a low-dimensional embedding
space, which can readily generate the embedding of out-of-
sample data. The objective function of pt-SNE is the same
as that of t-SNE with quadratic computational complexity.
Fortunately, owing to the explicit mapping function defined
by the DNN, optimization methods such as stochastic gra-
dient descent or conjugate gradient descent based on mini-
batches can be deployed when pt-SNE is applied to large-
scale datasets.

However, on one hand, the objective function of pt-SNE is
a sum of a quadratic number of terms over pairwise data
points, which requires mini-batches with fairly large batch
sizes to achieve reasonably good approximations to the
original objective; On the other hand, optimizing the param-
eters of the DNN in pt-SNE also requires careful choices
of batch sizes, which is often best served with small batch
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sizes to avoid being stuck in a bad local minimum. These
conflicting choices of batch sizes make the optimization
of pt-SNE hard and render its performance sensitive to the
chosen batch size. In addition, almost all previous stochas-
tic neighbor embedding approaches including pt-SNE in-
sist on accurately modeling pairwise neighboring probabil-
ities of high-dimensional data regardless of global data den-
sity distributions, and often produce dramatically different
embeddings with different choices of user-defined perplex-
ities. Finally, although the mapping function of pt-SNE
parameterized by a DNN is powerful, it is very hard to
learn and requires complicated procedures such as tuning
network architectures and tuning many hyper-parameters.
For data embedding and visualization purposes, most users
are reluctant to go through these complicated procedures.

To address the aforementioned problems, in this paper,
we present unsupervised parametric t-distributed stochas-
tic exemplar-centered embedding methods. Instead of
modeling pairwise neighboring probabilities, our strat-
egy learns embedding parameters by comparing high-
dimensional data only with precomputed representative
high-dimensional exemplars, resulting in an objective func-
tion with linear computational and memory complexity
with respect to the size of a given dataset. The exemplars
are identified by a small number of iterations of k-means
updates, taking into account both local data density distri-
butions and global clustering patterns of high-dimensional
data. These nice properties make the parametric exemplar-
centered embedding insensitive to batch size and perplexity,
and scalable to large-scale datasets. We further use noise
contrastive samples to avoid comparing data points with all
exemplars, which further reduces computational/memory
complexity and increases scalability. Moreover, we pro-
pose a shallow embedding network with high-order feature
interactions for data visualization, which is much easier to
tune but produces comparable performance in contrast to
a deep neural network employed by pt-SNE. Experimental
results on several benchmark datasets show that, our pro-
posed parametric exemplar-centered embedding methods
for data visualization significantly outperform pt-SNE in
terms of robustness, visual effects, and quantitative evalu-
ations. We call our proposed deep t-distributed stochastic
exemplar-centered embedding method (dt-SEE) and high-
order t-distributed exemplar-centered embedding method
(hot-SEE).

Our contributions in this paper are summarized as fol-
lows: (1) We propose a scalable unsupervised parametric
data embedding strategy with an objective function of lin-
ear computational complexity, avoiding pairwise training
data comparisons in existing methods; (2) With the help
of exemplars, our methods eliminate the instability and
sensitivity issues caused by batch sizes and perplexities
haunting other unsupervised embedding approaches includ-
ing pt-SNE; (3) Our proposed approach hot-SEE learns a

simple shallow high-order parametric embedding function,
beating state-of-the-art unsupervised deep parametric em-
bedding method pt-SNE on several benchmark datasets in
terms of both qualitative and quantitative evaluations.

2 Related Work

Dimensionality reduction and data visualization have been
extensively studied in the last twenty years [12, 3].
SNE [10], its variant t-SNE [12], and Elastic Embed-
ding [6] are among the most successful approaches. To
efficiently generate the embedding of out-of-sample data,
SNE and t-SNE were, respectively, extended to take a para-
metric embedding form of a shallow neural network [14]
and a deep neural network [22]. As is discussed in the
introduction, the objective functions of neighbor embed-
ding methods have O(n2) computational complexity for n
data points, which limits their applicability only to small
datasets. Recently, with the growing importance of big data
analytics, several research efforts have been devoted to en-
hancing the scalability of nonparametric neighbor embed-
ding methods [23, 24, 30, 28]. These methods mainly bor-
rowed ideas from efficient approximations developed for N-
body force calculations based on Barnes-Hut trees [23] or
fast multipole methods [8]. Iterative methods with auxiliary
variables and second-order methods have been developed
to optimize the objective functions of neighbor embedding
approaches [27, 28, 31, 7]. Particularly, the alternating op-
timization method with auxiliary variables was shown to
achieve faster convergence than mini-batch based conju-
gate gradient method for optimizing the objective function
of pt-SNE. All these scalability handling and optimization
research efforts are orthogonal to our development in this
paper, because all these methods are designed for the em-
bedding approaches modeling the neighboring relationship
between pairwise data points. Therefore, they still have the
sensitivity and instability issues, and we can readily borrow
these speedup methods to further accelerate our approaches
modeling the relationship between data points and exem-
plars.

