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In recent years high-THC (psychoactive) and low-THC (industrial hemp) type cannabis
(Cannabis sativa L.) have gained immense attention in medical, food, and a plethora of
other consumer product markets. Among the planting materials used for cultivation,
tissue culture clones provide various advantages such as economies of scale,
production of disease-free and true-to-type plants for reducing the risk of GMP-EuGMP
level medical cannabis production, as well as the development and application of various
technologies for genetic improvement. Various tissue culture methods have the potential
application with cannabis for research, breeding, and novel trait development, as well as
commercial mass propagation. Although tissue culture techniques for plant regeneration
and micropropagation have been reported for different cannabis genotypes and explant
sources, there are significant variations in the response of cultures and the morphogenic
pathway. Methods for many high-yielding elite strains are still rudimentary, and protocols
are not established. With a recent focus on sequencing and genomics in cannabis,
genetic transformation systems are applied to medical cannabis and hemp for functional
gene annotation via traditional and transient transformation methods to create novel
phenotypes by gene expression modulation and to validate gene function. This review
presents the current status of research focusing on different aspects of tissue culture,
including micropropagation, transformation, and the regeneration of medicinal cannabis
and industrial hemp transformants. Potential future tissue culture research strategies
helping elite cannabis breeding and propagation are also presented.

Keywords: Cannabis sativa, micropropagation, tissue culture, hemp, in vitro

INTRODUCTION

Cannabis is a multipurpose crop with nutritional, medicinal, and industrial uses. Its leaves and
flowers produce a spectrum of biologically active secondary metabolites, seeds are a source of
nutritious oil and protein, and the stem contains two types of fiber serving as feedstock for the
manufacturing of a variety of bio-based consumer goods (Small, 2004; Rodriguez-Leyva and Pierce,
2010; Wargent et al., 2013; Andre et al., 2016; Musio et al., 2018). The crop may have originated
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and been domesticated over 5000 years ago in Asia; since
then, it has been interwoven with human history. In the South
Asian regions, cannabis biotypes with elevated THC levels
were commonly used for medicinal and recreational purposes,
building a strong connection to social and religious rituals. While
in the temperate climates, low-THC types were grown initially for
fiber, and later also for food (Cheng, 1963; Li, 1974; Mechoulam,
1986; Cherney and Small, 2016; Clarke and Merlin, 2016; Jiang
et al., 2016). Since the discovery of two cannabinoids [cannabidiol
(CBD) in 1963) and tetrahydrocannabinol (THC) in 1964] in
Dr. Raphael Mechoulam’s laboratory, more than 100 additional
phytocannabinoids, flavonoids, and over 150 terpenes have been
identified in the plant (Andre et al., 2016; Booth and Bohlmann,
2019; Rea et al., 2019). This high-value crop has built a strong
foundation for a multi-billion-dollar global industry. Due to legal
restrictions, research and development work has been slow and
prevented researchers from investigating cannabis openly and
making use of its full potential.

Recent cannabis legalization amendments in Canada, Europe,
some parts of the United States, and other parts of the globe
have helped promote research and use of this multipurpose crop.
Commercial production increased in anticipation and response
to the federal legalization of cannabis in Canada in October 2018
under the Cannabis Act (Government of Canada, 2018). Canada
became the second nation after Uruguay (legalized December
2013) to legalize cannabis for recreational use at the federal level
(Adinoff and Reiman, 2019). In the United States, 12 states have
legalized cannabis for recreational use, with another 22 legalizing
medical use (Adinoff and Reiman, 2019).

Inherently, cannabis is a dioecious species, with male and
female flowers found on separate plants. Monoecious forms,
which produce male and female flowers on the same plant,
are very seldomly found in nature (Clarke and Merlin, 2016).
Commercial monoecious cultivars of hemp have been bred for
oilseed production and improved fiber yield and uniformity that
cannot be achieved in dioecious forms exhibiting asynchronous
maturation of the stems, as male plants commence an accelerated
aging process soon after pollen shed. Due to the dioecious nature
of most high THC-type cannabis and the lack of advanced
breeding to produce true-to-type seed, they are propagated
vegetatively and often grown indoors. Vegetative propagation
maintains genetic purity and uniformity among the plants.
Traditionally, indoor cannabis cultivators have depended on
cuttings from a mother plant to produce genetically similar
plants. While cannabis generally roots well (Caplan et al., 2018)
and stem cuttings can produce large numbers of genetically
similar plants, this method requires significant amounts of space.
It has been observed that plants become less vigorous over time,
the mother plants are susceptible to pests and diseases, and the
resulting cuttings can harbor unwanted disease and serve as
primary inoculum in production spaces.

As an alternative, in vitro techniques offer a promising
approach for mass production and germplasm maintenance
(Withers and Engelmann, 1997; Watt et al., 2000).
Micropropagation can facilitate high throughput propagation
in many species and forms the basis of disease-free plants
for certified clean plant programs (Lineberger, 1983;

Al-Taleb et al., 2011). Tissue culture based clean plant programs
have been used in other vegetatively propagated crops such as
potatoes, sweet potato, dates, sugarcane, banana, rice, tobacco,
strawberry, grapes, orchids, roses, fruit trees, and some more
horticulture of food and ornamental crops, helping to eradicate
or prevent the spread of many plant pests, diseases, and viruses
(National Clean Plant Network, 2020). Thus, developing an
optimized in vitro method for propagating clean plants is a
crucial strategy to produce large-scale genetically identical
plants, retain genetic integrity, and maintain the long-term
sustainability of the economically valuable crop (Conway, 2012).
This review article aims to provide a comprehensive overview of
the most updated available scientific research reported to date on
tissue culture in cannabis, to contribute to our understanding of
the cannabis tissue culture, and to assess potential applications
of the optimized techniques in cannabis plant propagation,
regeneration, and transformation.

INDUSTRIAL HEMP VS. MEDICAL
CANNABIS (MARIJUANA)

According to Small et al. (1976), there are four groups of
cannabis, ‘non-intoxicant (some C. sativa accessions),’ ’semi-
intoxicant’ (some C. sativa accessions), ‘intoxicant (C. indica),’
and ‘wild’ (C. ruderalis). Cannabis includes C. indica, C. ruderalis,
and C. sativa. However, it has also been proposed that these
three groups all belong to a single species (C. sativa) and the
taxonomic classification among these proposed species remains
a debated issue in Cannabis taxonomy (McPartland, 2018). For
morphological and chemical characters (i.e., floral morphology
and THC content), the earlier report considered them as different
subspecies (Small and Cronquist, 1976), while another classified
them as different species (Hillig, 2005).

Further complicating matters is the legal distinction between
hemp and drug (narcotic) type cannabis. Any plant containing
less than a defined concentration of the psychoactive THC is
classified as hemp. In contrast, anything above the critical limit is
classified as drug type cannabis. Depending upon the jurisdiction,
the threshold THC concatenations in flowering plant parts
differentiating between industrial hemp and drug type cannabis
range from 0.2% of dry weight in most European counties,
which is 0.3% in Canada, United States, and China and Brazil
to 1% in Switzerland, Uruguay, Columbia, Mexico, and several
Australian states. While this distinction is not based on taxonomy
or genetic relationships, several studies have shown that most
hemp cultivars are genetically distinct from drug-type cannabis
(Rotherham and Harbison, 2011; Cascini et al., 2019). Mainly due
to legal restrictions, artificial selection influenced by a decade’s
long black market, and insufficient knowledge of the Cannabis
taxonomy, these sub-types are poorly defined, especially the
drug type cannabis.

Hemp is generally cultivated from seed and has named
cultivars similar to most other crops. In contrast, drug type
cannabis is generally propagated clonally; the clones are often
referred to as ‘strains’ but are also often referred to as cultivars.
As such, any given strain/cultivar can produce various clonal
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accessions with dramatically different phenotypes, making names
unreliable. Further, many strains are offered by different seed
companies, and the degree of genetic similarity or difference
among providers has not been quantified; therefore, it is generally
expected and accepted that there is significant variation within a
single strain among seed companies and even within seed lots.
Due to these factors, strain names in drug type cannabis are not
reliable regarding a uniform phenotype.

Cannabis indica and Cannabis sativa are the major sources
of cannabinoids, and are predominantly cultivated, while the
third species, C. ruderalis is a wild and hardy species and is
rarely grown by cultivators as there is no significant content
of cannabinoids (Hilling and Mahlberg, 2004). In many lay
literatures, distinction of ‘indica’ and ‘sativa’ have been mentioned
and some of the earlier publications have also gathered some
phenotypic differences (Table 1 and Figure 1); however, there
is neither solid taxonomic agreement nor genetic or chemical
evidence supporting the differences (Gloss, 2015; Sawler et al.,
2015; Piomelli and Russo, 2016). The use of ‘indica’ and
‘sativa’ is vaguely based on the general notion that ‘sativa’
originated from European hemp, while ‘indica’ originated from
the Indian subcontinent (Small, 2015), but their exact origin is
still debatable.

