
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Report (National Research Council of Canada. Radio and Electrical Engineering
Division : ERB), 2004-10-28

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=02a62e4f-fe04-4708-a555-30f0dd3b2310

https://publications-cnrc.canada.ca/fra/voir/objet/?id=02a62e4f-fe04-4708-a555-30f0dd3b2310

NRC Publications Archive
Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.4224/8913575

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Tracking a sphere with six degrees of freedom
Bradley, D.; Roth, Gerhard

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Tracking a Sphere with Six Degrees of Freedom *

Bradley, D., Roth, G.
October 2004

* published as NRC/ERB-1115. October 28, 2004. 23 Pages. NRC 47397.

Copyright 2004 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

Tracking a Sphere w ith

Six Degrees of Freedom

Bradley, D., Roth, G.
October 2004

Copyright 2004 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

 NRC 47397

ERB-1115

TECHNICAL REPORT

NRC 47397/ERB 1115
Printed October 2004

Tracking a sphere with six degrees of
freedom

Derek Bradley
Gerhard Roth

Computational Video Group

Institute for Information Technology

National Research Council Canada

Montreal Road, Building M-50

Ottawa, Ontario, Canada K1A 0R6

NRC 47397/ERB 1115
Printed October 2004

Tracking a sphere with six degrees of

freedom

Derek Bradley
Gerhard Roth

Computational Video Group
Institute for Information Technology
National Research Council Canada

Abstract

One of the main problems in computer vision is to locate known objects in
an image and track the objects in a video sequence. In this paper we present
a real-time algorithm to resolve the 6 degree-of-freedom pose of a sphere from
monocular vision. Our method uses a specially-marked ball as the sphere to be
tracked, and is based on standard computer vision techniques followed by appli-
cations of 3D geometry. The proposed sphere tracking method is robust under
partial occlusions, allowing the sphere to be manipulated by hand. Applica-
tions of our work include augmented reality, as an input device for interactive
3d systems, and other computer vision problems that require knowledge of the
pose of objects in the scene.

2

Contents

1 Introduction 4

2 Tracking method 5

2.1 Sphere location . 6
2.2 Sphere orientation . 10

3 Occlusion handling 14

4 Error analysis 15

5 Future work 16

6 Results and applications 17

List of Figures

1 Marked sphere to be tracked . 6
2 First steps in locating the perspective sphere projection. a) input im-

age; b) binary image; c) set of all contours. 7
3 Final steps in locating the perspective sphere projection. a) filtered

contours; b) minimum enclosing circles; c) most circular contour (cho-
sen to be the projection of the sphere). 8

4 Perspective projection of a 3D point 9
5 Weak perspective projection of a sphere 10
6 Locating the projections of the dots on the sphere. a) input image;

b) restricted input; c) ellipses found for the red (filled) and green (un-
filled) dots; d) exact green dot locations; e) exact red dot locations. . 11

7 Computing relative polar coordinates 12
8 Rotation to align the first point. a) standard view; b) with sphere

removed for visualization; c) rotated view for clarity. 20
9 Rotation to align the second point . 21
10 Screenshot of the sphere with a matched virtual orientation 21
11 Handling partial occlusions. a) un-occluded input; b) un-occluded

tracking; c) occluded input; d) occluded tracking. 22
12 Analysis of error on quaternion axis 23
13 Analysis of error on quaternion angle 23
14 Augmented reality application of the sphere tracking method 24

3

1 Introduction

Resolving the 6 degree-of-freedom (DOF) pose of a sphere in a real-time video stream
is a computer vision problem with some interesting applications. For example, ma-
nipulating a 3D object in CAD systems, augmented reality, and other interactive 3D
applications can be accomplished by tracking the movements of a sphere in the video
stream.

