
https://doi.org/10.4224/8914095

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Description of the SWEBOK Knowledge Area Software Engineering

Process (Version 0.9)
El-Emam, Khaled

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=e3c14ab2-67d2-463d-9d14-217a08361b02

https://publications-cnrc.canada.ca/fra/voir/objet/?id=e3c14ab2-67d2-463d-9d14-217a08361b02

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Description of the SWEBOK
Knowledge Area Software
Engineering Process

El-Emam, K.

March 2001

ERB-1083

Canada NRC 44188

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Description of the SWEBOK Knowledge Area

Software Engineering Process

El-Emam, K.

March 2001

Copyright 2001 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

R02 –05/02/01 1

Description of The
SWEBOK Knowledge Area

Software Engineering Process
(Version 0.9)

Khaled El Emam , NRC, Canada

Table of Contents

9.1 INTRODUCTION .. 3

9.1.1 KEYWORDS.. 3

9.1.2 ACRONYMS.. 3

9.2 DEFINITION .. 3

9.2.1 SCOPE .. 4

9.2.2 CURRENCY OF MATERIAL.. 4

9.2.3 STRUCTURE OF THE KA... 4

9.3 BREAKDOWN OF TOPICS ... 5

9.3.1 SOFTWARE ENGINEERING PROCESS CONCEPTS ... 5

9.3.1.1 Themes .. 5

9.3.1.2 Terminology .. 8

9.3.2 PROCESS INFRASTRUCTURE ... 8

9.3.2.1 The Software Engineering Process Group.. 9

9.3.2.2 The Experience Factory.. 9

9.3.3 PROCESS MEASUREMENT .. 10

9.3.3.1 Methodology in Process Measurement ... 11

9.3.3.2 Process Measurement Paradigms... 12

9.3.4 PROCESS DEFINITION... 14

9.3.4.1 Types of Process Definitions... 14

9.3.4.2 Life Cycle Framework Models .. 14

9.3.4.3 Software Life Cycle Process Models... 14

9.3.4.4 Notations for Process Definitions ... 15

9.3.4.5 Process Definition Methods .. 15

9.3.4.6 Automation.. 15

9.3.5 QUALITATIVE PROCESS ANALYSIS .. 15

9.3.5.1 Process Definition Review .. 15

9.3.5.2 Root Cause Analysis ... 16

9.3.6 PROCESS IMPLEMENTATION AND CHANGE .. 16

9.3.6.1 Paradigms for Process Implementation and Change ... 16

9.3.6.2 Guidelines for Process Implementation and Change.. 16

9.3.6.3 Evaluating the Outcome of Process Implementation and Change.. 16

9.4 KEY REFERENCES.. 18

9.5 RELATED DISCIPLINES... 20

9.5.1 COMPUTER SCIENCE .. 20

9.5.2 MATHEMATICS .. 20

9.5.3 PROJECT MANAGEMENT .. 20

R02 –05/02/01 2

9.5.4 SYSTEMS ENGINEERING... 20

9.5.5 MANAGEMENT AND MANAGEMENT SCIENCE .. 20

9.6 KEY REFERENCES VS. TOPICS MAPPING ... 22

9.7 BLOOM’S TAXONOMY .. 27

9.8 VINCENTI CATEGORIZATION .. 28

9.9 GENERAL REFERENCES... 29

R02 –05/02/01 3

9.1 Introduction
The software engineering process Knowledge Area has witnessed dramatic growth over the last decade.
This was partly due to a recognition by major acquirers of systems where software is a major component
that process issues can have an important impact on the ability of their suppliers to deliver. Therefore,
they encouraged a focus on the software engineering process as a way to remedy this. Furthermore, the
academic community has recently pursued an active research agenda in developing new tools and
techniques to support software engineering processes, and also empirically studying these processes
and their improvement. It should also be recognized that many software engineering process issues are
closely related to other disciplines, namely those in the management sciences, albeit they have used a
different terminology. The industrial adoption of software engineering process technology has also been
increasing, as demonstrated by a number of published success stories. Therefore, there is in fact an
extensive body of knowledge on the software engineering process.

9.1.1 Keywords

software process, software process improvement, software process modeling, software process
measurement, organizational change, software process assessment.

9.1.2 Acronyms

CBA IPI CMM Based Appraisal for Internal Process Improvement

CMM Capability Maturity Model

EF Experience Factory

FP Function Points

G/Q/M Goal/Question/Metric

HRM Human Resources Management

IDEAL Initiating-Diagnosing-Establishing-Acting-Leaning (model)

MIS Management Information Systems

PDCA Plan-Do-Check-Act (cycle)

QIP Quality Improvement Paradigm

ROI Return on Investment

SCE Software Capability Evaluation

SEPG Software Engineering Process Group

SW-CMM Capability Maturity Model for Software

9.2 Definition
The software engineering process Knowledge Area (KA) can potentially be examined at two levels. The
first level encompasses the technical and managerial activities within the software engineering process
that are performed during software acquisition, development, maintenance, and retirement. The second
is the meta-level, which is concerned with the definition, implementation, measurement, management,
change and improvement of the software engineering process itself. The latter we will term software
process engineering.

R02 –05/02/01 4

The first level is covered by the other KA’s of this Guide to the Software Engineering Body of Knowledge.
This Knowledge Area is concerned with the second: software process engineering.

9.2.1 Scope

This Knowledge Area does not explicitly address the following topics:

• Human resources management (for example, as embodied in the People CMM [30][31])

• Systems engineering processes

While important topics in themselves, they are outside the direct scope of software process engineering.
However, where relevant, interfaces (or references to interfaces) to HRM and systems engineering will be
addressed.

9.2.2 Currency of Material

The software process engineering discipline is rapidly changing, with new paradigms and new models.
The breakdown and references included here are pertinent at the time of writing. An attempt has been
made to focus on concepts to shield the knowledge area description from changes in the field, but of
course this cannot be 100% successful, and therefore the material here must be evolved over time. A
good example is the on-going CMM Integration effort (see
http://www.sei.cmu.edu/cmmi/products/models.html for the latest document suite) and the Team
Software Process effort [71], both of which are likely to have a considerable influence on the software
process community once widely disseminated, and would therefore have to be accommodated in the
knowledge area description.

In addition, where Internet addresses are provided for reference material, these addresses were verified
at the time of press. However, there are no guarantees that the documents will still be available on-line at
the same location in the future.

9.2.3 Structure of the KA

To structure this KA in a way that is directly related to practice, we have defined a generic process model
for software process engineering (see Figure 9-1). This model identifies the activities that are performed
in a process engineering context. The topics are mapped to these activities. The advantage of such a
structure is that one can see, in practice, where each of the topics is relevant, and provides an overall
rationale for the topics. This generic model is based on the PDCA (plan-do-check-act) cycle (also see
[79]).

R02 –05/02/01 5

9.3 Breakdown of Topics
Below is the overall breakdown of the topics in this knowledge area. Further explanations are provided in
the subsequent sections.

Software Engineering Process Concepts

Themes

Terminology

Process Infrastructure

The Software Engineering Process Group

The Experience Factory

Process Measurement

Methodology in Process Measurement

Process Measurement Paradigms

Analytic Paradigm

Benchmarking Paradigm

Process Definition

Types of Process Definitions

Life Cycle Framework Models

Software Life Cycle Process Models

Notations for Process Definitions

Process Definition Methods

Automation

Qualitative Process Analysis

Process Definition Review

Root Cause Analysis

Process Implementation and Change

Paradigms for Process Implementation and Change

Guidelines for Process Implementation and Change

Evaluating the Outcome of Process Implementation and Change

9.3.1 Software Engineering Process Concepts

9.3.1.1 Themes

Dowson [35] notes that “All process work is ultimately directed at ‘software process assessment and
improvement’”. This means that the objective is to implement new or better processes in actual practices,
be they individual, project or organizational practices.

R02 –05/02/01 6

We describe the main topics in the software process engineering (i.e., the meta-level that has been
alluded to earlier) area in terms of a cycle of process change, based on the commonly known PDCA
cycle. This cycle highlights that individual process engineering topics are part of a larger process to
improve practice, and that process evaluation and feedback is an important element of process
engineering.

Software process engineering consists of four activities as illustrated in the model in Figure 9-1. The
activities are sequenced in an iterative cycle allowing for continuous feedback and improvement of the
software process.

The “Establish Process Infrastructure” activity consists of establishing commitment to process
implementation and change (including obtaining management buy-in), and putting in place an appropriate
infrastructure (resources and responsibilities) to make it happen.

The activities “Planning of Process Implementation and Change” and “Process Implementation and
Change” are the core ones in process engineering, in that they are essential for any long-lasting benefit
from process engineering to accrue. In the planning activity the objective is to understand the current
business objectives and process needs of the organization

1
, identify its strengths and weaknesses, and

make a plan for process implementation and change. In “Process Implementation and Change”, the
objective is to execute the plan, deploy new processes (which may involve, for example, the deployment
of tools and training of staff), and/or change existing processes.