Our proposed method hot-SEE learns a shallow parametric
embedding function by considering high-order feature in-
teractions. High-order feature interactions have been stud-
ied for learning Boltzmann Machines, autoencoders, struc-
tured outputs, feature selection, and biological sequence
classification [13, 17, 15, 20, 21, 9, 19, 11, 16]. To the
best of our knowledge, our work here is the first success-
ful one to model input high-order feature interactions for
unsupervised data embedding and visualization.

Our work in this paper is also related to a recent supervised
data embedding method called en-HOPE [16]. Unlike en-
HOPE, our proposed methods here are unsupervised and
have a completely different objective function with differ-
ent motivations.
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3 Methods

In this section, we introduce the objective of pt-SNE at first.
Then we describe the parametric embedding functions of
our methods based on a deep neural network as in pt-SNE
and a shallow neural network with high-order feature in-
teractions. Finally, we present our proposed parametric
stochastic exemplar-centered embedding methods dt-SEE
and hot-SEE with linear computational cost.

3.1 Parametric t-SNE using a Deep Neural Network

and a Shallow High-order Neural Network

Given a set of data points D = {x(i) : i = 1, . . . , n},
where x(i) ∈ R

H is the input feature vector. pt-SNE learns
a deep neural network as a nonlinear feature transforma-
tion from the high-dimensional input feature space to a
low-dimensional latent embedding space {f(x(i)) : i =
1, . . . , n}, where f(x(i)) ∈ R

h, and h < H . For data visu-
alization, we set h = 2.

pt-SNE assumes, pj|i, the probability of each data point i
chooses every other data point j as its nearest neighbor in
the high-dimensional space follows a Gaussian distribution.
The joint probabilities measuring the pairwise similarities
between data points x(i) and x(j) are defined by symmetriz-
ing two conditional probabilities, pj|i and pi|j , as follows,

pj|i =
exp(−||x(i) − x(j)||2/2σ2

i )∑
k 6=i exp(−||x(i) − x(k)||2/2σ2

i )
, (1)

pi|i = 0, (2)

pij =
pj|i + pi|j

2n
, (3)

where the variance of the Gaussian distribution, σi, is set
such that the perplexity of the conditional distribution Pi

equals a user-specified perplexity u that can be interpreted
as the expected number of nearest neighbors of data point
i. With the same u set for all data points, σi’s tend to be
smaller in regions of higher data densities than the ones
in regions of lower data densities. The optimal value of
σi for each data point i can be easily found by a simple
binary search [10]. Although the user-specified perplex-
ity u makes the variance σi for each data point i adap-
tive, the embedding performance is still very sensitive to
this hyperparameter, which will be discussed later. In the
low-dimensional space, pt-SNE assumes, the neighboring
probability between pairwise data points i and j, qij , fol-
lows a heavy-tailed student t-distribution. The student t-
distribution is able to, on one hand, measure the similari-
ties between pairwise low-dimensional points, on the other
hand, allow dissimilar objects to be modeled far apart in

the embedding space, avoiding crowding problems.

qij =
(1 + ||f(x(i))− f(x(j))||2)−1

∑
kl:k 6=l(1 + ||f(x(k))− f(x(l))||2)−1

, (4)

qii = 0. (5)

To learn the parameters of the deep embedding function
f(.), pt-SNE minimizes the following Kullback-Leibler di-
vergence between the joint distributions P and Q using
Conjugate Gradient descent,

ℓ = KL(P ||Q) =
∑

ij:i6=j

pij log
pij

qij
. (6)

The above objective function has O(n2) terms defined
over pairwise data points, which is computationally pro-
hibitive and prevents pt-SNE from scaling to a fairly big
dataset. To overcome such scalability issue, heuristic mini-
batch approximation is often used in practice. However,
as will be shown in our experiments, pt-SNE is unstable
and highly sensitive to the chosen batch size to achieve rea-
sonable performance. This is due to the dilemma of the
quadratic cost function approximation and DNN optimiza-
tion through mini-batches: approaching the true objective
requires large batch sizes but finding a good local minimum
benefits from small batch sizes.