Sphere tracking consists of locating the perspective projection of the sphere on
the image plane and then determining the 3D position and orientation of the sphere
from that projection. The projection of a sphere is always an exact circle, so one
of the main problems is to locate the circle in the input image. The concept of
finding circular objects and curves in images has been studied for many years. In
general, there are two different types of algorithms for curve detection (typically
circles and ellipses) in images, those that are based on the Hough transform [4, 12,
13], and those that aren’t [3, 7, 8, 9, 10, 11]. The first Hough-based method to
detect curves in pictures was developed by Duda and Hart [4]. Yuen et al. [13]
provide an implementation for the detection of ellipses, and Xu et al. [12] developed
a Randomized Hough Transform algorithm for detecting circles. As for the non-
Hough-based methods, Shiu and Ahmad [11] discuss the mathematics of locating the
3D position and orientation of circles in a scene using simple 3D geometry. Safaee-
Rad et al. [10] estimate the 3D position and orientation of circles for both cases where
the radius is known and where the radius is not known. Roth and Levine [9] extract
primitives such as circles and ellipses from images based on minimal subsets and
random sampling, where extraction is equivalent to finding the minimum value of a
cost function which has potentially local minima. McLaughlin and Alder [8] compare
their method, called “The UpWrite”, with the Hough-based methods. The UpWrite
method segments the image and computes local models of pixels to identify geometric
features for detection of lines, circles and ellipses. Chen and Chung [3] present an
efficient randomized algorithm for circle detection that works by randomly selecting
four edge pixels and defining a distance criterion to determine if a circle exists. And
finally, Kim et al. [7] present an algorithm that is capable of extracting circles from
highly complex images using a least-squares fitting algorithm for arc segments.

For the case of actually detecting a sphere there has been less previous work. The
first research on sphere detection was performed by Shiu and Ahmad [11]. In their
work, the authors were able to find the 3D position (3 DOF) of a spherical model
in the scene. Later, Safaee-Rad et al. [10] also provided a solution to the problem
of 3D position estimation of spherical features in images for computer vision. Most
recently, Greenspan and Fraser [6] developed a method to obtain the 5 DOF pose of
two spheres connected by a fixed-distance rod, called a dipole. Their method resolves
the 3D position of the spheres in the form of 3 translations, and partial orientation

4

in the form of 2 rotations in real-time.
We present a sphere tracking method that resolves the full 6 DOF location and

orientation of the sphere from the video input of a single camera in real-time. We use
a specially marked ball as the sphere to be tracked, and we determine the 3D location
and orientation using standard computer vision techniques and applications of 3D
geometry. Our method correctly determines the pose of the sphere even when it is
partially occluded, allowing the sphere to be manipulated by hand without a tracking
failure. Section 2 describes the tracking process in detail. Section 3 explains how
our method is robust under partial occlusions. Some analysis of the tracking error is
provided in section 4, and areas of future research are mentioned in section 5. Final
results and some possible applications of our research are described in section 6.

2 Tracking method

The proposed method to track a sphere consists of a number of standard computer
vision techniques, followed by several applications of mathematics and 3D geometry.
While solving the computer vision problems, we make use of an open source computer
vision library written in C by Intel called Open CV [2]. The sphere used for tracking
is a simple blue ball. In order to determine the orientation of the sphere, special
dots were added to the surface of the ball for detection. The dots were made from
circular green and red stickers, distributed over the surface of the ball at random. 16
green, and 16 red point locations were generated in polar coordinates, such that no
two points were closer (along the ball surface) than twice the diameter of the stickers
used for the dots. This restriction prevents two dots from falsely merging into one dot
in the projection of the sphere from the video stream. To determine the arc distance
between two dots, first the angle, θ, between the two dot locations and the center of
the sphere was computed as;

θ = cos−1(sin(lat1)sin(lat2) + cos(lat1)cos(lat2)cos(|lon1 − lon2|)) (1)

where (lat1, lon1) is the first dot location, and (lat2, lon2) is the second dot location
in polar coordinates, and then the arc length, α, was calculated as;

α = θM (2)

where M is the number of millimeters per degree along the circumference of the
sphere. A valid point location is one where α is larger than twice the sticker diameter
(26 millimeters to be exact) when compared to each of the other points.

Once the 32 latitude and longitude locations were generated, the next step was
to measure out the locations of the dots on the physical ball and place the stickers
accordingly. This was a time-consuming task that required special care since small

5

human errors could cause incorrect matches in the tracking process. Figure 1 shows
the ball with the stickers applied to the random dot locations.