TRADITIONAL CLONING IN CANNABIS

For decades, seed propagation in cannabis has supported
agricultural needs and facilitated genetic improvement. However,
with modern horticultural practices to the cannabis industry,
stem cutting or traditional cloning, and in vitro propagation
of this high-value crop has become a common practice (Lata
et al., 2009a,b, 2011; Potter, 2009). Other methods of propagation
are encapsulation of axillary nodes in calcium alginate beads
(Lata et al., 2009a), leaf derived callus (Lata et al., 2010c), and
temporary immersion bioreactor systems (Lata et al., 2010b) but
these are limited in lab experiments only. Traditional cloning
involves taking stem cuttings from a healthy mother plant
and providing a rooting environment for the newly cut clone
(Figure 2). For selection as a donor, a clear indication of
alternating branches with no visible sign of insects, fungus, or
any mineral deficiency in a mother plant is required. Cuttings
can be taken from any part of a donor; despite some suggestions
that growth in the lower half is better, no difference was observed
between cuttings taken from the upper and lower part of the
plant (Caplan et al., 2018). However, further research is warranted
to test this across more genotypes and conditions. In general,
cannabis propagates readily from stem cuttings even without
rooting hormones.

Stem cuttings have advantages over seed propagation,
including quicker maturation, true-to-type plants, and elite
genetics maintenance (Table 2). Along with the ease of
propagation, the practice can limit unwanted gene flow (McKey
et al., 2010), for example, between the hemp and drug-type,
potentially retaining the proportions of active metabolites.

On the downside, space for large scale production is a concern
as it can take considerable physical space, representing as much

as 20–25% of production space just for cloning. Also, since it
is currently manually performed, there is a low multiplication
rate, and it is expensive in the long run. Therefore, this
technique is more suitable for small growers requiring less than
1000 plants per growth cycle. For this reason, an adaptable,
scalable, and robust high throughput tissue culture system with
a high multiplication rate which preserves cannabis genetics, and
produces more vigorous plants than manual clones, can prove to
be more cost-effective in the long run (Table 2). Even small- scale
growers with a small budget to use this technique to preserve
genetics and test their desired strains’ regenerative capacity as
a proof-of-concept. Building a team of experts to develop and
execute tissue culture protocols successfully can be expensive
and time-intensive initially; however, in the long term, it is a
promising tool that has benefited many industries, including
horticulture and cereal crops (Brown and Thorpe, 1995; Hussain
et al., 2012).

Stem cuttings or traditional cloning method is the widely
used propagation system adopted by many growers. In vitro
propagation is establishing in cannabis industry slowly and is
expected to take over the traditional cloning method. Although
stem cuttings and in vitro clones can be comparable in terms
of vegetative growth and physiological performance (Lata et al.,
2009a), in vitro clones provide many advantages such as faster
multiplication rate, clean clones without disease or virus, cost
effective etc. (Table 1). Considering these advantages in vitro
propagation is expected to become method of choice for
propagation as well as genetic preservation in cannabis in
the near future.

CURRENT UTILIZATION AND
OPPORTUNITIES FOR CANNABIS
TISSUE CULTURE

The legal hemp for CBD production and the medical cannabis
industry is a fast- growing market, and cultivators are
turning toward advanced scientific approaches such as in vitro
micropropagation, to reduce the production costs and offer
scalable, healthy, and high-quality cannabis variety. In addition
to a critical need for cost-effective propagation to meet demand,
there is also a desire to establish and properly characterize
cultivars equivalent to those of traditional agriculture with
specific, consistent THC and cannabinoid content to match
particular drug and therapeutic requirements. Legalization has
opened up the options for accessing more mainstream research
applications. This increases the demand for the application of
some additional cell technologies applications to this crop.

In vitro Micropropagation
Although a few hemp cultivars have regenerated in vitro
(Figure 3), Cannabis spp. have gained a wide reputation for
being recalcitrant to tissue culture. At the beginning of the
1970s, along with the conventional propagation system, in vitro
cultures of cannabis were initiated. The majority of the earlier
in vitro studies were focused on cannabis callus culture to
produce cannabinoids (Veliky and Genest, 1972; Itokawa et al.,
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TABLE 1 | Phenotypic differences among C. indica, C. sativa, and C. ruderalis ecotypes.

Trait C. indica C. sativa C. ruderalis

Climate Tropical intense sunlight, cool arid
regions (Afghanistan, Pakistan,
Northern India, Nepal)

Subtropical humid climate, more rainfall,
In Mexico, Colombia, Nigeria, Thailand

Northern climates, cool and hilly places,
grows in wild (Russia, China)

Height Short 1– 2 m Tall up to 3–4 m Very short bushy 0.6–1.0 m

Cannabis female
flower

Compact and short inflorescence Loose packed and long inflorescence Small, compact, very short
inflorescence

Habit Shorter internode Longer internode Very short internodes

Leaves Broad Narrow Smaller leaves

Leaf color Dark green Light green Dark leaves

Stalk Shorter woody Taller, fibrous Short fibrous

Maturity Early maturity 2–3 months Late maturity 4–6 months Very early maturity 1.5–2 months,
autoflowering

Root system Condensed root system Deep, expansive Shallow smaller

Cannabinoid
content

Lower THC, could be higher CBD High THC, Lower CBD in general Low THC and CBD

Effect Relaxing effect, inflammation
reduction (Medical use preferred)

Incite euphoria, head high (stress relief,
recreational use preferred)

Not grown commercially, only for
breeding earliness

Information derived from Schultes et al. (1974); Small and Cronquist (1976), Hillig (2004); Clarke and Merlin (2013), Farag and Kayser (2017), and Small (2017).

FIGURE 1 | Cannabis leaf showing morphological differences of the three
different species (C. indica, C. sativa, and C. ruderalis).

1975, 1977; Hemphill et al., 1978; Hartsel et al., 1983; Loh
et al., 1983; Fisse and Andres, 1985). Although there are multiple
reports on shoot proliferation via micropropagation (Table 3),
there are fewer scientific reports showing regeneration of a full
plant through de novo regeneration (Mandolino and Ranalli,
1999; Slusarkiewicz-Jarzina et al., 2005; Wielgus et al., 2008;
Chaohua et al., 2016).

The majority of regenerated strains and cultivars were
monoecious, with few dioecious lines (Table 3). Recently, the
optimization of a micropropagation and callogenesis protocol
was reported for a few medical cannabis genotypes (Page et al.,
2020). Although 48 years passed (Figure 4) since the first report
of in vitro cell culture in cannabis, the available protocols are
limited and inconsistent. In vitro regeneration of a cannabis plant
from a single cell is still a challenge. Thus, the multi-billion-
dollar cannabis industry needs an optimized tissue regeneration
protocol for both industrial and medical cannabis.

It is generally understood that the most experienced
cannabis companies have developed tissue culture and
micropropagation techniques over the last two decades. However,

most achievements in this in vitro field are held as a trade secret
because of the competitive advantage provided within the
industry. The most crucial challenges for the cannabis success
micropropagation have been how to (i) reduce the length of
subculture to minimize the occupied time and space, (ii) induce
better root systems to increase the survival rate to >95%, (iii)
optimize Plant Growth Regulators (PGRs), light (intensity and
quality) and temperature required to maintain the genetically
stable true-to-type clones. A generalized micropropagation
workflow would require 7–8 weeks of culture transfer, 3 weeks of
shoot multiplication, and 4 weeks of rooting. In terms of PGRs
application, the best recommendation is optimized cytokinin
and auxin for the vegetative medium and no cytokinin for the
rooting medium using full MS media.

In recent years Canadian Licensed producers who are
research-oriented have overcome some of these challenges.
For example, the acclimatization period has been significantly
reduced to less than 3 weeks. Another micropropagation
challenge that the cannabis industry has recently solved is
optimizing light intensity, light quality, and photoperiod in the
culture room and maintaining the most effective temperature
during shoot growth and root formation. Some unpublished data
shows an increased propagation rate, from 3.5 to 5.8, during
sub-culturing from each plantlet, through understanding and
obtaining the right abiotic conditions within the culture room. As
a starting point, some successful protocols are implemented with
the minimum risk of somaclonal variation in cannabis (Movahedi
et al., 2015; Lata et al., 2016, 2017; Grulichova et al., 2017;
Page et al., 2020). These are game-changing procedures toward
commercialization for cannabis micropropagation at a large-scale
operation facility.

