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Abstract Mutated genes are rarely common even in the same pathological type between cancer

patients and as such, it has been very challenging to interpret genome sequencing data and difficult

to predict clinical outcomes. PIK3CA is one of a few genes whose mutations are relatively popular

in tumors. For example, more than 46.6% of luminal-A breast cancer samples have PIK3CA

mutated, whereas only 35.5% of all breast cancer samples contain PIK3CA mutations. To under-

stand the function of PIK3CA mutations in luminal A breast cancer, we applied our recently-

proposed Cancer Hallmark Network Framework to investigate the network motifs in the

PIK3CA-mutated luminal A tumors. We found that more than 70% of the PIK3CA-mutated
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luminal A tumors contain a positive regulatory loop where a master regulator (PDGF-D), a second

regulator (FLT1) and an output node (SHC1) work together. Importantly, we found the luminal A

breast cancer patients harboring the PIK3CA mutation and this positive regulatory loop in their

tumors have significantly longer survival than those harboring PIK3CA mutation only in their

tumors. These findings suggest that the underlying molecular mechanism of PIK3CA mutations

in luminal A patients can participate in a positive regulatory loop, and furthermore the positive reg-

ulatory loop (PDGF-D/FLT1/SHC1) has a predictive power for the survival of the PIK3CA-

mutated luminal A patients.

Introduction

Whole-genome and whole-exome sequencing from tumor sam-

ples have identified mutations that are enriched in tumor sam-

ples in comparison to germline cells. It is widely accepted that

these sets of mutations are the causal drivers of tumor progres-

sion [1]. However, genetic mutations in tumors are very hetero-

geneous, meaning that the type and frequency of mutated

genes in patients are not only different between cancer types,

but also within a same cancer type. The extent of such hetero-

geneity has recently been demonstrated in genome sequencing

of breast cancer samples by The Cancer Genome Atlas

(TCGA) [2]. This feature of the cancer mutations makes it

challenging to interpret the data and very hard to conduct clin-

ical predictions using genome sequencing data. Interestingly,

although mutated genes are rarely common among the breast

cancer samples, approximately 29%–45% of all luminal tumor

samples harbor PIK3CA mutations [2]. In general, breast can-

cers are classified into three molecular subtypes based on their

gene expression profiles: luminal A/B, basal, and HER2 sub-

types. The luminal subtypes A/B are often characterized by

the expression of estrogen receptor (ER+) and represent

�70% of breast cancer samples [3].

It is now well accepted that cancers do not result from a sin-

gle mutation or gene, but a combination of perturbed genes

acting in molecular networks that correspond to hallmark pro-

cesses such as apoptosis and cell proliferation [4,5]. Specifi-

cally, mutations in signaling proteins may over-enrich key

signaling pathways or inhibit the function of tumor suppressor

proteins, both of which can give rise to uncontrolled cell

growth and tumor progression [6]. The PIK3CA gene, which

encodes phosphatidylinositol-4,5-bisphosphate 3-kinase cat-

alytic subunit alpha, is mutated in a number of tumors, includ-

ing glioblastomas, gastric cancers, lung cancers, ovarian

cancers, hepatocellular carcinomas, endometrial carcinomas,

brain cancers, and breast cancers [7].The higher frequency of

PIK3CA missense mutations in luminal breast cancer samples

prompted us to ask how PIK3CA mutations interact with

other mutated genes to trigger cancer progression and metas-

tases. The aim of this study is to identify how PIK3CA muta-

tions alter expression of other genes and whether this could be

predictive for clinical outcomes.

Cancer mutations have been traditionally investigated in

the context of signaling pathways. However, cross-talks fre-

quently occurring among pathways turn the cellular system

into a network. Network analysis has provided a simple yet

efficient method to model biological systems [8]. In a network,

the nodes or vertices of a molecular network represent biomo-

lecules (genes or proteins) while the edges or links represent

their physical or functional interactions. An analogy of a road-

map can be used to describe systems biology of the cellular net-

work: if there is car accident on a busy road, drivers will find

alternate routes to arrive at their destination. The roadmap

provides a collection of intertwined roads and intersections,

laid out to visual alternate routes. The cell is organized in

the same way––molecules in cells are networked. If a protein

in a signaling network is altered, the entire function of a cell

could be compromised resulting in a disease phenotype [9].

Cancer signaling often hijack normal human signaling net-

works and motifs by changing key genomic factors such as

gene mutations [9]. Signaling network motifs are a group of

interacting proteins acting in the network together and are

capable of signal processing. They bear specific regulatory

properties and mechanisms as seen in biological network stud-

ies [10,11]. The structure and properties of frequently-

occurring network regulatory motifs highlight the functional

organization of these signaling networks. By studying the dis-

tributions of these network motifs, we can garner insight into

cancer-signaling regulatory molecular mechanisms of tumori-

genesis and identification of these loops can have practical

implications such as prediction of prognosis and the clinical

outcomes of cancer patients [12]. For instance, Cui et al. first

demonstrated that mutated cancer driver genes are typically

enriched in positive network motifs [13], while Fu et al. showed

that cancer network motifs are predictive for cancer recurrence

[14]. Network modules that are composed of network motifs

also play critical roles in cancer progression, metastasis [15],

and drug response [16]. Collectively, these studies have demon-

strated that network motifs and modules are critical for cancer

signaling and associated with clinical outcomes.