Figure 1: Marked sphere to be tracked

In addition to the dot locations, the tracking process also requires knowledge of
the angle between each unique pair of points (through the center of the sphere).
Equation 1 was used to compute the angle for each of the 496 pairs, and the angles
were stored in a sorted list.

2.1 Sphere location

Locating the sphere in a scene from the real-time video stream is a two step process.
First, the location of the perspective sphere projection on the image plane is found
in the current frame. Then, from the projection in pixel coordinates, the 3D location
of the sphere in world coordinates is computed using the intrinsic parameters of the
camera. We now describe this process in more detail.

Every projection of a sphere onto a plane is an exact circle. This fact, along
with the fact that the ball was chosen to be completely one color are the important
factors in locating the sphere projection on the image plane. Specifically, the problem
is to find a blue circle in the input image. To solve this problem we use the Hue-
Saturation-Value (HSV) color space. The hue is the type of color (such as ’red’ or
’blue’), ranging from 0 to 360. The saturation is the vibrancy or purity of the color,
ranging from 0 to 100 percent. The lower the saturation of a color, the closer it will
appear to be gray. The value refers to the brightness of the color, ranging from 0 to
100 percent. The input image is converted from RGB space to HSV space as follows;

V = max(R,G,B)

6

S =

{

(V − min(R,G,B))(255

V
) if V > 0

0 otherwise

H =

(G − B)(60

S
) if V = R

180 + (B − R)(60

S
) if V = G

240 + (R − G)(60

S
) if V = B

(3)

The use of HSV space instead of RGB space allows the sphere tracking to work under
varying illumination conditions. The image is then binarized using the pre-computed
hue value of the blue ball as a target value. The binary image is computed as follows;

Bi =

0 if Ii < T − ǫ
0 if Ii > T + ǫ
1 otherwise

(4)

where T is the target hue, and ǫ is a small value to generate an acceptable hue window.
In the special case that T − ǫ < 0, the computation for the binary image takes into
account the fact that hue values form a circle that wraps around at zero. From the
computed binary image, the set of all contours are computed. These first steps are
illustrated in Figure 2.

(a) (b) (c)

Figure 2: First steps in locating the perspective sphere projection. a) input image;
b) binary image; c) set of all contours.

Since there are many contours found, the next step is to filter out the ones that
are not likely to be a projection of a sphere. The process searches for the contour that
most closely approximates a circle; so all contours are tested for size and number of
vertices. Testing the size of the contours, computed as the pixel area, Ai, occupied
by contour i, removes unwanted noise in the image. We decided that a contour must
occupy 1500 pixels in order to be processed further. It is then assumed that any circle
will contain a minimum number of vertices, in this case, 8. For each contour that

7

passes the above tests, the minimum enclosing circle with radius ri is found, and then
the following ratio is computed;

Ri =
Ai

ri

(5)

For a circle this ratio Ri is a maximum, therefore the contour that maximizes Ri

is chosen as the projection of the sphere onto the image plane, since that contour
most closely represents a circle. Figure 3 illustrates the remaining steps to find this
projection, continuing from Figure 2.

(a) (b) (c)

Figure 3: Final steps in locating the perspective sphere projection. a) filtered con-
tours; b) minimum enclosing circles; c) most circular contour (chosen to be the pro-
jection of the sphere).

If the perspective projection of the sphere was found in the input image, processing
continues to the second step in locating the sphere, which is to calculate its 3D
location in the scene. The scene is a 3D coordinate system with the camera at the
origin. Assuming that the intrinsic parameters of the camera are known in advance,
namely the focal length and principal point, the location of the sphere is computed
from its perspective projection using the method of [6]. Consider the top-down view
of the scene in Figure 4, where the focal length of the camera is f and the principal
point is (px,py). If the perspective projection of a point P = (X,Y,Z) in space lies
at pixel (u,v) on the image plane then;

u − px

fx
=

X

−Z

X =
−Z(u − px)

f
(6)

Similarly;

Y =
−Z(v − py)

f
(7)