Genetic Transformation
An ability to identify, characterize, and apply the genetic
variability using biotechnology is the basis of molecular breeding.

Frontiers in Plant Science | www.frontiersin.org 4 March 2021 | Volume 12 | Article 627240

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-627240 March 3, 2021 Time: 10:55 # 5

Adhikary et al. Cannabis Tissue Culture

FIGURE 2 | Hemp nodal cloning. (A) Hemp plants at 6–8 leaf stage. (B) Elongated lateral branches after terminal buds removed from female plants (C) lateral
branches planted in soil after excision from mother plants and. (D) Vegetative clones transferred to 7-inch pots after roots were established and grown.
(E) Vegetative clone at maturity.

There are forward and reverse genetics approaches for genetic
studies of an uncharacterized allele. With the improvement
of sequencing technology, genetic transformation using reverse
genetic tools has been an advantage in the molecular breeding
program. While cannabis has gained a wide reputation of being
recalcitrant to gene transformation and tissue culture, a few
reports are describing the methods on gene transformation
and regeneration (Feeney and Punja, 2003; Slusarkiewicz-Jarzina
et al., 2005; Sirkowski, 2012; Wahby et al., 2013; Schachtsiek et al.,
2019). Genome editing holds the potential to develop knockout
mutants for significant cannabinoid biosynthesis genes such as
THCA synthase, CBDA synthase, and CBGA synthase. Several
varieties were tested; most were monoecious, although a few
dioecious varieties were also used. In all cases, Agrobacterium-
mediated gene transfer system was employed and exhibited
successful transfer of genes, but the regeneration frequency
was low to none. Feeney and Punja (2003) demonstrated the
transformation success at the cellular level, but none of their
treatments were successful in regeneration. Similarly, Wahby
et al. (2013) applied A. rhizogenes strains (A4, AR10, C58,
and IVIA251) and could induce hairy roots on the explants
derived from hypocotyl and cotyledonary node; however,
plantlet regeneration became a bottleneck for them as well.
There is two patent information with the claim of successful
genome modification and regeneration of cannabis with limited
descriptions (Sirkowski, 2012). Thus, there is a need for an
optimized protocol for the transformation and regeneration of
cannabis replicable and reliable across different species.

Transient Genetic Transformation
There are various molecular tools developed for transient genetic
transformation, including virus-induced gene silencing (VIGS).
VIGSis an RNA mediated post-transcriptional gene silencing
(PTGS) technique applied to study gene function in a relatively
short period (Baulcombe, 1999; Liu et al., 2002; Senthil-Kumar
and Mysore, 2014; Adhikary et al., 2019). Once a VIGS protocol
is established in a species, it takes 3–6 weeks to see the loss-
of-function phenotype of the tested gene/s in vivo (Adhikary
et al., 2019). Thus, this is an ideal tool to apply, as a proof of

concept, to define a target gene’s function prior to creating a
stable transformation. VIGS, using the Cotton leaf crumple virus
(CLCrV), was recently established in C. sativa, demonstrating
the loss-of-function phenotype of phytoene desaturase (PDS)
and magnesium chelatase subunit I (Chll) genes (Schachtsiek
et al., 2019). Although the loss-of-function phenotype was weak,
the researchers paved a clear path to explore unknown genes’
functions in the species. There are viral pathogens reported in
cannabis (McPartland, 1996) and many viral vectors developed
to date; tobacco rattle virus (TRV) is one of them with a broad-
spectrum host range (over 400 plant species) across dicot species
(Dinesh-Kumar et al., 2007). Given that TRV can also infect
cannabis, potentially demonstrating a strong loss-of-phenotype
than CLCrV viral vector.

Stable Genetic Transformation
Both transient and stable transformations have been incredibly
beneficial for different research areas and applications in
functional genomics. Stable gene transformation is preferred for
many applications because once the gene modification is fixed in
a plant system, it is heritable. The advantage of the altered gene
function can be reaped for generations. As there are numerous
reports of successful CRISPR-Cas9 mediated gene editing in
many plant species, adopting this newly developed molecular tool
in cannabis is vital to improving this economically important
plant species. CRISPR can precisely alter a gene’s function in
a genome (Jinek et al., 2012). It has great potential to benefit
both basic and applied plant biology research and development.
Therefore, establishing the technology in the cannabis crop is
essential for functional studies of thousands of unknown genes
and the development of novel varieties.

Traditional genetic modification (GM) and gene editing by
CRISPR method are viewed differently (Shew et al., 2018). Gene
editing performed using CRISPR method is not considered to
be GM organism in some regions. Conventionally, GMO crops
refer to organisms that have been altered in a way that they
would not have evolved naturally. Moreover, GMO involves
transferring foreign DNA fragment from one species to another
(transgenic) or within the same species (cisgenic). But in the
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TABLE 2 | Comparison between tissue culture cloning, manual cloning, and seed propagation in cannabis.

Propagation
system

Seed Traditional cloning In vitro

Roots Tap root is prominent, grow deep, suitable
for field cultivation

Adventitious roots grow from stem laterally,
suitable for indoor cultivation

Adventitious roots grow from stem
laterally, suitable for indoor cultivation

Genotype In hybrids, genotype is different for each
seed.
In feminized seeds, genotype is close to
each other

Same as mother plant Same as mother plant

Rooting hormone Not required 0.1% Indole-3-butyric acid (IBA) is used to
promote rooting

0.1% IBA is used to promote rooting

Sexual type Segregate in male and female (about 50%
each in case of hybrid seeds);
near 100% female in case of feminized
seeds

All female but chances of developing
hermaphrodites or mutated males

All female but chances of developing
hermaphrodites or mutated males

Preferred growing Outdoor Indoor, hydroponic, aeroponic
18:6 h photoperiod

Indoor/hydroponic/aeroponic
18:6 h photoperiod

Preferred Light
Condition

Variable between 500 – 2500 µmolm2

s−1
Variable between 200 and 300 µmolm2 s−1 Variable between 50 and 100 µmolm2

s−1

Yield 500–600 g/plant, relatively long growing
cycle and high vegetative growth

40–60 g/plant, relatively small plant, short
growing cycle, flower matures within
2 months

40–60 g/plant, relatively, small, short
growing cycle, flower matures within
2 months

THC% <0.3% THC;
mostly used for propagating industrial hemp

Between 4 and 30% THC depending on
strain

Between 4 and 30% THC
depending on strain

Growing medium Soil/compost Compost/vermiculite
cubes/rockwool/hydrotone clay balls

Sterilized tissue culture medium

Clone health Chances of seedling infection with mites,
sucking pests, powdery mildew,
Hop latent viroid (Dudding disease)

Lower chances as grown under controlled
condition but could carry disease or pests if
cutting come from infected mother plants. If
mother plant was infected or symptomless
carrier for Hop latent viroid (Dudding
disease), chances to carry it forward

Lowest chances as grown under clean
condition to carry disease or pests as
multiplied from clean stock. Opportunity
to clean for Hop Latent virus as coming
from nodal clone stocks free of Hop
latent viroid (Dudding disease)

Storage 2–3 years in cool dry place In a dome for a week For a week in controlled condition and
up to 12 months at 4

◦

C

Storage
requirements

Protective cover from high sunlight,
temperature, and wind; watering as
necessary

Cuttings require 65–75% relative humidity;
20–23◦C temperature and artificial light for
growth; proper ventilation

Controlled and clean purified air HEPA
filtered air in culture rooms; 45–50%
relative humidity in culture rooms;
20–22

◦

C temperature, effective
ventilation

Multiplication rate One plant can yield thousands of seeds
under open pollination/between 100–200
seeds from a feminized plant

150–200 clones from one month grown
vegetative plant

One to four multiplication rates in one
month period but grows exponential in
number with time

Hardening
requirement

Not necessary About 2–3 days; cuttings are little easier to
root and acclimatize in growing environment

About a week, transition from culture
tubes to soil/compost is little riskier

Cost effectiveness Can be grown outdoor under little care Simpler indoor setup Tissue culture lab investment

Preferred use Field Recreation cannabis Medical Cannabis

Information derived from Chandra et al. (2008, 2015), Caplan (2018), and Chandra et al. (2020).

FIGURE 3 | Hemp tissue culture propagation. (A) Hypocotyl explants on callus-induction media. (B) Hypocotyl explants with the callus on callus induction media.
(C,D) Callus and developing shoots on shoot-induction media. (E) Developed shoots on root-induction media.
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TABLE 3 | Cannabis cell culture, transformation, and micropropagation work since 1972–2020.