Although pt-SNE based on a deep neural network has a
powerful nonlinear feature transformation, parameter learn-
ing is hard and requires complicated procedures such as tun-
ing network architectures and tuning many hyperparame-
ters. Most users who are only interested in data embedding
and visualization are reluctant to go through these com-
plicated procedures. Here we propose to use high-order
feature interactions, which often capture structural knowl-
edge of input data, to learn a shallow parametric embed-
ding model instead of a deep model. The shallow model is
much easier to train and does not have many hyperparam-
eters. In the following, the shallow high-order parametric
embedding function will be presented. We expand each
input feature vector x to have an additional component
of 1 for absorbing bias terms, that is, x′ = [x; 1], where
x′ ∈ R

H+1. The O-order feature interaction is the product
of all possibleO features {xi1×. . .×xit×. . .×xiO} where,
t ∈ {1, . . . , O}, and {i1, . . . , it, . . . , iO} ∈ {1, . . . , H}.
Ideally, we want to use eachO-order feature interaction as a
coordinate and then learn a linear transformation to map all
these high-order feature interactions to a low-dimensional
embedding space. However, it’s very expensive to enumer-
ate all possible O-order feature interactions. For example,
if H = 1000, O = 3, we must deal with a 109-dimensional
vector of high-order features. We approximate a Sigmoid-
transformed high-order feature mapping y = f(x) by con-
strained tensor factorization as follows,

ys =

m∑

k=1

Vskσ(

F∑

f=1

Wfk(Cf
Tx′)O + bk), (7)
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where bk is a bias term, C ∈ R
(H+1)×F is a factorization

matrix, Cf is the f -th column of C, W ∈ R
F×m and

V ∈ R
h×m are projection matrices, ys is the s-th compo-

nent of y, F is the number of factors, m is the number of
high-order hidden units, and σ(x) = 1

1+e−x . Because the
last component of x′ is 1 for absorbing bias terms, the full
polynomial expansion of (Cf

Tx′)O essentially captures all
orders of input feature interactions up to order O. Empir-
ically, we find that O = 2 works best for all datasets we
have and set O = 2 for all our experiments. The hyper-
parameters F and m are set by users. Combining Equa-
tion 6, Equation 1, Equation 4 and the feature transforma-
tion function in Equation 7 leads to a method called high-
order t-SNE (hot-SNE). As pt-SNE, the objective function
of hot-SNE involves comparing pairwise data points and
thus has quadratic computational complexity with respect
to the sample size. The parameters of hot-SNE are learned
by Conjugate Gradient descent as in pt-SNE.

3.2 Parametric t-Distributed Stochastic

Exemplar-centered Embedding

To address the instability, sensitivity, and unscalability is-
sues of pt-SNE, we present deep t-distributed stochastic
exemplar-centered embedding (dt-SEE) and high-order t-
distributed stochastic exemplar-centered embedding (hot-
SEE) building upon pt-SNE and hot-SNE for parametric
data embedding described earlier. The resulting objective
function has linear computational complexity with respect
to the size of training set. The underlying intuition is that,
instead of comparing pairwise training data points, we com-
pare training data only with a small number of representa-
tive exemplars in the training set for neighborhood proba-
bility computations. To this end, we simply precompute
the exemplars by running a fixed number of iterations of k-
means with scalable k-means++ seeding on the training set,
which has at most linear computational complexity with re-
spect to the size of training set [1].