The fourth activity, “Process Evaluation” is concerned with finding out how well the implementation and
change went; whether the expected benefits materialized. This is then used as input for subsequent
cycles.

At the centre of the cycle is the “Process Experience Base”. This is intended to capture lessons from past
iterations of the cycle (e.g., previous evaluations, process definitions, and plans). Evaluation lessons can
be qualitative or quantitative. No assumptions are made about the nature or technology of this “Process
Experience Base”, only that it be a persistent storage. It is expected that during subsequent iterations of
the cycle, previous experiences will be adapted and reused. It is also important to continuously re-assess
the utility of information in the experience base to ensure that obsolete information does not accumulate.

With this cycle as a framework, it is possible to map the topics in this knowledge area to the specific
activities where they would be most relevant. This mapping is also shown in Figure 9-1. The bulleted
boxes contain the Knowledge Area topics.

It should be noted that this cycle is not intended to imply that software process engineering is relevant to
only large organizations. To the contrary, process-related activities can, and have been, performed
successfully by small organizations, teams, and individuals. The way the activities defined in the cycle
are performed would be different depending on the context. Where it is relevant, we will present
examples of approaches for small organizations.

1
 The term “organization” is meant in a loose sense here. It could be a project, a team, or even an individual.

R02 –05/02/01 7

Establish
Process

Infrastructure Planning of
Process

Implementation
and Change

Process
Implementation

and Change

Process
Evaluation

Process
Experience

Base

! Process
Infrastructure (9.3.2)

!
!
!

 Process Measurement (9.3.3)

 Process Definition (9.3.4)

 Qualitative Process Analysis
(9.3.5)

!
!

!

 Process Measurement (9.3.3)

 Qualitative Process Analysis
(9.3.5)

 Process Implementation and
Change (9.3.6)

! Process
Implementation and
Change (9.3.6)

Figure 9-1: A model of the software process engineering cycle, and the relationship of its activities to the
KA topics. The circles are the activities in the process engineering cycle. The square in the middle of the
cycle is a data store. The bulleted boxes are the topics in this Knowledge Area that map to each of the

activities in the cycle. The numbers refer to the topic sections in this chapter.

R02 –05/02/01 8

The topics in this KA are as follows:

Process Infrastructure: This is concerned with putting in place an infrastructure for software process
engineering.

Process Measurement: This is concerned with quantitative techniques to diagnose software
processes; to identify strengths and weaknesses. This can be performed to initiate process
implementation and change, and afterwards to evaluate the consequences of process implementation
and change.

Process Definition: This is concerned with defining processes in the form of models, plus the
automated support that is available for the modeling task, and for enacting the models during the
software process.

Qualitative Process Analysis: This is concerned with qualitative techniques to analyze software
processes, to identify strengths and weaknesses. This can be performed to initiate process
implementation and change, and afterwards to evaluate the consequences of process implementation
and change.

Process Implementation and Change: This is concerned with deploying processes for the first time
and with changing existing process. This topic focuses on organizational change. It describes the
paradigms, infrastructure, and critical success factors necessary for successful process
implementation and change. Within the scope of this topic, we also present some conceptual issues
about the evaluation of process change.

The main, generally accepted, themes in the software engineering process field have been described by
Dowson in [35]. His themes are a subset of the topics that we cover in this KA. Below are Dowson’s
themes:

• Process definition: covered in topic 9.3.4 of this KA breakdown

• Process assessment: covered in topic 9.3.3 of this KA breakdown

• Process improvement: covered in topics 9.3.2 and 9.3.6 of this KA breakdown

• Process support: covered in topic 9.3.4 of this KA breakdown

We also add one theme in this KA description, namely the qualitative process analysis (covered in topic
9.3.5).

9.3.1.2 Terminology

There is no single universal source of terminology for the software engineering process field, but good
sources that define important terms are [51][96], and the vocabulary (Part 9) in the ISO/IEC TR 15504
documents [81].

9.3.2 Process Infrastructure

At the initiation of process engineering, it is necessary to have an appropriate infrastructure in place. This
includes having the resources (competent staff, tools and funding), as well as the assignment of
responsibilities. This is an indication of management commitment to and ownership of the process
engineering effort. Various committees may have to be established, such as a steering committee to
oversee the process engineering effort.

It is widely recognized that a team separate from the developers/maintainers must be set up and tasked
with process analysis, implementation and change [16]. The main reason for this is that the priority of the
developers/maintainers is to produce systems or releases, and therefore process engineering activities
will not receive as much attention as they deserve or need. This, however, should not mean that the
project organization is not involved in the process engineering effort at all. To the contrary, their
involvement is essential. Especially in a small organization, outside help (e.g., consultants) may be
required to assist in making up a process team.

R02 –05/02/01 9

Two types of infrastructure are have been used in practice: the Experience Factory [8][9] and the
Software Engineering Process Group [54]. The IDEAL handbook [100] provides a good description of
infrastructure for process improvement in general.

9.3.2.1 The Software Engineering Process Group

The SEPG is intended to be the central focus for process improvement within an organization. The SEPG
typically has the following ongoing activities:

• Obtains and maintains the support of all levels of management

• Facilitates software process assessments (see below)

• Works with line managers whose projects are affected by changes in software engineering
practice

• Maintains collaborative working relationships with software engineers

• Arranges and supports any training or continuing education related to process implementation
and change

• Tracks, monitors, and reports on the status of particular improvement efforts

• Facilitates the creation and maintenance of process definitions

• Maintains a process database

• Provides process consultation to development projects and management

• Participate in integrating software engineering processes with other organizational processes,
such as systems engineering

Fowler and Rifkin [54] suggest the establishment of a steering committee consisting of line and
supervisory management. This would allow management to guide process implementation and change,
align this effort with strategic and business goals of the organization, and also provides them with
visibility. Furthermore, technical working groups may be established to focus on specific issues, such as
selecting a new design method to setting up a measurement program.

9.3.2.2 The Experience Factory

The concept of the EF separates the project organization (e.g., the software development organization)
from the improvement organization. The project organization focuses on the development and
maintenance of applications. The EF is concerned with improvement. Their relationship is depicted in
Figure 9-2.

The EF is intended to institutionalize the collective learning of an organization by developing, updating,
and delivering to the project organization experience packages (e.g., guide books, models, and training
courses).

2
 The project organization offers to the experience factory their products, the plans used in their

development, and the data gathered during development and operation. Examples of experience
packages include:

• resource models and baselines
3
 (e.g., local cost models, resource allocation models)

• change and defect baselines and models (e.g., defect prediction models, types of defects
expected for the application)

• project models and baselines (e.g., actual vs. expected product size)

• process definitions and models (e.g., process models for Cleanroom, Ada waterfall model)

• method and technique evaluations (e.g., best method for finding interface faults)

2
 Also refered to as process assets.

3
 Baselines can be interpreted as descriptive reports presenting the current status.

R02 –05/02/01 10

• products and product parts (e.g., Ada generics for simulation of satellite orbits)

• quality models (e.g., reliability models, defect slippage models, ease of change models), and

• lessons learned (e.g., risks associated with an Ada development).

Application
Developers

Experience Factory:
Capture, Analyze, and Package

Experiences

Project
Organization:

Develop
Applications

Mission

Analysts

Application
Testers

Data Base
Personnel

Researchers

Packagers

metrics &

lessons

learned

guide books,

models,

training

Application

Figure 9-2: The relationship between the Experience Factory and the project organization as
implemented at the Software Engineering Laboratory at NASA/GSFC. This diagram is reused here from

[10] with permission of the authors.

9.3.3 Process Measurement

Process measurement, as used here, means that quantitative information about the process is collected,
analyzed, and interpreted. Measurement is used to identify the strengths and weaknesses of processes,
and to evaluate processes after they have been implemented and/or changed (e.g., evaluate the ROI
from implementing a new process).

4

An important assumption made in most process engineering work is illustrated by the path diagram in
Figure 9-3. Here, we assume that the process has an impact on process outcomes. Process outcomes
could be, for example, product quality (faults per KLOC or per FP), maintainability (effort to make a
certain type of change), productivity (LOC or FP per person month), time-to-market, the extent of process
variation, or customer satisfaction (as measured through a customer survey). This relationship depends
on the particular context (e.g., size of the organization, or size of the project).

4
 Process measurement may serve other purposes as well. For example, process measurement is useful for managing a software

project. Some of these are covered in the Software Engineering Management and other KA’s. Here we focus on process
measurement for the purpose of process implementation and change.

R02 –05/02/01 11

Process
Process

Outcomes

Context

Figure 9-3: Path diagram showing the relationship between process and outcomes (results). The context
affects the relationship between the process and process outcomes. This means that this process to

process outcome relationship depends on the context value.