Species Cultivar Study type Explant Organogenesis/Transformation References

Cannabis sativa Unknown Cell suspension culture for active
metabolites

Seedling tissues No/No Veliky and Genest, 1972

Cannabis sativa Unknown Assessment of cannabinoids and
essential oil in callus

Seedling tissues No/No Itokawa et al., 1975

Cannabis sativa Unknown Biotransformation of cannabinoid
precursors using suspension cultures

Seedling tissues No/No Itokawa et al., 1977

Cannabis sativa Drug type (‘152 Strain’); Fiber type (‘150
Strain; TUA(2):C-71)

Cannabinoid content in callus Bracts, calyx, and leaf
tissues

No/No Hemphill et al., 1978

Cannabis sativa Unknown Root development from callus Seedling Yes/No Fisse et al., 1981

Cannabis sativa Unknown Callus culture Seedling tissue No/No Heitrich and Binder, 1982

Cannabis sativa Unknown Assessment of metabolites inducing
callus and suspension culture

Embryo, leaf, and stem No/No Loh et al., 1983

Cannabis sativa Unknown Biotransformation of cannabinoid by
cell suspension culture

Seedling tissues No/No Hartsel et al., 1983

Cannabis sativa Unknown Callus induction Stem, cotyledon, and root No/No Fisse and Andres, 1985

Species Cultivars Study type Explants type Organogenesis/Transformation References

Cannabis sativa Hemp type Rooting and shooting from clone
cuttings

Axillary shoots Yes/No Richez-Dumanois et al.,
1986

Cannabis sativa Unknown but high THCV Biotransformation of cannabinoids
using cell culture method

Leaf tissues No/No Braemer and Paris, 1987

Cannabis sativa Hemp type Preservation procedure of cannabis
suspension cultures

Floral part No/No Jekkel et al., 1989

Cannabis sativ Hemp Callus formation from all the test
tissues;

Leaf, hypocotyl, cotyledon,
and root

Yes/No **Mandolino and Ranalli,
1999

a shoot regeneration from hypocotyl,
cotyledon, and root

Cannabis sativa Fedora 19, Felina 34 Regeneration of root from callus but no
shoot.

Explant not identified Yes/Yes (Information not
descriptive)

Mackinnon et al., 2000

Cannabis sativa Hemp type Gene transformation and Callus
formation

Stem and leaf No/Yes Feeney and Punja, 2003

Cannabis sativa Silesia (m),
Fibrimon-24 (Potential monoecious),
Novosadska,
Juso-15,
Fedrina-74 (m)

Full plant regeneration from callus Petiole, axillary bud callus,
and callus from internodes

Yes/No **Slusarkiewicz-Jarzina
et al., 2005

(Continued)
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TABLE 3 | Continued

Species Cultivars Study type Explants type Organogenesis/Transformation References

Cannabis sativa Beniko (m), Bialobrzeskie (m) Regeneration of Hemp Roots, leaves, and stems Yes/No (only abstract is available in
the public database)

Plawuszewski et al., 2005

Cannabis sativa Bealobrzeskie (m), Beniko (m), Silesia (m) Callus induction and plant regeneration Stem and cotyledon Yes/No ∗∗ Wielgus et al., 2008

Cannabis sativa Hemp type Regeneration of shoot from meristems Cotyledon, stem, and root Yes/No Casano and Grassi, 2009

Cannabis sativa Hemp type Cell suspension culture for secondary
metabolites

Leaf tissues No/No Flores-Sanchez et al., 2009

Cannabis sativa MX-1 Direct organogenesis using nodal
segments; synthetic seed development.

Nodal segments Yes/No Lata et al., 2009a

Cannabis sativa Changtu Shoot tip culture Shoot tip Yes/No Wang et al., 2009

Cannabis sativa MX Regeneration from leaf derived callus Leaf tissue Yes/No Lata et al., 2010c

Cannabis sativa MX Synthetic seeds for conservation of
clones

Nodal segments Yes/No Lata et al., 2011

Cannabis sativa Futura77, Delta-llosa, Delta405 Agrobacterium infection of cannabis
roots

Hypocotyls, cotyledon and
cotyledonary node

Yes/Yes Wahby et al., 2013

Cannabis sativa unidentified Regeneration of plants from callus Leaf Yes/No ** Hussain, 2014 (Thesis)

Cannabis sativa Long-ma No. 1 Micropropagation Internodes Yes/No Jiang et al., 2015

Cannabis sativa Unidentified Callus induction and Shoot
regeneration from callus

Cotyledon and
epicotyledon

Yes/No **Movahedi et al., 2015

Cannabis sativa Unidentified Cell culture Root No/No Farag and Kayser, 2015

Cannabis sativa Changsa Full Plant regeneration from callus Cotyledon Yes/No Chaohua et al., 2016

Cannabis sativa Hemp type Direct organogenesis: in vitro root and
shoot proliferation

Nodal segments Yes/No Lata et al., 2016

Cannabis sativa Bialobrzeskie and Monica Direct organogenesis (shoot and roots)
using phytohormones

Shoot tips Yes/No Grulichova et al., 2017

Cannabis sativa Wappa Direct organogenesis (rooting success
of stem cuttings)

Stem cuttings Yes/No Caplan et al., 2018

Cannabis sativa Unknown Cannabis transformation and
regeneration

Leaf segments (for
micropropagation),
protoplast (transformation),
and pollen (transformation)

Unclear/Yes Flaishman et al., 2019
(Patent)

Cannabis sativa Hemp Landrace, Futura, Canda, Joey,
CFX-2 and Cherry × Workhorse

Determination of optimal hormone and
mineral salts for callus induction in
hemp.

Stem cuttings Yes/No Thacker et al., 2018

Cannabis sativa Medicinal cannabis but strain unknown Assessment of cannabis shoot tips for
their rooting efficiency

Shoot tips and nodal
cuttings

Yes/No Kodym and Leeb, 2019

(Continued)
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case of CRISPR edited plants, the targeted mutation is created
by using an enzyme and a small guide RNA. While the mutation
continues to inherited, the CRISPR machinery can be eliminated
in the next generation (Aliaga-Franco et al., 2019). This method
is precise and faster than conventional breeding practices, and
it is much less controversial than GMO techniques. Therefore,
the establishment of CRISPR-Cas9 system in cannabis is another
crucial aspect that needs to be explored.

Hairy Root Culture
Agrobacterium rhizogenes is another functional genomics tool
to assess the function of a gene or developing transgenic
plants. These are differentiated cultures that are induced by
the infection of Agrobacterium rhizogenes, a soil bacterium.
Hairy root culture has a high growth rate in a hormone-free
medium and exhibits the potential to yield secondary metabolites
comparable to the wildtype (Pistelli et al., 2010). It enables
the use of stable and reproducible bioreactor-based production
and extraction independent of weather conditions, regulatory
hurdles, and a lower risk of microbial contamination. This is a
safe approach for producing medicinal and active metabolites
free of hormones/viruses and does not require pesticides or
insecticides. It is also one of the critical avenues for cannabis
genetic transformation and functional genomics research.

Calli or hypocotyls infected by A. rhizogenes respond with
the emergence of hairy roots from the infected site. Hairy roots
can be individually selected and tested for a higher production
rate of a compound of interest and cryopreserved at –196◦C
as a pure culture and subculture further for commercial-scale
production (Engelmann, 2004). Cannabis hairy root culture has
been successfully induced by A. rhizogenes (Wahby et al., 2006,
2013). Hairy root cultures from cannabis callus were also reported
using 4 mg/l NAA as a supplement to B5 medium under dark
conditions at 25◦C (Farag and Kayser, 2015). In the study, the
level of THCA and CBDA was less than 2 µg/g dry weight
indicating a very low level of cannabinoids present in the hairy
root culture under the dark condition with a 28-day growth cycle.

While detectable levels of cannabinoids are not present in
C. sativa hairy roots, they have been reported to contain choline,
atropine, and muscarine (Wahby et al., 2006, 2017). A higher
level of these compounds was observed in the A. rhizogenes
transformed hairy roots compared to non-transformed control.
Choline was the most significant compound ranged between
203 and 510 mg/L (control 66–153 mg/L); Atropine with 562–
933 µg/L (control 532–553 µg/L); Muscarine with 231–367 µg/L
(control undetectable) (Wahby et al., 2017). Additionally, the
THCA synthase gene’s heterologous expression in tobacco hairy
root culture has been successful (Sirikantaramas et al., 2004;
Taura et al., 2009).