Formally, given the same dataset D with formal descrip-
tions as introduced in Section 3.1, we perform a fixed num-
ber of iterations of k-means updates on the training data
to identify z exemplars from the whole dataset, where z
is a user-specified free parameter and z << n (please
note that k-means often converges within a dozen iterations
and shows linear computational cost in practice). Before
performing k-means updates, the exemplars are carefully
seeded by scalable k-means++, which will make our meth-
ods robust under abnormal conditions, although our exper-
iments show that random seeding works equally well. We
denote these exemplars by {e(j) : j = 1, . . . , z}. The
high-dimensional neighboring probabilities is calculated

through a Gaussian distribution,

pj|i =
exp(−||x(i) − x(j)||2/2σ2

i )∑
k 6=i exp(−||x(i) − x(k)||2/2σ2

i )
, (8)

pj|i =
pj|i

n
, (9)

where i = 1, . . . , n, j = 1, . . . , z, and the variance of the
Gaussian distribution, σi, is set such that the perplexity of
the conditional distribution Pi equals a user-specified per-
plexity u that can be interpreted as the expected number
of nearest exemplars, not neighboring data points, of data
instance i. Since the high-dimensional exemplars capture
both local data density distributions and global clustering
patterns, different choices of perplexities over exemplars
will not change the embedding too much, resulting in much
more robust visualization performance than that of other
embedding methods insisting on modeling local pairwise
neighboring probabilities.

Similarly, the low-dimensional neighboring probabilities is
calculated through a t-distribution,

qj|i =
(1 + dij)

−1

∑n

i=1

∑z

k=1(1 + dik)−1
, (10)

dij = ||f(x(i))− f(e(j))||2, (11)

where f(·) denotes a deep neural network for dt-SEE or the
high-order embedding function as described in Equation 7
for hot-SEE.

Then we minimize the following objective function to learn
the embedding parameters Θ of dt-SEE and hot-SEE while
keeping the exemplars {e(j)} fixed,

min ℓ(Θ, {e(j)}) =
∑n

i=1

∑z

j=1 pj|i log
pj|i

qj|i
(12)

where i indexes training data points, j indexes exem-
plars, Θ denotes the high-order embedding parameters
{{bk}

m
k=1,C,W,V} in Equation 7.

Note that unlike the probability distribution in Equation 4,
qj|i here is computed only using the pairwise distances be-
tween training data points and exemplars. This small mod-
ification has significant benefits. Because z << n, com-
pared to the quadratic computational complexity with re-
spect to n of Equation 6, the objective function in Equa-
tion 12 has a linear computational complexity with respect
to n.

3.3 Further Reduction on Computational Complexity

and Memory Complexity by Noise Contrastive

Estimation

We can even further reduce the computational complex-
ity and memory complexity of dt-SEE and hot-SEE using
noise contrastive estimation (NCE). Instead of computing
neighboring probabilities between each data point i and all
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Methods Error Rates
pt-SNE (batchsize = 1000) 32.48
pt-SNE (batchsize = 2000) 32.04

hot-SNE (batchsize = 1000) 31.29
hot-SNE (batchsize = 2000) 31.82
dt-SEE (batchsize = 1000) 29.42
dt-SEE (batchsize = 2000) 28.30

hot-SEE (batchsize = 1000) 29.06
hot-SEE (batchsize = 2000) 28.18

Table 1: Error rates (%) by 1NN on the 2-dimensional represen-
tations produced by different methods with perplexity = 3 on the
Fashion dataset.

z exemplars, we can simply only compute the probabilities
between data point i and its ze nearest exemplars for both
P and Q. For high-dimensional probability distribution Pi,
we simply set the probabilities between i and other exem-
plars 0; for low-dimensional probability distributionQi, we
randomly sample zn non-neighboring exemplars outside of
these ze neighboring exemplars, and use the sum of these
zn non-neighboring probabilities multiplied by a constant
Ke and the ze neighboring probabilities to approximate the
normalization terms involving data point i in Equation 10.
Since this strategy based on noise contrastive estimation
eliminates the need of computing neighboring probabilities
between data points and all exemplars, it further reduces
computational and memory complexity.
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Figure 1: batch size sensitivity test on COIL100 and MNIST

4 Experiments

In this section, we evaluate the effectiveness of dt-SEE
and hot-SEE by comparing them against state-of-the-art
unsupervised parametric embedding method pt-SNE based
upon three datasets, i.e., COIL100, MNIST, and Fashion.
The COIL100 data 1 contains 7200 images with 100 classes,
where 3600 samples for training and 3600 for test. The
MNIST dataset 2 consists of 60,000 training and 10,000 test
gray-level 784-dimensional images. The Fashion dataset 3

has the same number of classes, training and test data
points as that of MNIST, but is designed to classify 10 fash-
ion products, such as boot, coat, and bag, where each con-
tains a set of pictures taken by professional photographers
from different aspects of the product, such as looks from
front, back, with model, and in an outfit.
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Figure 2: perplexity sensitivity test on COIL100 and MNIST