Not every process will have a positive impact on all outcomes. For example, the introduction of software
inspections may reduce testing effort and cost, but may increase interval time if each inspection
introduces large delays due to the scheduling of large inspection meetings [131]. Therefore, it is
preferred to use multiple process outcome measures that are important for the organization’s business.

In general, we are most concerned about the process outcomes. However, in order to achieve the
process outcomes that we desire (e.g., better quality, better maintainability, greater customer satisfaction)
we have to implement the appropriate process.

Of course, it is not only process that has an impact on outcomes. Other factors such as the capability of
the staff and the tools that are used play an important role.

5
 Furthermore, the extent to which the process

is institutionalized or implemented (i.e., process fidelity) is important as it may explain why “good”
processes do not give the desired outcomes.

One can measure the quality of the software process itself, or the process outcomes. The methodology
in Section 9.3.3.1 is applicable to both. We will focus in Section 9.3.3.2 on process measurement since
the measurement of process outcomes is more general and applicable in other Knowledge Areas.

9.3.3.1 Methodology in Process Measurement

A number of guides for measurement are available [108][109][126]. All of these describe a goal-oriented
process for defining measures. This means that one should start from specific information needs and then
identify the measures that will satisfy these needs, rather than start from specific measures and try to use
them. A good practical text on establishing and operating a measurement program has been produced
by the Software Engineering Laboratory [123]. This also discusses the cost of measurement. Texts that
present experiences in implementing measurement in software organizations include [86][105][115]. An
emerging international standard that defines a generic measurement process is also available (ISO/IEC
CD 15939: Information Technology – Software Measurement Process) [82].

Two important issues in the measurement of software engineering processes are the reliability and
validity of measurement. Reliability is concerned with random measurement error. Validity is concerned
with the ability of the measure to really measure what we think it is measuring.

Reliability becomes important when there is subjective measurement, for example, when assessors
assign scores to a particular process. There are different types of validity that ought to be demonstrated
for a software process measure, but the most critical one is predictive validity. This is concerned with the
relationship between the process measure and the process outcome. A discussion of both of these and
different methods for achieving them can be found in [40][59]. An IEEE Standard describes a

5
 And when evaluating the impact of a process change, for example, it is important to factor out these other influeneces.

R02 –05/02/01 12

methodology for validating metrics (IEEE Standard for a Software Quality Metrics Methodology. IEEE Std
1061-1998) [76].

An overview of existing evidence on reliability of software process assessments can be found in [43][49],
and for predictive validity in [44][49][59][88].

9.3.3.2 Process Measurement Paradigms

Two general paradigms that are useful for characterizing the type of process measurement that can be
performed have been described by Card [21]. The distinction made by Card is a useful conceptual one.
Although, there may be overlaps in practice.

The first is the analytic paradigm. This is characterized as relying on "quantitative evidence to determine
where improvements are needed and whether an improvement initiative has been successful".

6
 The

second, the benchmarking paradigm, "depends on identifying an 'excellent' organization in a field and
documenting its practices and tools". Benchmarking assumes that if a less-proficient organization adopts
the practices of the excellent organization, it will also become excellent. Of course, both paradigms can
be followed at the same time, since they are based on different types of information.

We use these paradigms as general titles to distinguish between different types of measurement.

9.3.3.2.1 Analytic Paradigm
7

The analytic paradigm is exemplified by the Quality Improvement Paradigm (QIP) consisting of a cycle of
understanding, assessing, and packaging [124].

• Experimental and Observational Studies

Experimentation involves setting up controlled or quasi experiments in the organization to
evaluate processes [101]. Usually, one would compare a new process with the current process
to determine whether the former has better process outcomes. Correlational (nonexperimental)
studies can also provide useful feedback for identifying process improvements (e.g., for example,
see the study described by Agresti [2]).

• Process Simulation

The process simulation approach can be used to predict process outcomes if the current process
is changed in a certain way [117]. Initial data about the performance of the current process
needs to be collected, however, as a basis for the simulation.

• Orthogonal Defect Classification

Orthogonal Defect Classification is a technique that can be used to link faults found with potential
causes. It relies on a mapping between fault types and fault triggers [22][23]. There exists an
IEEE Standard on the classification of faults (or anomalies) that may also be useful in this context
(IEEE Standard for the Classification of Software Anomalies. IEEE Std 1044-1993) [74].

• Statistical Process Control

Placing the software process under statistical process control, through the use of control charts
and their interpretations, is an effective way to identify stability, or otherwise, in the process. One
recent book provides a good introduction to SPC in the context of software engineering [53].

• The Personal Software Process

This defines a series of improvements to an individual’s development practices in a specified
order [70]. It is ‘bottom-up’ in the sense that it stipulates personal data collection and
improvements based on the data interpretations.

6
 Although qualitative evidence also can play an important role. In such a case, see Section 9.3.5 on qualitative process analysis.

7
 These are intended as examples of the analytic paradigm, and reflect what is currently done in practice. Whether a specific

organization uses all of these techniaues will depend, at least partially, on its maturity

R02 –05/02/01 13

9.3.3.2.2 Benchmarking Paradigm

This paradigm involves measuring the maturity of an organization or the capability of its processes.
The benchmarking paradigm is exemplified by the software process assessment

8
 work. A general

introductory overview of process assessments and their application is provided in [135].

• Process assessment models

An assessment model captures what are believed to be good practices. The good practices
may pertain to technical software engineering activities only, or may also encompass, for
example, management, systems engineering, and human resources management activities
as well.

Architectures of assessment models

There are two general architectures for an assessment model that make different
assumptions about the order in which processes must be measured: the continuous and the
staged architectures [110]. At this point it is not possible to make a recommendation as to
which approach is better than another. They have considerable differences. An organization
should evaluate them to see which are most pertinent to their needs and objectives when
selecting a model.

Assessment models

The most commonly used assessment model in the software community is the SW-CMM
[122]. It is also important to recognize that ISO/IEC 15504 is an emerging international
standard on software process assessments [42][81]. It defines an exemplar assessment
model and conformance requirements on other assessment models. ISO 9001 is also a
common model that has been applied by software organizations (usually in conjunction with
ISO 9000-1) [132]. Other notable examples of assessment models are Trillium [25],
Bootstrap [129], and the requirements engineering capability model [128]. There are also
maturity models for other software processes available, such as for testing [18][19][20], a
measurement maturity model [17], and a maintenance maturity model [36] (although, there
have been many more capability and maturity models that have been defined, for example,
for design, documentation, and formal methods, to name a few). A maturity model for
systems engineering has also been developed, which would be useful where a project or
organization is involved in the development and maintenance of systems including software
[39]. The applicability of assessment models to small organizations is addressed in [85][120],
where assessments models tailored to small organizations are presented.

• Process assessment methods

In order to perform an assessment, a specific assessment method needs to be followed. In
addition to producing a quantitative score that characterizes the capability of the process (or
maturity of the organization), an important purpose of an assessment is to create a climate
for change within the organization [37]. In fact, it has been argued that the latter is the most
important purpose of doing an assessment [38].

The most well known method that has a reasonable amount of publicly available
documentation is the CBA IPI [37]. This method focuses on assessments for the purpose of
process improvement using the SW-CMM. Many other methods are refinements of this for
particular contexts. Another well known method using the SW-CMM, but for supplier
selection, is the SCE [6]. The activities performed during an assessment, the distribution of
effort on these activities, as well as the atmosphere during an assessment is different if it is
for the purpose of improvement versus contract award. Requirements on both types of
methods that reflect what are believed to be good assessment practices are provided in
[81][99].

8
 In some instances the term “appraisal” is used instead of assessment, and the term “capabillity evaluation” is used when the

appraisal is for the purpose of contract award.

R02 –05/02/01 14

There have been criticisms of various models and methods following the benchmarking paradigm, for
example [12][50][62][87]. Most of these criticisms were concerned with the empirical evidence supporting
the use of assessments models and methods. However, since the publication of these articles, there has
been an accumulation of systematic evidence supporting the efficacy of process assessments
[24][47][48][60][64][65][66][94].

9.3.4 Process Definition

Software engineering processes are defined for a number of reasons, including: facilitating human
understanding and communication, supporting process improvement, supporting process management,
providing automated process guidance, and providing automated execution support [29][52][68]. The
types of process definitions required will depend, at least partially, on the reason.

It should be noted also that the context of the project and organization will determine the type of process
definition that is most important. Important variables to consider include the nature of the work (e.g.,
maintenance or development), the application domain, the structure of the delivery process (e.g.,
waterfall, incremental, evolutionary), and the maturity of the organization.

There are different approaches that can be used to define and document the process. Under this topic
the approaches that have been presented in the literature are covered, although at this time there is no
data on the extent to which these are used in practice.

9.3.4.1 Types of Process Definitions

Processes can be defined at different levels of abstraction (e.g., generic definitions vs. tailored
definitions, descriptive vs. prescriptive vs. proscriptive). The differentiation amongst these has been
described in [69][97][111].