Meristem Culture
The culture of indeterminate organs, especially the totipotent
cells in the apical dome, is a method to obtain many virus
clones in a short period (Mori, 1971; Wang and Charles, 1991).
The apical dome region has no vascular connection to the
developing procambium, leaf primordium, and axillary buds
(Wang and Charles, 1991). This lack of vascular connection
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FIGURE 4 | Evolution of cannabis tissue culture research. The green curved arrow on the left shows the key events in cannabis use. Each rectangle on the right
shows the major research and development activities at different years. Each brown arrow indicates that the technology is continuously developing and research
work is in progress in the particular research area.

provides a basis for using the meristem for pathogen elimination
as viruses readily travel through the vascular system but do
not efficiently transfer from cell to cell. Uninfected cells can
be isolated from the meristematic dome (Wang and Charles,
1991; Wu et al., 2020). It is a robust tool for producingvirus-
free clones that can then be further multiplied at a commercial
scale to produce certified virus-free plants. Characteristically,
a section of tissue, mostly the apical dome, is dissected either
from apical or lateral buds consisting of leaf primordia (no
more than 1–2 in number) and apical meristem (0.1–0.5 mm
in length) and cultured in a suitable growth medium. Upon
induction of the meristem cells under a favorable combination
of hormones and growth environment, the cells can continue to
develop into a shoot or regenerate into plants through somatic
embryogenesis or shoot organogenesis. The regeneration process
occasionally gives direct shoot development from the explant,
and sometimes morphogenesis occurs indirectly only after the
formation of the callus.

There are well-established meristem culture protocols for
different model and non-model species (Mori, 1971; Mordhorst
et al., 2002; Al-Taleb et al., 2011; Spanò et al., 2018), including
the closest relative of cannabis, Humulus lupulus (Hops), for
eliminating virus infection (Grudzinska and Solarska, 2004;
Grudzinska et al., 2006; Adams, 2015; Sallie and Jones, 2015).
Given the importance of cannabis as a crop, the development
of meristem culture for clean plant production could be useful.
Unfortunately, this technique is most effective with viral diseases
and would not eliminate fungal and bacterial pathogens known
to infect cannabis.

Protoplast Culture
For decades, plant protoplasts have been used for genetic
transformation, cell fusion, somatic mutation, and more recently,
for genome editing (Lei et al., 2015). Significant progress has been
made in other crop species in genetic studies using protoplasts;
however, for cannabis, studies are in a development phase, with
the conditions suitable for the survival of transfected protoplasts
and plant regeneration are yet to be optimized. Mesophyll
protoplast isolation and transformation of at least three different
cannabis cultivars has been reported (Morimoto et al., 2007;

Flaishman et al., 2019). Based on the recent study, only about
4% of the protoplasts survived 48 h in liquid culture and plants
were not regenerated (Flaishman et al., 2019). Even in the absence
of successful regeneration of a whole plant, protoplasts are of
great value in confirming the effectiveness of designed guide
RNA (gRNA) prior to their use for the regeneration of gene-
edited plants.

Somatic Embryogenesis
Somatic embryogenesis is the regeneration of a whole plant
from cultured plant cells via embryo formation, from somatic
plant cells of various tissues like root, stem, leaf, hypocotyl,
cotyledon or petiole (Shen et al., 2018). They morphologically
resemble the zygotic embryo’s bipolar structure, bear specific
embryonic organs, and go through analogous development
stages with similar gene expression profiles (Shen et al., 2018).
Somatic embryogenesis can occur through direct regeneration.
The embryos are developed directly from explant cells, or
more commonly through indirect regeneration in which callus
develops first, and the development of embryos occurs from
callus cells (Sharp et al., 1980).

Plant regeneration via somatic embryogenesis starts with the
initiation of embryogenic cultures by culturing various explants
on media supplemented with only auxins or a combination of
auxins and cytokinins to control cell growth and development
(Osborne and McManus, 2005). One exception to this is the
use of thidiazuron (TDZ), a cytokinin-like compound that is
often used alone to induce somatic embryogenesis (Murthy
et al., 1995). The proliferation of embryogenic cultures can
occur on solid or in liquid media supplemented with auxins
and cytokinins, followed by pre-maturation of somatic embryos
on lower levels of PGRs or PGR free media to stimulate
somatic embryo formation and development. Maturation of
somatic embryos can occur by culturing on media with reduced
osmotic potential or supplemented with abscisic acid (George
et al., 2007). This maturation stage is critical for synthetic
seed production as it allows embryos to be desiccated, stored,
encapsulated, and treated like regular seeds. However, in many
somatic embryogenesis systems, the maturation phase has not
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been developed, and somatic embryos germinate precociously
to produce plants.

Somatic embryos are used as a model system in embryology
studies; however, somatic embryogenesis’s main economic
applications are for developing transgenic plants and large-scale
virus-free vegetative propagation of elite plant genotypes. The
possibility to scale up the propagation using bioreactors has been
reported (Hvoslef-Eide and Preil, 2005). Somatic embryos are
also ideal for genetic manipulation purposes as they develop from
a single cell, thereby reducing the chances of producing chimeric
plants, common when relying on shoot organogenesis or shoot
proliferation (Dhekney et al., 2016). Other less common uses
of somatic embryogenesis include cryopreservation of genetic
materials and synthetic seed technology (George et al., 2007).

Feeney and Punja (2003) investigated the somatic
embryogenesis and tissue culture propagation of hemp. Despite
testing various explants and supplements, and variations in the
culture medium and changes to the culture environment, there
was no successful plantlet regeneration, and a reliable protocol
for somatic embryogenesis in cannabis has yet to be published.

Thin Cell Layer (TCL)
Thin cell layer (TCL) culture utilizes a thin layer of tissue as
the explant to allow close contact between wounded cells and
nutrients and growth regulators supplied in the medium; this
controls the morphogenesis of the cultures (Nhut et al., 2003).
This is most useful where larger explants may also contain
a high level of endogenous hormones, carbon sources, and
other substances that influence and conflict with the effects
of exogenous substances placed in the medium and, thus,
interfere with development. In general, sterilized TCL explants
are excised either longitudinally (0.5–1 mm wide, 5–10 mm
long) or transversally (0.1–5 mm thick) prior to culturing (Nhut
et al., 2003; Croom et al., 2016). Like other in vitro techniques,
TCL requires an optimized protocol regarding basal media,
PGRs and other added nutrients and growth conditions such
as daylength, light intensity, and temperature. These conditions
vary for not only the species but can be genotype-dependent.
It has been widely used in different species, including bamboo,
banana, citrus, tomato, rose, Lilium ledebourii, Bacopa monnieri,
saffron, among others (Nhut et al., 2003; Teixeira da Silva et al.,
2007; Mirmasoumi et al., 2013; Croom et al., 2016; Azadi et al.,
2017). TCL’s potential is yet to be explored in Cannabis spp.;
however, it may prove to have some utility in the regeneration
of genetic transformants in this high value but re calcitrant
regeneration crop.

Doubled Haploid Production
Androgenesis is a biological process by which a whole
plant regenerates directly from immature pollen (microspores)
through the embryogenesis developmental pathway under
in vitro conditions. While the resulting plant is haploid and
inherently sterile, a diploid plant can arise either spontaneously
or artificially (Gilles et al., 2017), usually with colchicine, which
blocks cytokinesis without blocking chromosome doubling
(Galazkajoa and Niemirowicz-Szczytt, 2013). This doubled
haploid is homozygous at all loci. Doubled Haploid (DH)

plants have been extensively used in plant breeding programs
to increase the speed and efficiency with which homozygous
lines can be obtained (Alisher et al., 2007). DH technology is
traditionally used to genetically stabilize parental lines for F1
hybrid production. This is important for the rapid integration
of new traits through backcross conversion and to develop
molecular mapping populations. It is also used to fix desired traits
obtained through transformation or mutagenesis and simplify
genomic sequencing by eliminating heterozygosity (Ferrie and
Mollers, 2011). As such, this technology would be an important
tool for both forward and reverse functional genomics studies.

There are two different approaches to develop haploid plants.
First, in situ methods, using particular pollination techniques
such as irradiated pollen, inter-species crosses or so-called
‘inducer lines’ (Ren et al., 2017); second, in vitro methods
including the culture of haploid cells (gametes) and their
development to haploid embryos and consequently haploid
plants through germination. The microspores, which can be
harvested in large numbers (millions), are generally isolated
for culture as a uniform population. Alternatively, the culture
of whole anthers is used to obtain haploid plants through the
androgenesis process. The main disadvantage of another culture
is the potential for developing a mix of both haploid and diploid
plantlets (Elhiti et al., 2010). In this review, we will focus only
on the production of doubled haploids from microspores using
in vitro culture.