To make computational procedures and tuning procedures
for data visualization simpler, none of these models was
pre-trained using any unsupervised learning strategy, al-
though hot-SNE, hot-SEE, dt-SEE, and pt-SNE could all be
pre-trained by autoencoders or variants of Restricted Boltz-
mann Machines [18, 11].

For hot-SNE and hot-SEE, we set F = 800 and m = 400

1http://www1.cs.columbia.edu/CAVE/software/softlib/coil-
100.php

2http://yann.lecun.com/exdb/mnist/
3https://github.com/zalandoresearch/fashion-mnist
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Figure 3: Comparing pt-SNE to hot-SEE with a small batch size = 100 (perplexity = 3) or a reasonable perplexity = 10 (batch size =
1000) to illustrate pt-SNE’s unstable visual performance.

for all the datasets used. For pt-SNE and dt-SEE, we set
the deep neural network architecture to input dimensional-
ity H-500-500-2000-2 for all datasets, following the archi-
tecture design in van der Maaten (2009) [22]. For hot-SEE
and dt-SEE, when the exemplar size is smaller than 1000,
we set batch size to 100; otherwise, we set it 1000. With
the above architecture design, the shallow high-order neu-
ral network used in hot-SNE and hot-SEE is as fast as 2.5
times of the deep neural network used in pt-SNE and dt-
SEE for embedding 10, 000 MNIST test data.

For all the experiments, the predictive accuracies were ob-
tained by the 1NN approach on top of the 2-dimensional
representations generated by different methods. The error
rate was calculated by the number of misclassified test data
points divided by the total number of test data points.

4.1 Performance Comparisons with Different Batch

Sizes and Perplexities on COIL100 and MNIST

Our first experiment aims at examining the robustness of
different testing methods with respect to the batch size and
the perplexity used. Figures 1 and 2 depict our results on
the COIL100 and MNIST datasets when varying the batch
size and perplexity, respectively, used by the testing meth-
ods.

The top subfigure of Figure 1 suggests that, for the
COIL100 data, the pt-SNE was very sensitive to the selec-
tion of the batch size; efforts were needed to find a right
batch size in order to obtain good performance. On the
other hand, the use of different batch sizes had very minor
impact on the predictive performance of both the dt-SEE
and hot-SEE strategies. Similarly, for the MNIST data, as
shown in the bottom subfigure of Figure 1, in order to ob-
tain good predictive performance, the pt-SNE needed to
have a batch size not too big and not too small. On the
contrary, the hot-SEE methods was insensitive to the size
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Figure 4: MNIST embedding figures for pt-SNE, hot-SNE, dt-SEE, and hot-SEE

of batch larger than 300.

Based on the results in Figure 1, we selected the best batch
sizes for both the COIL100 and MNIST data sets, with 600
and 1000, respectively, but we varied the values of the per-
plexities used. In the top subfigure of Figure 2, one can
observe that, the performance of the pt-SNE and hot-SNE
could dramatically change due to the use of different per-
plexities, but that was not the case for both the dt-SEE and
hot-SEE. Similarly, for the MNIST data, as depicted in the
bottom subfigure of Figure 2, in order to obtain good pre-
dictive performance, one would need to carefully tune for
the right perplexity. On the contrary, both the dt-SEE and
hot-SEE methods performed quite robust with respect to
different selected perplexities.

4.2 Experimental Results on the Fashion dataset

We also further evaluated the predictive performance of the
testing methods using the Fashion data set. We used batch
sizes of 1000 and 2000, along with perplexity of 3 in all
the experiments since both pt-SNE and hot-SNE favored
these settings as suggested in Figures 1 and 2. The achieved
accuracies are shown in Table 1.

Results in Table 1 further confirmed the superior perfor-
mance of our methods. Both the dt-SEE and hot-SEE sig-
nificantly outperformed the pt-SNE and hot-SNE.

4.3 Two-dimensional Visualization of Embeddings

This section provides the visual results of the embeddings
formed by the pt-SNE and hot-SEE methods.