8

Figure 4: Perspective projection of a 3D point

So we have X and Y expressed in terms of the single unknown value Z. For the case
of the sphere, the point P can be taken as the center in world coordinates, and then
the problem is to find the value of Z for this point. In [6], a new method to solve for
Z was developed based on weak perspective projection, which assumes that the sphere
will always be moderately far from the image plane. In this case, the projection of the
sphere with radius R is a circle centered on (ui,vi) with radius r. Figure 5 illustrates
the scenario. Let Pj be a point on the surface of the sphere that projects to (uj,vj)
on the circumference of the projected circle. Now, directly from [6], the radius of the
circle on the image plane can be expressed as;

r2 = (uj − ui)
2 + (vj − vi)

2 (8)

Similarly for the sphere;

R2 = (Xj − X)2 + (Yj − Y)2 + (Zj − Z)2 (9)

Substituting Equation 6 and Equation 7 into Equation 9 and taking into account that
X and Y are both zero, we have;

R2 = (
−Zj(uj − ui)

f
)2 + (

−Zj(vj − vi)

f
)2 + (Zj − Z)2 (10)

Now, from the weak perspective assumption, Zj = Z. This, and Equation 8 gives;

R2 = (−Z
f

)2((uj − ui)
2 + (vj − vi)

2)
= (−Zr

f
)2

(11)

9

Figure 5: Weak perspective projection of a sphere

And finally;

Z =
−Rf

r
(12)

Now Equation 12 can be used in conjunction with Equation 6 and Equation 7 to find
the 3D location of the sphere in the scene, given the current center, (u,v), and the
radius, r, of the perspective projection.

2.2 Sphere orientation

Computing the 3 DOF orientation of the sphere in the scene is a geometric problem
that makes use of the green and red dots on the surface of the sphere. The process
to compute the orientation is outlined as follows:

1. Locate the projections of the red and green dots on the image plane.

2. Compute the relative polar coordinates of the dots, assuming that the center of
projection is the north pole.

3. Choose the two dots that are closest to the center of projection and compute
the angle between them (through the center of the sphere).

4. Use the sorted list of pairs to find a set of candidate matches to the two chosen
dots.

10

5. For each pair, orient the virtual sphere to align the two chosen dots and compute
a score based on how well all the dots align.

The projections of the green and red dots are located using hue segmentation to
binarize the input image. The difference here is that we can restrict the search
space to only the part of the input image that is inside the projection of the sphere.
Another difference is that the contours retrieved are not expected to be circles but
rather ellipses. Using OpenCV, an ellipse is fit to each contour found and its center
location in screen coordinates is computed. Figure 6 illustrates the process of locating
the dots on the ball surface.

(a) (b) (c)

(d) (e)

Figure 6: Locating the projections of the dots on the sphere. a) input image; b)
restricted input; c) ellipses found for the red (filled) and green (un-filled) dots; d)
exact green dot locations; e) exact red dot locations.

Once the dots are located, the center of the sphere projection is considered to be
the north pole of the sphere, with a latitude value of π/2 radians and longitude value
of zero. Then the relative polar coordinates of the projected dots are computed. Let
the center of the sphere projection be (uc,vc), the projection of dot i be (ui,vi),
the point on the circumference of the sphere projection directly below (uc,vc) be

11

(ub,vb). Notice that uc = ub. Figure 7 illustrates the situation. The distance, A,
between (ui,vi) and (uc,vc), and the distance, B, between (ui,vi) and (ub,vb) are
computed easily. The distance between (uc,vc) and (ub,vb) is simply the radius of
the circle, r. Since we assume the projection is a top down view of the sphere with

Figure 7: Computing relative polar coordinates

the north pole at the center of the circle, the relative longitude, loni, of dot i is the
angle b, which can be computed by a direct application of the cosine rule;

loni = b = cos−1(
A2 + r2 − B2

2Ar
) (13)

Note that if ui < uc, then loni is negative. The calculation for the relative latitude,
lati, is simply;

lati = −cos−1(
A

r
) (14)