One of the most important factors affecting DH production
is the microspore developmental stage. It is a complicated factor
that has a strong influence on microspore culture’s success. It has
been reported that only microspores that are at a stage sufficiently
immature have the ability to change their developmental fate
from a gametophytic to embryogenic, leading to sporophytic
development (Soriano et al., 2013). The most amenable stage
is either the uni-nucleate stage of the microspore or the early
binucleate stage, either at or just after the first pollen mitosis.
At this developmental stage, the microspore’s transcriptional
status may still be proliferative and not yet fully differentiated
(Malik et al., 2007). Although all microspores within an anther
would be roughly of a similar age, not all cells have embryonic
competence. Therefore, the incremental differences in the stages
of development of individual microspores can be considered
significant. To avoid this problem, Bhowmik et al. (2011)
introduced a new treatment, discontinuous Percoll gradient
centrifugation, to provide a uniform population of B. napus
isolated microspores at the appropriate stage of development.
This approach has consistently produced high embryo yields and
consistent embryo development.

Hemp Microspore Culture
In 2019, an extensive hemp breeding program was introduced
at Haplotech Inc.1. As there has been no previously reported
success in the area, a hemp DH project was initiated to accelerate
this program. Four different Haplotech genotypes were used
for this experiment. Both male racemes and pollen-induced
female colas were collected, and the buds were fractionated

1https://haplotech.com/
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according to size into three groups (2–3, 3–4, and 4–5 mm).
Each group was surface sterilized with 15% commercial bleach
and washed three times with distilled-sterilized water for 5 min
each. The sterilized buds were macerated in isolation media (MS
basal fortified by 13% sucrose). The isolated microspores were
washed by extraction medium two times or until the supernatant
became clear. The isolated microspores were subjected to
fractional centrifugation using Percoll, as described by Bhowmik
et al. (2011). The concentration of microspores was diluted to
4 × 104cells/ml with MS basal fortified by 10% sucrose. Five
ml of this diluent (4 × 104) microspores were mixed with 5 ml
of induction media (MS basal, 10% sucrose supplemented with
different additives for induction) in 47 mm Petri dishes. The
final concentration of the culture used was 2 × 104 cells/ml. The
isolated microspores in culture were observed every 3 days using
an inverted microscope and a binocular microscope.

Samples of isolated microspores were stained with 4,
6-diamidino-2-phenylindole (DAPI) and observed using a
fluorescence microscope to monitor their in vitro development,
once every 3 days. Monitoring of the culture samples by DAPI
staining in the first 2 weeks revealed that the microspores
of all four genotypes remained uninuclear (Figure 5A). This
developmental stage was found to be the most responsive
to embryogenesis induction in many crop plants (Soriano
et al., 2013). Of the factors tested, the most crucial for
further development of the microspore was the induction
medium formulation. Using a relatively complex medium, a
few microspores responded (0.05–0.5%) and developed further,
while the remainder died within 5–10 days. Microspore derived
embryos initiated by a series of random divisions within the
surrounding exine wall. The nucleus of uninucleate microspores
(Figure 5A) condensed and reduced in size during the first 2 days
in culture (Figure 5B). They then divided symmetrically within
the first 5–8 days, forming two equal-sized nuclei (Figure 5C).
This developmental stage is considered the initial stage that is
often referred to as sporophytic growth (Soriano et al., 2013).
Within another 3–5 days, the nuclei underwent a series of
divisions resulting in the formation of multinucleate structures
(Figure 5D). By approximately the third week of culture, globular
stage embryos were observed in culture (Figure 5E). Early
in the fourth week, these globular structures developed into
heart stage embryos (Figure 5F). To date, growth has not
progressed past this stage of embryo development. Current
experiments including adjustment of the osmoticum and removal
of secondary metabolites which could inhibit (microspore-
derived) embryo development are running.

In vitro Mutagenesis
A mutation occurs in DNA, naturally or it can also be induced
artificially. The majority of the genetic variation existing in
a gene pool has occurred naturally. These genetic variations
can be recombined through conventional breeding practices to
develop a novel variety with desired gene traits. Although these
spontaneous mutations are frequent, the desired mutation in
the desired gene segment altering its biological role is extremely
rare. Therefore, mutation induction tools are used in the rapid
development of genetic variability in crops. For the last few

decades, there were several scientific reports published assessing
the impact of an induced mutation in the improvement of
crops (Brock, 1971; Broertjes and Van Harten, 1988; Micke,
1999; Oladosu et al., 2016). However, in cannabis research and
development is rapidly flourishing, but there are only a few
reports on targeted mutation through genetic transformation
(Feeney and Punja, 2003; Slusarkiewicz-Jarzina et al., 2005;
Sirkowski, 2012; Wahby et al., 2013) and there is no mutant
variety introduced at the commercial level. In vitro culture
techniques, coupled with mutagenesis, has simplified the crop
improvement work for both seeds and vegetatively propagated
plants (Hussain et al., 2012). Little efforts have been made
and published to establish DH production in cannabis, but
once streamlined will open up exciting opportunities for DH
mutagenesis as it has been successfully employed in canola
(Szarejko, 2003).

Synthetic Seed Technology
Synthetic seeds usually refer to artificially encapsulated somatic
embryos (Murashige, 1977) but have also been used in reference
to encapsulated vegetative tissues that have the potential to
develop into a whole plant (auxiliary buds, cell aggregates, shoot
buds). Somatic embryos provide the ideal approach to developing
synthetic seeds as they often have the ability to survive desiccation
and can be treated in much the same way as true seeds. At the
same time, other tissues lack this capacity and are less useful
(Rihan et al., 2017). As shown in Figure 6, synthetic seeds can
be successfully developed by using various explants, media, and
encapsulation protocols (Bapat et al., 1987; Corrie and Tandon,
1993; Nyende et al., 2003; Chand and Singh, 2004; Rai et al., 2008;
Lata et al., 2009a).

Cannabis is generally a cross-pollinating crop, and due to
its allogamous nature, it is difficult to maintain existing elite
varieties by seed. Typically, a minimum isolation distance of
5 km between breeding nurseries and hemp production fields
is required to minimize the occurrence of nuisance pollen.
Such separation is often difficult to achieve in areas with high
hemp production intensity. Therefore, in vitro propagation using
synthetic seed technology is an alternative method for large-scale
clonal propagation and germplasm preservation. As the cannabis
industry grows, this method may be cheaper and faster than
traditional tissue culture methods. Along with the preservation of
genetic uniformity, clones produced through this technique are
pathogen-free, easy to handle, and transport.

Moreover, in other species, this approach has resulted in
increased quality of planting material (Rihan et al., 2017). While
cannabis tissue culture methods are still being optimized, Lata
et al. (2009a) developed a high-frequency propagation of axillary
buds of C. sativa encapsulated in calcium alginate gel. Calcium
alginate is a hydrogel that contains nutrients, growth regulators,
and sometimes antibiotics.

When directly sown on a substrate, encapsulation aids in
the physical protection and establishment and growth of the
explant. According to Lata et al. (2009a), gel capsule consisted
of 5% sodium alginate with 50 mM CaCl2.2H2O, and full-
strength MS medium supplied with 0.5 µM TDZ, and 0.075%
plant preservative mixture (PPM). The optimal regrowth and
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FIGURE 5 | Developmental pathways observed in C. sativa (industrial hemp) microspore culture. (A–C) Male gametophyte development in C. sativa during in vitro
culture. (A) Uninucleate microspores; (B) uninucleate microspores after 3 days in culture media; (C) symmetrically divided microspore with two equally sized nuclei;
(D) multinucleate structure without organization and still enclosed in exine; (E) globular multicellular structure with developing exine; and (F) heart-shape embryo with
two distinct domains. The nuclei in (A–C) are stained with the nuclear dye 4′,6-diamidino-2-phenylindole (DAPI) to indicate viability.

FIGURE 6 | General schematic diagram showing steps for calcium chloride encapsulated synthetic seed production.

conversion were achieved in MS medium supplemented with
antimicrobial components, PPM (0.075%) and TDZ (0.5 µM)
under in vitro conditions. Under in vivo condition, the optimal
conversion and regrowth were exhibited on 1:1 potting mix-
fertilome with coco natural growth medium supplied with MS
medium containing 3% sucrose, 0.5% PPM. Clones regenerated

from the explants were successfully hardened and transferred to
the soil (Lata et al., 2009a).

Another hurdle to in vitro propagation is transporting
requested strains from the tissue culture facility to the growers in
a timely manner. These transportation issues become incredibly
challenging for maintaining crop schedules because cannabis
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crops can take more than 2 months to reach hardening stages,
then spend 4 weeks in vegetative growth, then 7 or 8 weeks
in flower. Greenhouse or indoor growers require a consistent
supply demand to receive a high volume of plantlets every
week to start over a new grow room at a very tight on-
time delivery schedule, which is the most important metric
in their operations. An established and cost-effective synthetic
seed encapsulation technique would provide an opportunity to
eliminate the transportation challenge.