Orthogonal to the levels above, there are also types of process definitions. For example, a process
definition can be a procedure, a policy, or a standard.

9.3.4.2 Life Cycle Framework Models

These framework models serve as a high level definition of the phases that occur during
development. They are not detailed definitions, but only the high level activities and their
interrelationships. The common ones are: the waterfall model, throwaway prototyping model,
evolutionary prototyping model, incremental/iterative development, spiral model, reusable software
model, and automated software synthesis. (see [11][28][84][111][113]). Comparisons of these
models are provided in [28][32], and a method for selection amongst many of them in [3].

9.3.4.3 Software Life Cycle Process Models

Definitions of life cycle process models tend to be more detailed than framework models. Another
difference being that life cycle process models do not attempt to order their processes in time.
Therefore, in principle, the life cycle processes can be arranged to fit any of the life cycle frameworks.
The two main references in this area are ISO/IEC 12207: Information Technology – Software Life
Cycle Processes [80] and ISO/IEC TR 15504: Information Technology – Software Process
Assessment [42][81]. Extensive guidance material for the application of the former has been
produced by the IEEE (Guide for Information Technology - Software Life Cycle Processes - Life cycle
data, IEEE Std 12207.1-1998, and Guide for Information Technology - Software Life Cycle Processes
– Implementation. Considerations. IEEE Std 12207.2-1998) [77][78]. The latter defines a two
dimensional model with one dimension being processes, and the second a measurement scale to
evaluate the capability of the processes. In principle, ISO/IEC 12207 would serve as the process
dimension of ISO/IEC 15504.

The IEEE standard on developing life cycle processes also provides a list of processes and activities
for development and maintenance (IEEE Standard for Developing Software Life Cycle Processes,
IEEE Std 1074-1991) [73], and provides examples of mapping them to life cycle framework models.
A standard that focuses on maintenance processes is also available from the IEEE (IEEE Standard
for Software Maintenance, IEEE Std 1219-1992) [75].

R02 –05/02/01 15

9.3.4.4 Notations for Process Definitions

Different elements of a process can be defined, for example, activities, products (artifacts), and resources
[68]. Detailed frameworks that structure the types of information required to define processes are
described in [4][98].

There are a large number of notations that have been used to define processes. They differ in the types
of information defined in the above frameworks that they capture. A text that describes different notations
is [125].

Because there is no data on which of these was found to be most useful or easiest to use under which
conditions, this Guide covers what seemingly are popular approaches in practice: data flow diagrams
[55], in terms of process purpose and outcomes [81], as a list of processes decomposed in constituent
activities and tasks defined in natural language [80], Statecharts [89][117] (also see [63] for a
comprehensive description of Statecharts), ETVX [116], Actor-Dependency modeling [14][134], SADT
notation [102], Petri nets [5], IDEF0 [125], rule-based [7], and System Dynamics [1]. Other process
programming languages have been devised, and these are described in [29][52][68].

9.3.4.5 Process Definition Methods

These methods specify the activities that must be performed in order to develop and maintain a process
definition. These may include eliciting information from developers to build a descriptive process definition
from scratch, and to tailoring an existing standard or commercial process. Examples of methids that have
been applied in practice are [13][14][90][98][102]. In general, there is a strong similarity amongst them in
that they tend to follow a traditional software development life cycle.

9.3.4.6 Automation

Automated tools either support the execution of the process definitions, or they provide guidance to
humans performing the defined processes. In cases where process analysis is performed, some tools
allow different types of simulations (e.g., discrete event simulation).

There exist tools that support each of the above process definition notations. Furthermore, these tools
can execute the process definitions to provide automated support to the actual processes, or to fully
automate them in some instances. An overview of process modeling tools can be found in [52], and of
process-centered environments in [57][58].

Recent work on the application of the Internet to the provision of real-time process guidance is described
in [91].

9.3.5 Qualitative Process Analysis

The objective of qualitative process analysis is to identify the strengths and weaknesses of the software
process. It can be performed as a diagnosis before implementing or changing a process. It could also be
performed after a process is implemented or changed to determine whether the change has had the
desired effect.

Below we present two techniques for qualitative analysis that have been used in practice. Although it is
plausible that new techniques would emerge in the future.

9.3.5.1 Process Definition Review

Qualitative evaluation means reviewing a process definition (either a descriptive or a prescriptive one, or
both), and identifying deficiencies and potential process improvements. Typical examples of this are
presented in [5][89]. An easily operational way to analyze a process is to compare it to an existing
standard (national, international, or profesisonal body), such as ISO/IEC 12207 [80].

With this approach, one does not collect quantitative data on the process. Or if quantitative data is
collected, it plays a supportive role. The individuals performing the analysis of the process definition use
their knowledge and capabilities to decide what process changes would potentially lead to desirable
process outcomes.

R02 –05/02/01 16

9.3.5.2 Root Cause Analysis

Another common qualitative technique that is used in practice is a “Root Cause Analysis”. This involves
tracing back from detected problems (e.g., faults) to identify the process causes, with the aim of changing
the process to avoid the problems in the future. Examples of this for different types of processes are
described in [13][27][41][107].

With this approach, one starts from the process outcomes, and traces back along the path in Figure 9-3
to identify the process causes of the undesirable outcomes. The Orthogonal Defect Classification
technique described in Section 9.3.3.2.1 can be considered a more formalized approach to root cause
analysis using quantitative information.

9.3.6 Process Implementation and Change

This topic describes the situation when processes are deployed for the first time (e.g., introducing an
inspection process within a project or a complete methodology, such as Fusion [26] or the Unified
Process [83]), and when current processes are changed (e.g., introducing a tool, or optimizing a
procedure).

9
 In both instances, existing practices have to be modified. If the modifications are extensive,

then changes in the organizational culture may be necessary.

9.3.6.1 Paradigms for Process Implementation and Change

Two general paradigms that have emerged for driving process implementation and change are the
Quality Improvement Paradigm (QIP) [124] and the IDEAL model [100]. The two paradigms are
compared in [124]. A concrete instantiation of the QIP is described in [16].

9.3.6.2 Guidelines for Process Implementation and Change

Process implementation and change is an instance of organizational change. Most successful
organizational change efforts treat the change as a project in its own right, with appropriate plans,
monitoring, and review.

Guidelines about process implementation and change within software engineering organizations,
including action planning, training, management sponsorship and commitment, and the selection of pilot
projects, and that cover both the transition of processes and tools, are given in
[33][92][95][104][114][120][127][130][133]. An empirical study evaluating success factors for process
change is reported in [46]. Grady describes the process improvement experiences at Hewlett-Packard,
with some general guidance on implementing organizational change [61].

The role of change agents in this activity should not be underestimated. Without the enthusiasm,
influence, credibility, and persistence of a change agent, organizational change has little chance of
succeeding. This is further discussed in [72].

Process implementation and change can also be seen as an instance of consulting (either internal or
external). A suggested text, and classic, on consulting is that of Schein [121].

One can also view organizational change from the perspective of technology transfer. The classic text on
the stages of technology transfer is that by Rogers [119]. Software engineering articles that discuss
technology transfer, and the characteristics of recipients of new technology (which could include process
related technologies) are [112][118].

9.3.6.3 Evaluating the Outcome of Process Implementation and Change

Evaluation of process implementation and change outcomes can be qualitative or quantitative. The topics
above on qualitative analysis and measurement are relevant when evaluating implementation and change
since they describe the techniques. Below we present some conceptual issues that become important
when evaluating the outcome of implementation and change.

There are two ways that one can approach evaluation of process implementation and change. One can
evaluate it in terms of changes to the process itself, or in terms of changes to the process outcomes (for

9
 This can also be termed “process evolution”.

R02 –05/02/01 17

example, measuring the Return on Investment from making the change). This issue is concerned with
the distinction between cause and effect (as depicted in the path diagram in Figure 9-3), and is discussed
in [16].

Sometimes people have very high expectations about what can be achieved in studies that evaluate the
costs and benefits of process implementation and change. A pragmatic look at what can be achieved
from such evaluation studies is given in [67].

Overviews of how to evaluate process change, and examples of studies that do so can be found in
[44][59][88][92][93][101].

R02 –05/02/01 18

9.4 Key References
The following are the key references that are recommended for this knowledge area. The mapping to
the topics is given in Section 9.6.

K. El Emam and N. Madhavji (eds.): Elements of Software Process Assessment and Improvement,
IEEE CS Press, 1999.

This IEEE edited book provides detailed chapters on the software process assessment and
improvement area. It could serve as a general reference for this knowledge area, however,
specifically chapters 1, 7, and 11 cover quite a bit of ground in a succinct manner.

K. El Emam, J-N Drouin, W. Melo (eds.): SPICE: The Theory and Practice of Software Process
Improvement and Capability Determination. IEEE CS Press, 1998.