Each dot that was found in the input image (whether red or green) now contains polar
coordinates relative to an imaginary north pole at the center of the projection. The
next step is to choose the two dots that are closest to the center (i.e. the two that
contain latitude values closest to π/2 radians) and compute the angle, θ, between
them using Equation 1. This angle is then used to find a set of pairs from the pre-
computed sorted list of all possible pairs of dots. The set of possible pairs is the set
S, such that the angle between each pair P ∈ S is within a small constant value,
ǫ, of θ, and also such that the dot colors match up to the two chosen dots. Each
candidate pair is then tested to see how well that pair supports the two chosen dots.
The pair with the most support is chosen as the matching pair. The original set of
dot locations in polar coordinates can be thought of as a virtual sphere in a standard
orientation. The process to test a candidate pair rotates the virtual sphere in order to
line up the two points of the pair with the two chosen points in the projection on the
image plane. Remember that the two chosen points are on an imaginary sphere with

12

the north pole at the center of projection. The rotation is accomplished in two steps.
First, the virtual sphere is rotated about an axis perpendicular to the plane formed
by the first point in the pair, the first chosen point and the center of the sphere.
This rotation, illustrated in Figure 8, aligns the first point. Then, the virtual sphere
is rotated about the vector connecting the center of the sphere to the first point in
order to align the second point, as illustrated in Figure 9. Note that in Figure 8 and
Figure 9, the first point is shown in green and the second point is shown in red to
facilitate distinction. However, any combination of green-red, red-green, green-green
or red-red is possible for the two chosen points. In the case of green-green and red-red,
the rotation and testing process is repeated a second time after switching the first
point and the second point. To explain Figure 8 in more detail, assume the chosen
points are C1 and C2, and the points of the stored pair are P1 and P2. Unit vectors
(P1x,P1y,P1z) through P1 and (C1x,C1y,C1z) through C1 are computed, using
the following conversion from polar to Cartesian coordinates;

X = cos(lat)sin(lon)
Y = sin(lat)
Z = cos(lat)cos(lon)

(15)

The axis of rotation, R, to align P1 and C1 is computed from the cross product of
the two unit vectors. The angle of rotation is θ, which is the known angle between
the two dots. To explain Figure 9 in more detail, P1 and P2 have been rotated to
become P1′ and P2′, respectively. Now, P1′ and C1 are aligned, and the new axis
of rotation, R, to align P2′ and C2 is the unit vector (C1x,C1y,C1z) through P1′

and C1. Unit vectors through C2 and P2′ are computed using Equation 15. To
compute the angle of rotation, θ, let the vector u = (ux,uy,uz) be the projection
of (C2x,C2y,C2z) onto R, and the vector v = (vx,vy,vz) be the projection of
(P2x

′,P2y
′,P2z

′) onto R. Then, manipulating the dot product we have;

|u||v|cos(θ) = (uxvx) + (uyvy) + (uzvz)

θ = cos−1(
(uxvx) + (uyvy) + (uzvz)

|u||v|
) (16)

This rotation aligns the second point. The one item that has yet to be described is
how the virtual sphere is actually rotated by an arbitrary angle, θ, about an arbitrary
axis, R = (Rx,Ry,Rz). The sphere is rotated by rotating the unit vectors that
correspond to each of the dots on the sphere surface, one at a time. To rotate a unit
vector vi = (x,y, z), the entire space is first rotated about the X-axis to put R in
the XZ plane. Then the space is rotated about the Y-axis to align R with the Z-axis.
Then the rotation of vi by θ is performed about the Z-axis, and then the inverse

13

of the previous rotations are performed to return to normal space. This can all be
accomplished by multiplying each unit vector vi by the following rotation matrix;

cos(θ) + (1 − cos(θ))Rx
2 (1 − cos(θ))RxRy − Rzsin(θ) (1 − cos(θ))RxRz + Rysin(θ)

(1 − cos(θ))RxRy + Rzsin(θ) cos(θ) + (1 − cos(θ))Ry
2 (1 − cos(θ))RyRz − Rxsin(θ)

(1 − cos(θ))RxRz − Rysin(θ) (1 − cos(θ))RyRz + Rxsin(θ) cos(θ) + (1 − cos(θ))Rz
2