CRYOPRESERVATION

Cryopreservation refers to the storage of diverse living materials
at below –130◦C (Engelmann, 2004). It serves as an alternative
conservation approach to the conventional field and in vitro (i.e.,
slow growth) germplasm conservation and is cost-effective over
extended periods with minimal space and routine maintenance
requirements (Pence, 2011; Engelmann, 2014; Popova et al.,
2015). It also assists current breeding programs by providing
long-term storage and an easy long-distance exchange of
genetic materials (e.g., pollen and meristematic apices and
buds). Cryopreservation has been implemented for various
plant species using different methods, the most popular and
widely applicable, including controlled freezing, vitrification,
encapsulation-dehydration, encapsulation-vitrification, and
droplet-vitrification (Sakai and Engelmann, 2007; Popova et al.,
2015). These methods follow distinct approaches to dehydrate
cryopreserving living materials by converting liquid water to
a glassy state to avoid the lethal formation of intracellular ice.
The selection of methods and the scales of conservation using
this approach are strongly determined by genotypes and tissue
materials used, which contain different responses to pre- and
post-cryopreservation treatments.

Conventional and in vitro conservation of cannabis require
considerable amounts of space and routine maintenance, have
genetic mutations accumulate in the plants. Conventional
conservation may expose plants to virulence pathogens. The
plants may eventually become susceptible to diseases. The
application of cryopreservation can serve as an essential tool
for the conservation of various valuable C. sativa genotypes
with unique attributes and trading the genotypes nationally and
internationally in sterile conditions. The first study on applying
cryopreservation techniques in C. sativa was reported in 1989
using cell suspension cultures (Jekkel et al., 1989). The suspension
cultures were preserved using 10% dimethyl sulfoxide (DMSO)
cryoprotectant and a controlled cooling rate of 2◦C/min and
transfer temperature of –10◦C, with a 58% survival rate after
cryopreservation of the cultures. A cryopreservation protocol
for C. sativa shoot tips was recently developed using a droplet-
vitrification in liquid nitrogen for long-term conservation of this
crop (Uchendu et al., 2019). The report showed that vitrified
shoot tips using a cryoprotectant solution of 30% glycerol,
15% ethylene glycol, 15% DMSO in liquid MS medium with
0.4 M sucrose, pH 5.8 had 63% re-growth efficiency. Despite
the promising progress made, more studies need to be done
on selecting appropriate cryopreservation methods with respect

to the tissue types and genotypes, increasing re-growth and
survival efficiency of preserved samples, and genetic stability
of regenerated plants after using different cryopreservation
tools, among others.

GERMPLASM MAINTENANCE

The in vitro condition also raises some issues for
concern, primarily when the material is maintained over a
long period of time.

Clonal Stability in vitro Culture
In vitro mass-propagation and maintenance of elite germplasm
requires genetically stable true-to-type clones. Several factors,
such as the number of subcultures, changes in the relationship
of auxin/cytokinin, explant type, and a high concentration of
growth regulators, may influence the genetic stability of a clone
under in vitro conditions (Joyce et al., 2003; Sato et al., 2011;
Smulders and de Klerk, 2011; Nwauzoma and Jaja, 2013). While
carefully selecting explant types and optimizing the conditions
above, but depending on the plant species, clonal stability can
be obtained during in vitro mass-propagation and germplasm
conservation of the desired elite genotypes maintained. To date,
C. sativa plants regenerated from nodal culture, and in vitro
conserved synthetic seeds (‘Encapsulated’ nodal segments) have
shown no evidence of genetic mutations; however, this has only
been evaluated using low numbers of markers (Lata et al., 2010a,
2011). Despite optimizing and using properly in vitro conditions
that limit somaclonal variations, assessment of clonal stability is
required to ensure the regenerated clones are the true-to-type of
the donor plants.

Somaclonal Variation
Although clonal propagation and maintenance of elite
germplasm require a substantial genetic uniformity among
in vitro regenerated plantlets, there may be a large possibility of
genetic variations, called “somaclonal variation” among these
plants and/or relative to the donor plants. Somaclonal variation
is commonly a result of genetic alterations and changes in
the new in vitro plants’ epigenetics compared to the original
source plants (Miguel and Marum, 2011; Abreu et al., 2014). The
frequency and nature of somaclonal variation in vitro culture
can be influenced by different factors, such as explant source,
genotype, in vitro techniques, in vitro growth conditions, length
of the culture period, and the number of subcultures. The use
of de novo regeneration from highly differentiated tissues (i.e.,
roots, leaves, stems, hypocotyls, cotyledons, etc.) is generally
considered to produce more somaclonal variation compared to
explants with developed meristems (i.e., axillary buds and shoot
tips) (Pijut et al., 2012). Most of these factors generate oxidative
stress during culture initiation and subsequent subculturing.
The explants and the subsequent regenerated plants exposed to
the stress may retain genetic changes. For example, protoplast
and callus based plant regeneration impose a high degree of
oxidative stress; thus, the stress promotes a high mutation
rate, whereas plants regenerated through auxiliary branching
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FIGURE 7 | A flow chart depicting different approaches that can be used to determine the genetic stability of in vitro regenerated or conserved cannabis plants,
compared to its donor counterparts.

TABLE 4 | Comparison between tissue culture cloning and manual cloning in cannabis.

Parameter Manual Cloning Tissue culture cloning

Space to produce 1000 cuttings (square meters) 3–5 0.36

Clones processed per person per day (count) 200–250 1500–2000

Multiplication Ratio per month 1–2 4–5

Cost of Production ($) $3–4 $0.5–1

Clone multiplication in a 3-month cycle 50–80 200–250

Cleanliness Chances of contamination Disease, pest, and virus free

Vigor Chances of reduced vigor from stressed or infected
mother plants

Vigor from meristematic reviving

Estimated clone production per 10,000 square feet
per year (count)

200,000 2,000,000

Estimated revenue at $10 per clone $ 2M $ 20 M

(e.g., nodes, shoot tip) experience very low oxidative stress,
normally resulting in no genetic variation (Zayova et al., 2010;
Smulders and de Klerk, 2011; Krishna et al., 2016). Genetic
variation can also arise from somatic mutations already present
in the explants collected from the donor plant (Karp, 1994).
In vitro regeneration of plants can also be genotype-specific, in
which genotypes have different degrees of mutation risks and
thus strongly determine the formation of somaclonal variation
(Alizadeh et al., 2010; Eftekhari et al., 2012; Nwauzoma and Jaja,
2013). The genetic alterations strongly depend on the in vitro
techniques used to regenerate in vitro plants. Additionally,
despite differences across plant species, cultures maintained for
a long period tend to generate high somaclonal variation, and
vice versa (Farahani et al., 2011; Jevremovic et al., 2012; Sun
et al., 2013). When cultures are getting old and continuously
subcultured, the chance of generating genetically less uniform
plants is increased (Zayova et al., 2010), but depends upon the
plant species. For example, any more than eight subculture
cycles increased somaclonal variation in banana (Khan et al.,

2011), whereas over 30 subcultures did not cause any detectable
somaclonal variations in C. sativa (Lata et al., 2010a).

Although the molecular mechanism of how somaclonal
variations generated from a single plant genotype under
the same in vitro conditions is not fully explored, several
potential mechanisms causing genetic alternations and
epigenetics have been proposed in different plant species.
These mechanisms include changes in chromosome number,
point mutations, somatic crossing over and sister chromatid
exchange, chromosome breakage and rearrangement, somatic
gene rearrangement, DNA replication, changes in organelle
DNA, insertion or excision of transposable elements, segregation
of pre-existing chimeral tissues, DNA methylation, epigenetic
variation, and histone modifications and RNA interference (Sato
et al., 2011; Krishna et al., 2016; references therein).

The occurrence of somaclonal variations in regenerated
in vitro plants may be advantageous or disadvantageous,
depending on in vitro propagation goals. If in vitro propagation
aims to generate new variants, obtaining variations among
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FIGURE 8 | Integration of automation and bioreactor technologies for mass propagation in cannabis for low cost clonal multiplication at in vitro level.

in vitro plants can be advantageous that increases genetic
diversity for a genotype used. It provides an alternative tool to
the breeders for obtaining genetic variability in different plant
species, which are either difficult to breed or have narrow genetic
bases. On the flip side, when in vitro propagation targets to
produce multiple true-to-type in vitro plants and maintain elite
germplasm, the occurrence of subtle somaclonal variations is
a severe problem.