This IEEE edited book describes the emerging ISO/IEC 15504 international standard and its
rationale. Chapter 3 provides a description of the overall architecture of the standard, which has since
then been adopted in other assessment models.

S-L. Pfleeger: Software Engineering: Theory and Practice. Prentice-Hall, 1998.

This general software engineering reference has a good chapter, chapter 2, that discusses many
issues related to the process modeling area.

Fuggetta and A. Wolf: Software Process, John Wiley & Sons, 1996.

This edited book provides a good overview of the process area, and covers modeling as well as
assessment and improvement. Chapters 1 and 2 are reviews of modeling techniques and tools, and
chapter 4 gives a good overview of the human and organizational issues that arise during process
implementation and change.

R. Messnarz and C. Tully (eds.): Better Software Practice for Business Benefit: Principles and
Experiences, IEEE CS Press, 1999.

This IEEE edited book provides a comprehensive perspective on process assessment and
improvement efforts in Europe. Chapter 7 is a review of the costs and benefits of process
improvement, with many references to prior work. Chapter 16 describes factors that affect the
success of process improvement.

J. Moore: Software Engineering Standards: A User’s Road Map. IEEE CS Press, 1998.

This IEEE book provides a comprehensive framework and guidance on software engineering
standards. Chapter 13 is the process standards chapter.

N. H. Madhavji: “The Process Cycle”. In Software Engineering Journal, 6(5):234-242, 1991.

This article provides an overview of different types of process definitions and relates them within an
organizational context.

R02 –05/02/01 19

M. Dowson: “Software Process Themes and Issues”. In Proceedings of the 2
nd

 International
Conference on the Software Process, pages 54-62, 1993.

This article provides an overview of the main themes in the software process area. Although not
recent, most of the issues raised are still valid today.

P. Feiler and W. Humphrey: “Software Process Development and Enactment: Concepts and
Definitions”. In Proceedings of the Second International Conference on the Software Process, pages
28-40, 1993.

This article was one of the first attempts to define terminology in the software process area. Most of
its terms are commonly used nowadays.

L. Briand, C. Differding, and H. D. Rombach: “Practical Guidelines for Measurement-Based Process
Improvement”. In Software Process Improvement and Practice, 2:253-280, 1996.

This article provides a pragmatic look at using measurement in the context of process improvement,
and discusses most of the issues related to setting up a measurement program.

Software Engineering Laboratory: Software Process Improvement Guidebook. NASA/GSFC,
Technical Report SEL-95-102, April 1996. (available from
http://sel.gsfc.nasa.gov/website/documents/online-doc/95-102.pdf)

This is a standard reference on the concepts of the QIP and EF.

P. Fowler and S. Rifkin: Software Engineering Process Group Guide. Software Engineering Institute,
Technical Report CMU/SEI-90-TR-24, 1990. (available from
http://www.sei.cmu.edu/pub/documents/90.reports/pdf/tr24.90.pdf)

This is the standard reference on setting up and running an SEPG.

M. Dorfmann and R. Thayer (eds.): Software Engineering, IEEE CS Press, 1997.

Chapter 11 of this IEEE volume gives a good overview of contemporary life cycle models.

K. El Emam and D. Goldenson: “An Empirical Review of Software Process Assessments”. In
Advances in Computers, vol. 53, pp. 319-423, 2000.

This chapter provides the most up-to-date review of evidence supporting process assessment and
improvement, as well as a historical perspective on some of the early MIS work.

R02 –05/02/01 20

9.5 Related Disciplines
The following knowledge areas of related disciplines are important to the software engineering process
knowledge area. Note that when planning and implementing new processes, or changing them, it is
necessary to have substantive knowledge of the software processes themselves, as well as the particular
application domain. Therefore, readers should refer to the “Related Disciplines” section of the other
knowledge areas in the Guide to the Software Engineering Body of Knowledge for the process-specific
related disciplines.

9.5.1 Computer Science

• Intelligence Systems: Pattern Recognition – In the case where analysis of process and process
outcome measurements is performed, pattern recognition techniques may be relevant.

• Intelligence Systems: Soft Computing – In the case where analysis of process and process outcome
measurements is performed, soft computing techniques may be relevant.

• Computational Science: Modeling and Simulation – In cases where process models are simulated,
then knowledge of modeling and simulation would be relevant.

9.5.2 Mathematics

• Probability – In the case where analysis of process and process outcome measurements is
performed, then probability would play an important role.

9.5.3 Project Management

All the activities in the cycle shown in Figure 9-1 should be managed as a project to increase the chances
of success. Therefore, all areas of Project Management are relevant.

• Project Integration Management

• Project Scope Management

• Project Time Management

• Project Cost Management

• Project Quality Management

• Project Human Resource Management

• Project Communications Management

• Project Risk Management

• Project Procurement Management

9.5.4 Systems Engineering

All areas of systems engineering are relevant if the context of the processes is systems.

• Process

• Essential Functional Processes

• Techniques and Tools

9.5.5 Management and Management Science

• Business Strategy: Process implementation and change should address business needs. Therefore
knowledge of business strategy and strategy making would be useful.

R02 –05/02/01 21

• External Environment: Process implementation and change should ensure that the organizational
processes “fit” the external environment.

• Organizational Environment: This covers organizational change, which is critical.

• Information Systems Management: For the same reasons as Project Management.

• Innovation and Change: This covers organizational change, which is critical.

• Training: Training is an important element of process implementation and change.

• Management Science: This becomes relevant if detailed process models are constructed, simulated,
and optimized.

• Statistics: Relevant in the cases where process and process outcome measurements are analyzed.

• Simulation: In cases where process models are simulated, then knowledge of simulation would be
relevant.

R02 –05/02/01

9.6 Key References vs. Topics Mapping
Below are the matrices linking the topics to key references. In an attempt to limit the number of references and the total number of pages, as
requested, some relevant articles are not included in this matrix. The reference list below provides a more comprehensive coverage.

In the cells, where there is a check mark it indicates that the whole reference (or most of it) is relevant. Otherwise, specific chapter numbers are
provided in the cell.

R02 –05/02/01

Elements
[45]

SPICE
[42]

Pfleeger
[111]

Fuggetta
[56]

Messnarz
[103]

Moore
[106]

Software Engineering Process
Concepts

Themes

Terminology

Process Infrastructure

The Software
Engineering Process
Group

The Experience Factory

Process Measurement

Methodology in Process
Measurement

Process Measurement
Paradigms

Ch. 1, 7 Ch. 3

Process Definition

Types of Process
Definitions

Life Cycle Framework
Models

Ch. 2

Software Life Cycle
Process Models

Ch. 13

Notations for Process
Definitions

Ch. 1

Process Definition
Methods

Ch. 7

Automation Ch. 2 Ch. 2

R02 –05/02/01

Elements
[45]

SPICE
[42]

Pfleeger
[111]

Fuggetta
[56]

Messnarz
[103]

Moore
[106]

Qualitative Process Analysis

Process Definition
Review

Ch. 7

Root Cause Analysis Ch. 7

Process Implementation and
Change

Paradigms for Process
Implementation and
Change

Ch. 1, 7

Guidelines for Process
Implementation and
Change

Ch. 11 Ch. 4 Ch. 16

Evaluating the Outcome
of Process
Implementation and
Change

Ch. 7

R02 –05/02/01

Feiler & Humphrey

[51]

Briand et al.

[15]

SEL

[124]

SEPG

[54]

Dorfmann & Thayer

[34]

Software Engineering Process
Concepts

Themes

Terminology √
Process Infrastructure

The Software
Engineering Process
Group

√

The Experience Factory √
Process Measurement

Methodology in Process
Measurement

√

Process Measurement
Paradigms

√

Process Definition

Types of Process
Definitions

Life Cycle Framework
Models

Ch. 11

Software Life Cycle
Process Models

Notations for Process
Definitions

Process Definition
Methods

Automation

R02 –05/02/01

Feiler & Humphrey

[51]

Briand et al.

[15]

SEL

[124]

SEPG

[54]

Dorfmann & Thayer

[34]

Qualitative Process Analysis

Process Definition
Review

√

Root Cause Analysis √
Process Implementation and
Change

Paradigms for Process
Implementation and
Change

√ √

Guidelines for Process
Implementation and
Change

√ √

Evaluating the Outcome
of Process
Implementation and
Change

√

R02 –05/02/01 27

9.7 Bloom’s Taxonomy
This section contains a table identifying the topic areas and the associated Bloom’s taxonomy level of
understanding on each topic for a graduate with four years experience. The levels of understanding from
lower to higher are: knowledge, comprehension, application, analysis, synthesis, and evaluation.