Once the virtual sphere is aligned to the two chosen points, a score is computed for
this possible orientation. The validity of a given orientation is evaluated based on
the number of visible dots in the perspective projection that align to real dots of the
correct color on the virtual sphere, as well as how closely the dots align. Visible dots
that do not align to real dots decrease the score, as do real dots that were not matched
to visible dots. All points are compared using their polar coordinates, and scores are
computed differently based on the latitude values of the points, since points that are
closer to the center of the sphere projection should contain a smaller error than those
that are farther from the center. Two points, P1 and C1, are said to match if the
angle, θ, between them satisfies the following inequality;

θ < (1 + latc1 ·
2

π
)(α − β) + β (17)

where α is a high angle threshold for points that are farthest from the center of pro-
jection, and β is a low angle threshold for points that are at the center of projection.
In our experiments, values of α = 0.4 radians and β = 0.2 radians produces good
results. Using Equation 17, the number of matched dots is calculated as Nm for a
given orientation. Let Nv be the number of visible dots that are not aligned to real
dots, let Nr be the number of real dots that are not matched with visible dots (and
yet should have been), and let θi be the angle between the matching pair, i. Then
the score, σ, is computed as follows;

σ =
∑Nm

i=1

[

(1 + lati ·
2

π
)(α − β) + β − θi

]

−
∑Nv

i=1

[

(1 + lati ·
2

π
)(α − β) + β

]

−
∑Nr

i=1

[

α − (1 + lati ·
2

π
)(α − β)

]

(18)

The orientation that yields the highest score is chosen as the matching orientation for
the sphere in the scene. Figure 10 shows a screenshot of the sphere in an arbitrary
orientation with the matching orientation of the virtual sphere shown in the upper
left corner.

3 Occlusion handling

One of the main benefits of our sphere tracking method is that the tracking does
not fail during partial occlusions. Occlusion is when an object cannot be completely

14

seen by the camera. This normally results from another object coming in between
that object and the camera, blocking the view. Section 2.1 explains that the tracking
method chooses the best-fit circle of the correct hue in the projection of the scene
as the location of the sphere. This means that objects can partially occlude the
sphere and yet it may still be chosen as the best-approximated circle. Also, since the
minimum enclosing circle is computed from the contour, only the pixels representing
180 degrees of the circumference plus one pixel are required in order to determine
the location of the sphere with the correct radius. For this reason, up to half of the
sphere projection may be occluded and yet its 3D location will still be computed
correctly. Furthermore, the tracking process does not require that all of the dots on
the surface of the sphere be visible in order to determine the orientation of the sphere.
Since the matched orientation with the best score is chosen, it is possible to occlude
a small number of the dots and yet still track the orientation correctly. The ability
to correctly handle partial occlusions is very beneficial in a sphere tracking process
because it allows a person to pick up the sphere and manipulate it with their hands.
Figure 11 shows how the sphere tracking does not fail under partial occlusion. In this
screenshot, the sphere is used in an augmented reality application where a red teapot
is being augmented at the location and orientation of the sphere in the scene.

4 Error analysis

The purpose of this section is to determine the accuracy of the sphere tracking method
that we present. Locating the 3D position of the sphere is not a new technique,
however the novelty of this paper lies in the algorithm to determine the 3D orientation
of the sphere. Therefore, we will only analyze the performance of that algorithm.

In order to compute an error on the resulting 3D orientation calculation of our
tracking method, the sphere must be manually placed in the scene with a known
orientation. This is a very difficult task because the sphere is a physical object and it
is nearly impossible to determine its actual orientation in the scene before performing
the tracking. For this reason, a virtual 3D model of the sphere was built with exact
precision. Then the virtual sphere model was rendered into the scene at a chosen
orientation, and the tracking procedure was applied. The actual orientation and the
tracked orientation were then compared to determine a tracking error. Specifically,
100000 video frames were captured with the virtual sphere inserted at random orien-
tations. To avoid additional error due to the weak perspective projection computation
described in section 2.1, the virtual sphere was constrained to X and Y values of zero,
such that the perspective projection was always in the center of the image plane. The
Z value of the sphere was chosen randomly to simulate different distances from the
camera. The question that remains is how can one 3D orientation be compared to