PHYTOCANNABINOID SYNTHESIS IN
THE CANNABIS SPECIES

Nature has deftly adorned cannabis species with a spectrum
of phytocannabinoids or monoterpenoids that are chemically
designed with para-oriented isoprenyl and aralkyl groups
(Hanus et al., 2016). Since the discovery of tetrahydrocannabinol
(THC) and cannabidiol (CBD) in the early 1960s, there
are over 120 cannabinoids that has been reported, and the
biosynthesis pathway of these compounds has been greatly
improved (Taura et al., 1995; Sirikantaramas et al., 2004;
Taura et al., 2007b, 2009; Gagne et al., 2012; Stout et al.,
2012; Laverty et al., 2019). Presumably, cannabigerolic acid
(CBGA), the product formed by the alkylation of geranyl
diphosphate and olivetol, is the key precursor compound in the
synthesis of cannabinoids (Fellermeier and Zenk, 1998). The
cyclization event of prenyl components of CBGA, catalyzed
by three enzymes – tetrahydrocannabinolic acid synthase
(THCAS) (genebank accession: AB057805), cannabidiolic
acid synthase (CBDAS) (genebank accession: AB292682), and

cannabichromenic acid synthase (CBCAS), lead to the formation
of three major cannabinoids, THCA, CBDA, and CBCA,
respectively (Sirikantaramas et al., 2004; Taura et al., 2007a).
Biochemical characterization of the enzymes, THCAS and
CBDAS, have demonstrated that the enzymes follow a similar
reaction mechanism. In the presence of molecular oxygen,
the enzymes use flavin adenine dinucleotide (FAD) cofactor
to catalyze CBGA forming THCA and CBDA, and hydrogen
peroxide as its chemical biproduct (Sirikantaramas et al., 2004;
Taura et al., 2007b). Although it is a bit unclear, the chemical
reaction for CBCAS also believed to use FAD as cofactor and
molecular oxygen to complete the enzymatic activity on CBGA.
The genes that encode for CBCAS and THCAS are highly
similar in the nucleotide level, indicating that CBCAS is also
flavoproteins, like the other two enzymes, requiring oxygen to
catalyze CBGA to CBCA (Laverty et al., 2019). THCA, CBDA,
and CBCA are the major cannabinoids in acidic forms that
are synthesized in cannabis plant; upon decarboxylation, these
compounds convert into neutral forms, THC, CBD, and CBC
respectively (Wang et al., 2016).

DETERMINATION OF GENETIC FIDELITY

Variations between regenerated and donor plants can be
exhibited at phenotypic, cytological, biochemical, and
genetic/epigenetic levels (Hillig, 2005; Miguel and Marum,
2011; Smulders and de Klerk, 2011; Abreu et al., 2014). These
variations can be determined through different approaches,
such as morphological, cytological, biochemical, and molecular
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analyses (Figure 7). For morphological traits, changes are not
always observed at early developmental stages or may not
entirely display the variations. By contrast, the use of cytological
and molecular detection approaches determines differences at
chromosomal and DNA levels, respectively, regardless of the
developmental stages in various plant species (Clarindo et al.,
2012; Pathak and Dhawan, 2012; Currais et al., 2013; Abreu et al.,
2014; Bello-Bello et al., 2014). To date, several studies have been
reported on the use of different molecular markers in Cannabis
spp. genetic diversity, fingerprinting, etc. These markers include
random amplified polymorphic DNA (RAPD), restriction
fragment length polymorphisms (RFLP), amplified fragment
length polymorphism (AFLP), microsatellites, inter simple
sequence repeat (ISSR), short tandem repeat (STR) multiplex,
and single nucleotide polymorphisms (SNPs) and PCR Allele
Competitive Extension (PACE) assay (Faeti et al., 1996; Kojoma
et al., 2002; Alghanim and Almirall, 2003; Gilmore and Peakall,
2003; Hakki et al., 2003; Datwyler and Weiblen, 2006; Mendoza
et al., 2009; Lata et al., 2010a; Gao et al., 2014; Dufresnes et al.,
2017; Henry et al., 2018). These molecular markers coupled with
cytological and morphological analyses (Abreu et al., 2014) are
valuable techniques to ensure the genetic stability of in vitro
regenerated plants or in vitro conserved germplasm of C. sativa.
To date, only ISSR markers have been used to confirm the genetic
stability of C. sativa synthetic seeds during in vitro multiplication
and storage for 6 months under different growth conditions,
and in vitro propagated plants over 30 nodal subcultures in
culture and hardening in soil for 8 months, compared to the
corresponding donor plants (Lata et al., 2010a, 2011).

PROJECTED CONTRIBUTION OF
TISSUE CULTURE IN THE GLOBAL
CANNABIS INDUSTRY

The present global cannabis market is worth $340 B2. To
supply cannabis (medical and recreational) to global consumers,
a stable supply chain of quality production and value-added
product development still needs to be established. Considering
the average annual weighted usage base of 110 g per customer
(Canaccord Genuity), the global cannabis demand currently
could be around 19-20 M kg per year. Major cannabis consumers
are in Europe, North America, South America, Asia, and Oceanic
parts of the world, with an estimate of 263 million people
using the drug in the previous year (European Consumer Stables
Report, 2018; World Drug Report, 2019). To produce 20 M kg of
cannabis every year, considering a 40-gm yield per plant, would
require 500 M clones/seeds a year. An average price of $10, as,
then, the overall present global expected market size for tissue
culture clones/manual clones could be predicted around $5B.
With intensive indoor cultivation, tissue culture clonal planting
material can also reduce the risk of fungal and viral diseases,
substantially reducing production cost to under $0.5 per gram to
maintain a profitable cannabis production (Table 4). Considering
these global demand scenarios, the supply of clean cannabis

2https://www.gbnews.ch/340-billion-the-global-cannabis-market/

clones (pest free, and true to type tested) is an important supply
chain component essential for the success and future growth of
cannabis industry. To sustain and support the industry growth
and make the production cost-effective, optimization in the
cannabis tissue culture technology is vital.

The in vitro propagation of cannabis is superior to
conventional methods because of disease-free elite plants’
production and a high multiplication rate. The cannabis industry
is keen to invest in in vitro propagation due to (i) saving
footprint/production area by shifting a mother room to a tissue
culture lab that will be almost 10% the size of the space needed
same number of clones.

The main hurdle of in vitro propagation is the capital cost
for the tissue culture lab setup. Setting up a massive large-scale
production facility can involve a multimillion-dollar investment.
Industry and technology will need to continue to improve and
reduce costs so that in vitro propagation can be affordable
for all growers.

In other plants, under a laminar flow hood setting, on an
average of 100 plants per hour with 2000 working hours, 200,000
plants can be produced in a year. With an hourly labor cost
of $35 per hour will cost around $0.35 per tissue culture plant
(Sluis, 2005). This is around 60% of the production cost, adding
another $0.15 for other costs (including electricity, resources,
and marketing) makes it a baseline cost of $0.50 per plant.
Scale also makes some impact on the cost of production being
larger facilities can reduce the cost per plant significantly. These
production costs can be as low as $0.15 per plant if the plants are
produced in India, Singapore, China, or Africa where labor costs
are comparatively low.

A few biotech companies recently added robotic sub-
culturing technology for their cannabis plantlets and developed
a fully automated micropropagation system to reduce large-
scale operation costs. However, the capital investment to
purchase this kind of robotic system is incredibly high at
this time. Automated technologies for media preparation and
dispensing, photoautotrophic bioreactor systems, robotic explant
handling, and cutting, transfer laser dissected explants into fresh
culture media, and automated acclimatized and hardened plant
packaging in future will make cannabis tissue culture industry
high throughput and extremely cost-effective for assured “Just
In Time” supply of pest free, true-to-type cannabis clones.
A conceptual model for high throughput automated cannabis
in vitro clonal mass propagation is depicted in Figure 8. Robotics
has the potential to bring tissue culture cost down by 25% (as
low as $0.15 per plant to compete with low-cost production in
some parts of the world). Tissue culture automation technology is
slowly progressing, and it will not only bring high-level consistent
output but also reduce the cost of production as low as 20
cents per plant.

CONCLUSION

The process of developing new varieties through conventional
breeding can take 7–12 years, depending on crop species. The
progress of cannabis breeding programs is limited due to the
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difficulty in maintaining selected high yielding cross-pollinated
elite genotypes under field or greenhouse conditions. Therefore,
tissue culture techniques are advantageous for cannabis
improvement because they can facilitate high multiplication
rate and production of disease-free elite plants by overcoming
the problems of heterozygosity from cross-pollination. The
development of new industrial hemp and medical cannabis
cultivars with improved traits could be further advanced using
genome editing and other precision breeding tools, combined
with in vitro techniques for regeneration. Unfortunately,
hemp and cannabis plants’ dioecious nature complicates the
efforts toward the improvement of specific traits, such as
resistance to pests and diseases. Therefore, with the recent
legalization, calls for serious targeted efforts are required
to advance the regeneration and transformation protocols

aiming to enhance the quality and safety of the plants and
end products.
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