Topic Bloom Level

Software Engineering Process Concepts

Themes Comprehension

Terminology Knowledge

Process Infrastructure

The Software Engineering Process Group Comprehension

The Experience Factory Comprehension

Process Measurement

Methodology in Process Measurement Comprehension

Process Measurement Paradigms Comprehension

Analytic Paradigm Comprehension

Benchmarking Paradigm Comprehension

Process Definition

Types of Process Definitions Application

Life Cycle Framework Models Application

Software Life Cycle Process Models Application

Notations for Process Definitions Application

Process Definition Methods Application

Automation Knowledge

Qualitative Process Analysis

Process Definition Review Comprehension

Root Cause Analysis Comprehension

Process Implementation and Change

Paradigms for Process Implementation and Change Comprehension

Guidelines for Process Implementation and Change Comprehension

Evaluating the Outcome of Process Implementation and Change Comprehension

R02 –05/02/01 28

9.8 Vincenti Categorization

Topic Vincenti Category

Software Engineering Process Concepts

Themes Fundamental

Terminology Fundamental

Process Infrastructure

The Software Engineering Process Group Design Instrumentalities
Practical Considerations

The Experience Factory Design Instrumentalities
Practical Considerations

Process Measurement

Methodology in Process Measurement Quantitative Data

Process Measurement Paradigms Quantitative Data

Analytic Paradigm Quantitative Data

Benchmarking Paradigm Quantitative Data

Process Definition

Types of Process Definitions Fundamental

Life Cycle Framework Models Fundamental

Software Life Cycle Process Models Fundamental

Notations for Process Definitions Design Instrumentalities
Practical Considerations

Process Definition Methods Design Instrumentalities
Practical Considerations

Automation Design Instrumentalities
Practical Considerations

Qualitative Process Analysis

Process Definition Review Design Instrumentalities
Practical Considerations

Root Cause Analysis Design Instrumentalities
Practical Considerations

Process Implementation and Change

Paradigms for Process Implementation and Change Design Instrumentalities
Practical Considerations

Guidelines for Process Implementation and Change Design Instrumentalities
Practical Considerations

Evaluating the Outcome of Process Implementation and Change Design Instrumentalities
Practical Considerations

R02 –05/02/01 29

9.9 General References

[1] T. Abdel-Hamid and S. Madnick, Software Project Dynamics: An Integrated Approach, Prentice-
Hall, 1991.

[2] W. Agresti, "The Role of Design and Analysis in Process Improvement," in Elements of Software
Process Assessment and Improvement, K. El-Emam and N. Madhavji (eds.), IEEE CS Press,
1999.

[3] L. Alexander and A. Davis, "Criteria for Selecting Software Process Models," in Proceedings of
COMPSAC'91, pp. 521-528, 1991.

[4] J. Armitage and M. Kellner, "A Conceptual Schema for Process Definitions and Models," in
Proceedings of the Third International Conference on the Software Process, pp. 153-165, 1994.

[5] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and G. Picco, "Modeling and Improving an
Industrial Software Process," IEEE Transactions on Software Engineering, vol. 21, no. 5, pp. 440-
454, 1995.

[6] R. Barbour, "Software Capability Evaluation - Version 3.0 : Implementation Guide for Supplier
Selection," Software Engineering Institute, CMU/SEI-95-TR012, 1996. (available at
http://www.sei.cmu.edu/publications/documents/95.reports/95.tr.012.html)

[7] N. Barghouti, D. Rosenblum, D. Belanger, and C. Alliegro, "Two Case Studies in Modeling Real,
Corporate Processes," Software Process - Improvement and Practice, vol. Pilot Issue, pp. 17-32,
1995.

[8] V. Basili, G. Caldiera, and G. Cantone, "A Reference Architecture for the Component Factory,"
ACM Transactions on Software Engineering and Methodology, vol. 1, no. 1, pp. 53-80, 1992.

[9] V. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, and S. Waligora, "The Software
Engineering Laboratory - An Operational Software Experience Factory," in Proceedings of the
International Conference on Software Engineering, pp. 370-381, 1992.

[10] V. Basili, S. Condon, K. El-Emam, R. Hendrick, and W. Melo, "Characterizing and Modeling the
Cost of Rework in a Library of Reusable Software Components," in Proceedings of the 19th
International Conference on Software Engineering, pp. 282-291, 1997.

[11] B. Boehm, "A Spiral Model of Software Development and Enhancement," Computer, vol. 21, no.
5, pp. 61-72, 1988.

[12] T. Bollinger and C. McGowan, "A Critical Look at Software Capability Evaluations," IEEE
Software, pp. 25-41, July, 1991.

[13] L. Briand, V. Basili, Y. Kim, and D. Squire, "A Change Analysis Process to Characterize Software
Maintenance Projects," in Proceedings of the International Conference on Software Maintenance,
1994.

[14] L. Briand, W. Melo, C. Seaman, and V. Basili, "Characterizing and Assessing a Large-Scale
Software Maintenance Organization," in Proceedings of the 17th International Conference on
Software Engineering, pp. 133-143, 1995.

[15] L. Briand, C. Differding, and H. D. Rombach, "Practical Guidelines for Measurement-Based
Process Improvement," Software Process Improvement and Practice, vol. 2, pp. 253-280, 1996.

[16] L. Briand, K. El Emam, and W. Melo, "An Inductive Method for Software Process Improvement:
Concrete Steps and Guidelines," in Elements of Software Process Assessment and
Improvement, K. El-Emam and N. Madhavji (eds.), IEEE CS Press, 1999.

[17] F. Budlong and J. Peterson, "Software Metrics Capability Evaluation Guide," The Software
Technology Support Center, Ogden Air Logistics Center, Hill Air Force Base, 1995.

[18] I. Burnstein, T. Suwannasart, and C. Carlson, "Developing a Testing Maturity Model: Part II,"
Crosstalk, pp. 19-26, September, 1996. (available at http://www.stsc.hill.af.mil/crosstalk/)

[19] I. Burnstein, T. Suwannasart, and C. Carlson, "Developing a Testing Maturity Model: Part I,"
Crosstalk, pp. 21-24, August, 1996. (available at http://www.stsc.hill.af.mil/crosstalk/)

[20] I. Burnstein, A. Homyen, T. Suwanassart, G. Saxena, and R. Grom, "A Testing Maturity Model for
Software Test Process Assessment and Improvement," Software Quality Professional, vol. 1, no.
4, pp. 8-21, 1999.

R02 –05/02/01 30

[21] D. Card, "Understanding Process Improvement," IEEE Software, pp. 102-103, July, 1991.
[22] R. Chillarege, I. Bhandhari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and M. Wong, "Orthogonal

Defect Classification - A Concept for In-Process Measurement," IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 943-956, 1992.

[23] R. Chillarege, "Orthogonal Defect Classification," in Handbook of Software Reliability
Engineering, M. Lyu (eds.), IEEE CS Press, 1996.

[24] B. Clark, "The Effects of Software Process Maturity on Software Development Effort," University
of Southern California, PhD Thesis, 1997.

[25] F. Coallier, J. Mayrand, and B. Lague, "Risk Management in Software Product Procurement," in
Elements of Software Process Assessment and Improvement, K. El-Emam and N. H. Madhavji
(eds.), IEEE CS Press, 1999.

[26] D. Coleman, P. Arnold, S. Godoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes, Object-
Oriented Development: The Fusion Method., Englewood Cliffs, NJ:Prentice Hall., 1994.

[27] J. Collofello and B. Gosalia, "An Application of Causal Analysis to the Software Production
Process," Software Practice and Experience, vol. 23, no. 10, pp. 1095-1105, 1993.

[28] E. Comer, "Alternative Software Life Cycle Models," in Software Engineering, M. Dorfmann and
R. Thayer (eds.), IEEE CS Press, 1997.

[29] B. Curtis, M. Kellner, and J. Over, "Process Modeling," Communications of the ACM, vol. 35, no.
9, pp. 75-90, 1992.

[30] B. Curtis, W. Hefley, and S. Miller, "People Capability Maturity Model," Software Engineering
Institute, CMU/SEI-95-MM-02, 1995. (available at
http://www.sei.cmu.edu/pub/documents/95.reports/pdf/mm002.95.pdf)

[31] B. Curtis, W. Hefley, S. Miller, and M. Konrad, "The People Capability Maturity Model for
Improving the Software Workforce," in Elements of Software Process Assessment and
Improvement, K. El-Emam and N. Madhavji (eds.), IEEE CS Press, 1999.

[32] A. Davis, E. Bersoff, and E. Comer, "A Strategy for Comparing Alternative Software Development
Life Cycle Models," IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1453-1461,
1988.

[33] R. Dion, "Starting the Climb Towards the CMM Level 2 Plateau," in Elements of Software Process
Assessment and Improvement, K. El-Emam and N. H. Madhavji (eds.), IEEE CS Press, 1999.

[34] M. Dorfmann and R. Thayer (eds.), "Software Engineering," IEEE CS Press, 1997.
[35] M. Dowson, "Software Process Themes and Issues," in Proceedings of the 2nd International

Conference on the Software Process, pp. 54-62, 1993.
[36] D. Drew, "Tailoring the Software Engineering Institute's (SEI) Capability Maturity Model (CMM) to

a Software Sustaining Engineering Organization," in Proceedings of the International Conference
on Software Maintenance, pp. 137-144, 1992.