15

another? It was decided that a particular orientation of the sphere would be defined
by the quaternion rotation that transformed the sphere from its standard orientation.
A quaternion is a 3D rotation about a unit vector by a specific angle, defined by four
parameters (three for the vector and one for the angle). The two orientations were
compared by analyzing the two quaternions. This produced two errors, one error
on the quaternion axis and one in the angle. The axis error was computed as the
distance between the end points of the two unit vectors which define the quaternions.
The angle error was simply the difference between the two scalar angle values. So for
each of the 100000 chosen orientations we have a 6-dimensional vector (4 dimensions
for the quaternion and 2 for the errors) to describe the tracking error. Visualizing
the error for analysis is a non-trivial task. Even if the errors are analyzed separately,
it is still difficult to visualize two 5 dimensional vectors. However, we realize that
the results of the error analysis will indicate how well the tracking method is able to
determine the best match to the perspective projection of the dots on the surface of
the sphere. This, in turn, will give some feedback on how well the dots were placed
on the sphere and could indicate locations (in polar coordinates) where the dots were
not placed well. So instead of visualizing all four dimensions of a quaternion, the
polar coordinates of the center of the perspective projection were computed for each
orientation. This assumes that a perspective projection of the sphere under any 2D
rotation will yield similar errors, which is a reasonable assumption. Now the errors
can be analyzed separately as two 3 dimensional vectors (2 dimensions for the polar
coordinates and one for the error). Figure 12 is a graph of the average error in the
quaternion axis over all the polar coordinates, and Figure 13 is a similar graph of the
average error in quaternion angle. In both graphs, darker points indicate greater error
and white points indicate virtually no error. It is clear to see from Figure 12 that
the greatest error in quaternion axis is concentrated around the latitude value of −π
radians, that is to say, the north pole of the sphere. Figure 13 indicates that the error
in quaternion angle is relatively uniform across the surface of the sphere. Addition-
ally, the overall average error in quaternion axis is 0.034, and in quaternion angle is
0.021 radians. This analysis shows that the sphere tracking method presented in this
paper has excellent accuracy. These results were obtained on a Pentium 3 processor
at 800Mhz using a color Point Grey Dragonfly camera with a resolution of 640x480
pixels.

5 Future work

There are a few drawbacks with our sphere tracking method that could benefit from
future research. The first problem is with locating the perspective projection of
the sphere on the image plane. Segmenting the input image by hue value allows

16

continuous tracking under variable lighting conditions. However, if the projection of
another object with the same hue as the blue ball overlaps the projection of the ball
then the contours of the two objects will merge into a single connected component.
This produces an awkward shape in the binary image and tracking will fail. One
solution to this problem is to segment the input image using standard edge detection
techniques and then decide which contour most closely represents the sphere, even
under partial occlusions.

Another problem with the method presented in this paper is that the locations
of the dots on the surface of the sphere were generated randomly and then measured
out and placed on the ball by hand. This technique is prone to human error which
would lead to errors in the tracking process. A better solution would be to place the
dots on the ball first, such that one can visually decide on the locations in order to
maximize the tracking robustness, and then have the system learn the dot locations
from the input video.

The final drawback presents the most interesting problem to be solved by future
research. The problem is that since the dot locations were generated randomly there
is no way to guarantee that the perspective projection of two different sphere orien-
tations are significantly different. If the projection of two different orientations are
similar then tracking errors will occur. So the question becomes, how can N locations
be chosen on the surface of a unit sphere such that the perspective projection of the
sphere is maximally unique from every viewpoint? However, in practice this situation
is rare.

6 Results and applications

We have presented a method to track the 3d position and orientation of a sphere from
a real-time video stream. The sphere is a simple blue ball with 32 randomly placed
green and red dots. Tracking consists of locating the perspective projection of the
sphere on the image plane using standard computer vision techniques, and then using
the projections of the dots to determine the sphere orientation using 3D geometry.

Resolving the 6 DOF pose of a sphere in a real-time video sequence can lead to
many interactive applications. One application that was hinted at in section 3 is in
the field of augmented reality. Augmented reality is the concept of adding virtual
objects to the real world. In order to do this, the virtual objects must be properly
aligned with the real world from the perspective of the camera. The aligning process
typically requires the use of specific markers in the scene that can be tracked in the
video, for instance, a 2d pattern on a rigid planar object [1]. An alternate way to
align the real world and the virtual objects is to use the marked sphere and tracking
method described in this paper. Once the location and orientation of the sphere is

17

calculated, a virtual object can be augmented into the scene at that position. The
equivalent planar pattern method would be to use a marked cube [5]. Figure 14 shows
an augmented reality application using both a marked cube and the proposed sphere
to augment a virtual sword for an augmented reality video game. The advantage of
tracking the sphere over tracking the cube is that the sphere is more robust under
partial occlusions, as described in section 3.