The top and bottom subfigures in Figure 3 depicts the 2D
embeddings on the MNIST data set created by pt-SNE
and hot-SEE, with batch size of 100 (perplexity = 3) and
perplexity of 10 (batch size = 1000), respectively. From
these visual figures, one may conclude that the hot-SEE
was more stable compared to its competitor pt-SNE.

In Figure 4, we also provided the visual results of the
MNIST embeddings created by pt-SNE, hot-SNE, dt-SEE,
and hot-SEE, with batch size of 2000. These results im-
ply that the dt-SEE and hot-SEE produced the best visual-
ization: the data points in each cluster were close to each
other but with large separation between different clusters,
compared to that of the pt-SNE and hot-SNE methods.

Also, in Figures 5, we depicted our visual 2D embedding
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Figure 5: Fashion embedding figures for pt-SNE and hot-SEE

results on the Fashion data set. These figures further con-
firmed the better clustering quality generated by the hot-
SEE method, compared to that of the pt-SNE strategy.

4.4 Noise Contrastive Estimation

In this section, we evaluated the performance of the
noise contrastive estimation (NCE) strategy applied to our
method hot-SEE with perplexity 3 and 2000 exemplars. We
set ze = zn = 100 and Ke = 18. Table 2 show the error
rates (%) obtained by 1NN on the two-dimensional repre-
sentations produced by hot-SEE with or without NCS, re-
spectively, on the MNIST and Fashion datasets.

Results in Table 2 suggest that the NCE was able to further
reduce the computational and memory complexity of our
method without sacrificing the predictive performance. As
shown in the table, the accuracy difference of the hot-SEE
method with and without NCE was less than 0.4% for both
the MNIST and Fashion data sets.

MNIST Fashion
standard w/ NCE standard w/ NCE

9.30 9.69 28.18 28.19

Table 2: Error rates (%) obtained by 1NN on the two-dimensional
representations produced by hot-SEE (perplexity = 3 and 2000 ex-
emplars) with or without further computational complexity reduc-
tion based on Noise Contrastive Estimation (NCE), respectively,
on the MNIST and Fashion datasets.

4.5 Careful Exemplar Seeding vs. Random

Initialization

We also further evaluate the performance of our methods in
terms of different exemplar initializations used. We com-
pared the performance of using careful seeding based on
scalable K-means++ and randomly initialized exemplars.
We presented the results in Table 3. From Table 3, one
can observe that our methods were insensitive to the exem-
plar seeding approach used. That is, very similar predictive
performances (less than 0.4%) were obtained by our meth-
ods on all the three testing data sets, i.e., COIL100, MNIST,
and Fashion.

5 Conclusion and Future Work

In this paper, we present unsupervised parametric t-
distributed stochastic exemplar-centered data embedding
and visualization approaches, leveraging a deep neural net-
work or a shallow neural network with high-order feature
interactions. Owing to the benefit of a small number of
precomputed high-dimensional exemplars, our approaches
avoid pairwise training data comparisons and only have
linear computational cost for the given data. In addition,
the high-dimensional exemplars reflect local data density
distributions and global clustering patterns. With these
nice properties, the resulting embedding approaches solved
the important problem of embedding performance being
sensitive to hyperparameters such as batch sizes and per-
plexities, which have haunted other neighbor embedding
methods for a long time. Experimental results on several
benchmark datasets demonstrate that our proposed meth-
ods significantly outperform state-of-the-art unsupervised
deep parametric embedding method pt-SNE in terms of ro-
bustness, visual effects, and quantitative evaluations.

In the future, we plan to extend our exemplar-centered
embedding framework to unsupervised nonparametric data
embedding and visualization, and we plan to incorporate re-
cent neighbor-embedding speedup developments based on
efficient N-body force approximations into our exemplar-
centered embedding framework.
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COIL100 MNIST Fashion
careful seeding random seeding careful seeding random seeding careful seeding random seeding

58.67 58.44 9.30 9.19 28.18 28.53

Table 3: Error rates (%) obtained by 1NN on the 2-dimensional representations produced by hot-SEE (perplexity = 3) with careful
seeding or random seeding on the COIL100 (with 600 exemplars), MNIST (with 2000 exemplars), and Fashion (with 2000 exemplars)
datasets.
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