[37] D. Dunnaway and S. Masters, "CMM-Based Appraisal for Internal Process Improvement (CBA
IPI): Method Description," Software Engineering Institute, CMU/SEI-96-TR-007, 1996. (available
at http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr007.96.pdf)

[38] K. Dymond, "Essence and Accidents in SEI-Style Assessments or 'Maybe this Time the Voice of
the Engineer Will be Heard'," in Elements of Software Process Assessment and Improvement, K.
El-Emam and N. Madhavji (eds.), IEEE CS Press, 1999.

[39] EIA, "EIA/IS 731 Systems Engineering Capability Model,". (available at
http://www.geia.org/eoc/G47/index.html)

[40] K. El-Emam and D. R. Goldenson, "SPICE: An Empiricist's Perspective," in Proceedings of the
Second IEEE International Software Engineering Standards Symposium, pp. 84-97, 1995.

[41] K. El-Emam, D. Holtje, and N. Madhavji, "Causal Analysis of the Requirements Change Process
for a Large System," in Proceedings of the International Conference on Software Maintenance,
pp. 214-221, 1997.

[42] K. El-Emam, J-N Drouin, and W. Melo, SPICE: The Theory and Practice of Software Process
Improvement and Capability Determination, IEEE CS Press, 1998.

[43] K. El-Emam, "Benchmarking Kappa: Interrater Agreement in Software Process Assessments,"
Empirical Software Engineering: An International Journal, vol. 4, no. 2, pp. 113-133, 1999.

[44] K. El-Emam and L. Briand, "Costs and Benefits of Software Process Improvement," in Better
Software Practice for Business Benefit: Principles and Experiences, R. Messnarz and C. Tully
(eds.), IEEE CS Press, 1999.

R02 –05/02/01 31

[45] K. El-Emam and N. Madhavji, Elements of Software Process Assessment and Improvement,
IEEE CS Press, 1999.

[46] K. El-Emam, B. Smith, and P. Fusaro, "Success Factors and Barriers in Software Process
Improvement: An Empirical Study," in Better Software Practice for Business Benefit: Principles
and Experiences, R. Messnarz and C. Tully (eds.), IEEE CS Press, 1999.

[47] K. El-Emam and A. Birk, "Validating the ISO/IEC 15504 Measures of Software Development
Process Capability," Journal of Systems and Software, vol. 51, no. 2, pp. 119-149, 2000. (
available at E:\Articles\ElEmam_Birk_JSS.pdf)

[48] K. El-Emam and A. Birk, "Validating the ISO/IEC 15504 Measures of Software Requirements
Analysis Process Capability," IEEE Transactions on Software Engineering, vol. 26, no. 6, pp.
541-566, June, 2000.

[49] K. El-Emam and D. Goldenson, "An Empirical Review of Software Process Assessments,"
Advances in Computers, vol. 53, pp. 319-423, 2000.

[50] M. Fayad and M. Laitinen, "Process Assessment: Considered Wasteful," Communications of the
ACM, vol. 40, no. 11, November, 1997.

[51] P. Feiler and W. Humphrey, "Software Process Development and Enactment: Concepts and
Definitions," in Proceedings of the Second International Conference on the Software Process, pp.
28-40, 1993.

[52] A. Finkelstein, J. Kramer, and B. Nuseibeh (eds.), "Software Process Modeling and Technology,"
Research Studies Press Ltd., 1994.

[53] W. Florac and A. Carleton, Measuring the Software Process: Statistical Process Control for
Software Process Improvement, Addison Wesley, 1999.

[54] P. Fowler and S. Rifkin, "Software Engineering Process Group Guide," Software Engineering
Institute, CMU/SEI-90-TR-24, 1990. (available at
http://www.sei.cmu.edu/pub/documents/90.reports/pdf/tr24.90.pdf)

[55] D. Frailey, "Defining a Corporate-Wide Software Process," in Proceedings of the 1st International
Conference on the Software Process, pp. 113-121, 1991.

[56] A. Fuggetta and A. Wolf, Software Process, John Wiley & Sons, 1996.
[57] P. Garg and M. Jazayeri, Process-Centered Software Engineering Environments, IEEE CS

Press, 1995.
[58] P. Garg and M. Jazayeri, "Process-Centered Software Engineering Environments: A Grand

Tour," in Software Process, A. Fuggetta and A. Wolf (eds.), John Wiley & Sons, 1996.
[59] D. Goldenson, K. El-Emam, J. Herbsleb, and C. Deephouse, "Empirical Studies of Software

Process Assessment Methods," in Elements of Software Process Assessment and Improvement,
K. El-Emam and N. H. Madhavji (eds.), IEEE CS Press, 1999.

[60] D. R. Goldenson and J. Herbsleb, "After the Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that Influence Success," Software Engineering Institute,
CMU/SEI-95-TR-009, 1995.

[61] R. Grady, Successful Software Process Improvement, Prentice Hall, 1997.
[62] E. Gray and W. Smith, "On the Limitations of Software Process Assessment and the Recognition

of a Required Re-Orientation for Global Process Improvement," Software Quality Journal, vol. 7,
pp. 21-34, 1998.

[63] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts: The Statemate Approach,
McGraw-Hill, 1998.

[64] J. Herbsleb, A. Carleton, J. Rozum, J. Siegel, and D.Zubrow, "Benefits of CMM-based Software
Process Improvement: Initial Results," Software Engineering Institute, CMU/SEI-94-TR-13, 1994.

[65] J. Herbsleb and D. Goldenson, "A Systematic Survey of CMM Experience and Results," in
Proceedings of the International Conference on Software Engineering, pp. 25-30, 1996.

[66] J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes, and M. Paulk, "Software Quality and the
Capability Maturity Model," Communications of the ACM, vol. 40, no. 6, pp. 30-40, 1997.

[67] J. Herbsleb, "Hard Problems and Hard Science: On the Practical Limits of Experimentation,"
IEEE TCSE Software Process Newsletter, vol. 11, pp. 18-21, 1998. (available at
http://www.seg.iit.nrc.ca/SPN)

[68] K. Huff, "Software Process Modeling," in Software Process, A. Fuggetta and A. Wolf (eds.), John
Wiley & Sons, 1996.

[69] W. Humphrey, Managing the Software Process, Addison Wesley, 1989.

R02 –05/02/01 32

[70] W. Humphrey, A Discipline for Software Engineering, Addison Wesley, 1995.
[71] W. Humphrey, An Introduction to the Team Software Process, Addison-Wesley, 1999.
[72] D. Hutton, The Change Agent's Handbook: A Survival Guide for Quality Improvement

Champions, Irwin, 1994.
[73] IEEE, "IEEE Standard for Developing Software Life Cycle Processes," IEEE Computer Society,

IEEE Std 1074-1991, 1991.
[74] IEEE, "IEEE Standard for the Classification of Software Anomalies," IEEE Computer Society,

IEEE Std 1044-1993, 1993.
[75] IEEE, "IEEE Standard for Software Maintenance," IEEE Computer Society, IEEE Std 1219-1998,

1998.
[76] IEEE, "IEEE Standard for a Software Quality Metrics Methodology," IEEE Computer Society,

IEEE Std 1061-1998, 1998.
[77] IEEE, "Guide for Information Technology - Software Life Cycle Processes - Life cycle data," IEEE

Computer Society, IEEE Std 12207.1-1998, 1998.
[78] IEEE, "Guide for Information Technology - Software Life Cycle Processes - Implementation.

Considerations," IEEE Computer Society, IEEE Std 12207.2-1998, 1998.
[79] K. Ishikawa, What Is Total Quality Control ? The Japanese Way, Prentice Hall, 1985.
[80] ISO/IEC, "ISO/IEC 12207: Information Technology - Software Life Cycle Processes," International

Organization for Standardization and the International Electrotechnical Commission, 1995.
[81] ISO/IEC, "ISO/IEC TR 15504: Information Technology - Software Process Assessment (parts 1-

9)," International Organization for Standardization and the International Electrotechnical
Commission, 1998 (part 5 was published in 1999). (available at http://www.seg.iit.nrc.ca/spice)

[82] ISO/IEC, "ISO/IEC CD 15939: Information Technology - Software Measurement Process,"
International Organization for Standardization and the International Electrotechnical Commission,
2000. (available at http://www.info.uqam.ca/Labo_Recherche/Lrgl/sc7/private_files/07n2274.pdf)

[83] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process, Addison-
Wesley, 1998.

[84] P. Jalote, An Integrated Approach to Software Engineering, Springer, 1997.
[85] D. Johnson and J. Brodman, "Tailoring the CMM for Small Businesses, Small Organizations, and

Small Projects," in Elements of Software Process Assessment and Improvement, K. El-Emam
and N. Madhavji (eds.), IEEE CS Press, 1999.