A similar application of our sphere tracking method is to use the sphere as an input
device for an interactive 3D application. In many fields such as biology, chemistry,
architecture, and medicine, users must interactively control 3D objects on a computer
screen for visualization purposes. Some systems require a combination of key presses
and mouse movements to rotate and translate the objects. This is often a complicated
task that requires a learning period for the users. An interactive input device, such
as the sphere described in this paper, could aid in these HCI applications. If the pose
of the sphere is mapped directly to the orientation of a virtual object on the screen,
then the natural handling and rotating of the device would translate into expected
handling and rotating of the virtual object.

There is no limit to the number of applications where sphere tracking could provide
a benefit. Any computer vision problem that requires knowledge of the pose of real
objects from video images could make use of our sphere tracking method.

References

[1] ARToolKit. http://www.hitl.washington.edu/artoolkit.

[2] Gary Bradski. The OpenCV library. Dr. Dobb’s Journal of Software Tools,
25(11):120, 122–125, nov 2000.

[3] Teh-Chuan Chen and Kuo-Liang Chung. An efficient randomized algorithm for
detecting circles. Comput. Vis. Image Underst., 83(2):172–191, 2001.

[4] Richard O. Duda and Peter E. Hart. Use of the hough transformation to detect
lines and curves in pictures. Commun. ACM, 15(1):11–15, 1972.

[5] Morten Fjeld and Benedikt M. Voegtli. Augmented chemistry: An interactive
educational workbench. In IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR 2002), pages 259–260, September 2002. Darm-
stadt, Germany.

[6] Michael Greenspan and Ian Fraser. Tracking a sphere dipole. In 16th Interna-
tional Conference on Vision Interface, June 2003. Halifax, Canada.

18

[7] Euijin Kim, Miki Haseyame, and Hideo Kitajima. A new fast and robust circle
extraction algorithm. In 15th International Conference on Vision Interface, May
2002. Calgary, Canada.

[8] Robert A. McLaughlin and Michael D. Alder. The hough transform versus the
upwrite. IEEE Trans. Pattern Anal. Mach. Intell., 20(4):396–400, 1998.

[9] Gerhard Roth and Martin D. Levine. Extracting geometric primitives. CVGIP:
Image Underst., 58(1):1–22, 1993.

[10] Reza Safaee-Rad, Ivo Tchoukanov, Kenneth Carless Smith, and Bensiyon Ben-
habib. Three-dimensional location estimation of circular features for machine
vision. Transactions on Robotics and Automation, 8(5):624–640, 1992.

[11] Y.C. Shiu and Shaheen Ahmad. 3d location of circular and spherical features by
monocular model-based vision. In IEEE Intl. Conf. Systems, Man, and Cyber-
netics, pages 567–581, 1989.

[12] L. Xu, E. Oja, and P. Kultanen. A new curve detection method: randomized
hough transform (rht). Pattern Recogn. Lett., 11(5):331–338, 1990.

[13] H. K. Yuen, J. Illingworth, and J. Kittler. Detecting partially occluded ellipses
using the hough transform. Image Vision Comput., 7(1):31–37, 1989.

19

(a)

(b)

(c)

Figure 8: Rotation to align the first point. a) standard view; b) with sphere removed
for visualization; c) rotated view for clarity.

20

Figure 9: Rotation to align the second point

Figure 10: Screenshot of the sphere with a matched virtual orientation

21

(a) (b)

(c) (d)

Figure 11: Handling partial occlusions. a) un-occluded input; b) un-occluded track-
ing; c) occluded input; d) occluded tracking.

22

Figure 12: Analysis of error on quaternion axis

Figure 13: Analysis of error on quaternion angle

23

Figure 14: Augmented reality application of the sphere tracking method

24