[86] C. Jones, Applied Software Measurement, McGraw-Hill, 1994.
[87] C. Jones, "Gaps in SEI Programs," Software Development, vol. 3, no. 3, pp. 41-48, March, 1995.
[88] C. Jones, "The Economics of Software Process Improvements," in Elements of Software Process

Assessment and Improvement, K. El-Emam and N. H. Madhavji (eds.), IEEE CS Press, 1999.
[89] M. Kellner and G. Hansen, "Software Process Modeling: A Case Study," in Proceedings of the

22nd International Conference on the System Sciences, 1989.
[90] M. Kellner, L. Briand, and J. Over, "A Method for Designing, Defining, and Evolving Software

Processes," in Proceedings of the 4th International Conference on the Software Process, pp. 37-
48, 1996.

[91] M. Kellner, U. Becker-Kornstaedt, W. Riddle, J. Tomal, and M. Verlage, "Process Guides:
Effective Guidance for Process Participants," in Proceedings of the 5th International Conference
on the Software Process, pp. 11-25, 1998.

[92] B. Kitchenham, "Selecting Projects for Technology Evaluation," IEEE TCSE Software Process
Newsletter, no. 11, pp. 3-6, 1998. (available at http://www.seg.iit.nrc.ca/SPN)

[93] H. Krasner, "The Payoff for Software Process Improvement: What it is and How to Get it," in
Elements of Software Process Assessment and Improvement, K. El-Emam and N. H. Madhavji
(eds.), IEEE CS Press, 1999.

[94] M. S. Krishnan and M. Kellner, "Measuring Process Consistency: Implications for Reducing
Software Defects," IEEE Transactions on Software Engineering, vol. 25, no. 6, pp. 800-815,
November/December, 1999.

[95] C. Laporte and S. Trudel, "Addressing the People Issues of Process Improvement Activities at
Oerlikon Aerospace," Software Process - Improvement and Practice, vol. 4, no. 4, pp. 187-198,
1998.

R02 –05/02/01 33

[96] J. Lonchamp, "A Structured Conceptual and Terminological Framework for Software Process
Engineering," in Proceedings of the Second International Conference on the Software Process,
pp. 41-53, 1993.

[97] N. Madhavji, "The Process Cycle," Software Engineering Journal, vol. 6, no. 5, pp. 234-242,
1991.

[98] N. Madhavji, D. Hoeltje, W. Hong, and T. Bruckhaus, "Elicit: A Method for Eliciting Process
Models," in Proceedings of the Third International Conference on the Software Process, pp. 111-
122, 1994.

[99] S. Masters and C. Bothwell, "CMM Appraisal Framework - Version 1.0," Software Engineering
Institute, CMU/SEI-TR-95-001, 1995. (available at
http://www.sei.cmu.edu/pub/documents/95.reports/pdf/tr001.95.pdf)

[100] B. McFeeley, "IDEAL: A User's Guide for Software Process Improvement," Software Engineering
Institute, CMU/SEI-96-HB-001, 1996. (available at
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb001.96.pdf)

[101] F. McGarry, R. Pajerski, G. Page, S. Waligora, V. Basili, and M. Zelkowitz, "Software Process
Improvement in the NASA Software Engineering Laboratory," Software Engineering Institute,
CMU/SEI-94-TR-22, 1994. (available at
http://www.sei.cmu.edu/pub/documents/94.reports/pdf/tr22.94.pdf)

[102] C. McGowan and S. Bohner, "Model Based Process Assessments," in Proceedings of the
International Conference on Software Engineering, pp. 202-211, 1993.

[103] R. Messnarz and C. Tully (eds.), "Better Software Practice for Business Benefit: Principles and
Experiences," IEEE CS Press, 1999.

[104] D. Moitra, "Managing Change for Software Process Improvement Initiatives: A Practical
Experience-Based Approach," Software Process - Improvement and Practice, vol. 4, no. 4, pp.
199-207, 1998.

[105] K. Moller and D. Paulish, Software Metrics, Chapman & Hall, 1993.
[106] J. Moore, Software Engineering Standards: A User's Road Map, IEEE CS Press, 1998.
[107] T. Nakajo and H. Kume, "A Case History Analysis of Software Error Cause-Effect Relationship,"

IEEE Transactions on Software Engineering, vol. 17, no. 8, 1991.
[108] Office of the Under Secretary of Defense for Acquisitions and Technology, "Practical Software

Measurement: A Foundation for Objective Project Management," 1998. (available at
http://www.psmsc.com)

[109] R. Park, W. Goethert, and W. Florac, "Goal-Driven Software Measurement - A Guidebook,"
Software Engineering Institute, CMU/SEI-96-HB-002, 1996. (available at
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb002.96.pdf)

[110] M. Paulk and M. Konrad, "Measuring Process Capability Versus Organizational Process
Maturity," in Proceedings of the 4th International Conference on Software Quality, 1994.

[111] S-L. Pfleeger, Software Engineering: Theory and Practice, Prentice-Hall, 1998.
[112] S-L. Pfleeger, "Understanding and Improving Technology Transfer in Software Engineering,"

Journal of Systems and Software, vol. 47, pp. 111-124, 1999.
[113] R. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill, 1997.
[114] J. Puffer, "Action Planning," in Elements of Software Process Assessment and Improvement, K.

El-Emam and N. H. Madhavji (eds.), IEEE C S Press, 1999.
[115] L. Putnam and W. Myers, Measures for Excellence: Reliable Software on Time, Within Budget,

Yourdon Press, 1992.
[116] R. Radice, N. Roth, A. O'Hara Jr., and W. Ciarfella, "A Programming Process Architecture," In

IBM Systems Journal, vol. 24, no. 2, pp. 79-90, 1985.
[117] D. Raffo and M. Kellner, "Modeling Software Processes Quantitatively and Evaluating the

Performance of Process Alternatives," in Elements of Software Process Assessment and
Improvement, K. El-Emam and N. Madhavji (eds.), IEEE CS Press, 1999.

[118] S. Raghavan and D. Chand, "Diffusing Software-Engineering Methods," IEEE Software, pp. 81-
90, July, 1989.

[119] E. Rogers, Diffusion of Innovations, Free Press, 1983.
[120] M. Sanders (eds.), "The SPIRE Handbook: Better, Faster, Cheaper Software Development in

Small Organisations," European Comission, 1998.

R02 –05/02/01 34

[121] E. Schein, Process Consultation Revisited: Building the Helping Relationship, Addison-Wesley,
1999.

[122] Software Engineering Institute, The Capability Maturity Model: Guidelines for Improving the
Software Process, Addison Wesley, 1995.

[123] Software Engineering Laboratory, "Software Measurement Guidebook (Revision 1),", SEL-94-
102, 1995. (available at http://sel.gsfc.nasa.gov/website/documents/online-doc/94-102.pdf)

[124] Software Engineering Laboratory, "Software Process Improvement Guidebook. NASA/GSFC,",
SEL-95-102, 1996. (available at http://sel.gsfc.nasa.gov/website/documents/online-doc/95-
102.pdf)

[125] Software Productivity Consortium, "Process Definition and Modeling Guidebook,", SPC-92041-
CMC, 1992.

[126] R. van Solingen and E. Berghout, The Goal/Question/Metric Method: A Practical Guide for
Quality Improvement of Software Development, McGraw Hill, 1999.

[127] I. Sommerville and T. Rodden, "Human, Social and Organisational Influences on the Software
Process," in Software Process, A. Fuggetta and A. Wolf (eds.), John Wiley & Sons, 1996.

[128] I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice Guide, John Wiley &
Sons, 1997.

[129] H. Steinen, "Software Process Assessment and Improvement: 5 Years of Experiences with
Bootstrap," in Elements of Software Process Assessment and Improvement, K. El-Emam and N.
Madhavji (eds.), IEEE CS Press, 1999.

[130] D. Stelzer and W. Mellis, "Success Factors of Organizational Change in Software Process
Improvement," Software Process: Improvement and Practice, vol. 4, no. 4, pp. 227-250, 1998.

[131] L. Votta, "Does Every Inspection Need a Meeting ?," ACM Software Engineering Notes, vol. 18,
no. 5, pp. 107-114, 1993.

[132] S. Weissfelner, "ISO 9001 for Software Organizations," in Elements of Software Process
Assessment and Improvement, K. El-Emam and N. Madhavji (eds.), IEEE CS Press, 1999.

[133] K. Wiegers, Creating a Software Engineering Culture, Dorset house, 1996.
[134] E. Yu and J. Mylopolous, "Understanding 'Why' in Software Process Modeling, Analysis, and

Design," in Proceedings of the 16th International Conference on Software Engineering, 1994.
[135] S. Zahran, Software Process Improvement: Practical Guidelines for Business Success, Addison

Wesley, 1998.