The understanding of the cancer hallmarks has represented

the most important development in cancer research in the past

of 50 years, although these findings are typically descriptive.

Based on these results, we developed a network-based

approach, Cancer Hallmark Network Framework, to construct

predictive models using genome sequencing data [5]. We pro-

pose that cancer hallmarks can be represented, quantified,

and further modeled computationally, using cancer hallmark

networks in an evolutionary context. Different hallmark net-

works interact with each other during tumor evolution, and fur-

thermore, use distinctive yet complementary capabilities. These

capabilities enable tumor growth and metastasis and constitute

the organizing principles that provide a logical framework for

understanding the diversity of cancer.

In this study, we applied the Cancer Hallmark Network

Framework to investigate how PIK3CA mutations interact

with others in a luminal-breast cancer survival network and

ask if the interactions could predict clinical outcomes.
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Results

PIK3CA mutations are significantly higher in luminal A breast

cancer subtype

A comprehensive analysis of the mutational landscape across

12 major cancer types revealed that PIK3CA mutations

occurred in 35.5% of all breast cancer tumors, but luminal

A subtype tumors had the highest frequency at 46.6% of all

the samples harboring the mutation [2]. Thus, we focused on

luminal A subtype for further analysis. We obtained whole-

exome sequencing data of the tumors from TCGA [2]. Of

the 776 breast cancer tumor samples with clinical data avail-

able, 358 were luminal subtype and 137 harbored the PIK3CA

mutation. To test whether the PIK3CA mutations correlate

with survival in luminal A breast cancer patients, we con-

ducted a survival analysis comparing PIK3CA-mutated and

PIK3CA non-mutated patient tumor samples. There was no

significant difference in survival between these two groups

(P = 0.233, log-rank test) (Figure 1), suggesting that PIK3CA

mutation alone is not associated with clinical outcomes. Our

results suggest that PIK3CA mutations interact with other

mutated proteins and may play a role in cancer progression

or metastasis.

A Cancer Hallmark Network Framework-based study of cancer

genome sequencing data

As mentioned above, mutated genes are rarely shared among

breast cancer samples. Therefore, it is challenging to identify

meaningful patterns of the mutated gene combinations. Thus,

we applied the Cancer Hallmark Network Framework to study

the PIK3CA mutations in a human signaling network. Cancer

cells acquire functional capabilities that allow them to survive,

proliferate, disseminate, colonize, and metastasize. It is

believed these functions are acquired in different tumors at

various time points during tumorigenesis by activating distinct

hallmark networks [17]. The core network critical for these

processes is the cancer survival network (survival and prolifer-

ation) [5]. Within these networks, mutations are not only the

master drivers of tumorigenesis but also orchestrate other hall-

mark capabilities. The evolving cells acquire other hallmark

traits based mainly on the activation of the mutation network.

In this cellular survival network, mutated genes continually

send positive feedback (i.e., selecting the fittest cancer cells)

and drive the evolutionary path of these cells. We hypothesized

that this positive regulation is controlled by only a handful of

genes. They form sub-networks or ‘network motifs’ that fre-

quently recur and consist of functionally-linked molecules,

which work together to achieve a distinct function.

Biological network motifs drive very specific functions

depending on the needs of the cell. Network motifs are subsets

of the large, complex network forming significant patterns that

reduce the global properties of a network into local functions

of network units [18]. Among these motifs, the feed-forward

loop (FFL) is a biologically-significant pattern comprised of

3 genes including one target gene and two input genes, one

of which regulates the other and jointly regulate a target gene.

In terms of regulation, these recurring structural patterns that

self-organize to account for the large ratio of genes to tran-

scription factors (TFs) in the genome (Figure 2) [11]. There-

fore, we focused on studying the PIK3CA mutations and its

interactions with other mutated genes in the context of FFL

motifs.

We first constructed a luminal A-specific survival network.

To do so, we applied the same method developed by Zaman

et al. [16] and used shRNAi screening of luminal A cell lines

(see details in Methods). If a gene is knocked down and the

growth of the cancer cell line is reduced, this gene is considered

to be associated with survival of this cancer cell line. To create

a luminal A breast cancer-specific ‘survival network’, genes

determined to be involved in the progression and survival in

at least one of the luminal A breast cancer cell lines were

mapped onto a human signaling network of known protein

interactions. These genes and their links were extracted from

this network to form the luminal A-specific ‘survival network’

(see Methods and Figure 3). The original human signaling net-

work of manually-curated interactions consists of over 6000

proteins and 63,000 interactions [6,9,19]. The luminal A-

specific survival network is generated uniquely by the genes

forming a signaling network important for the survival of

the tumor.

Because most of the other mutated genes are not common

among samples, it is difficult to find patterns of the combina-

tions of thePIK3CAmutationswith othermutated genes. Based

on theCancerHallmarkNetwork Framework, we applied a ‘net

work-profiling’ approach in the survival network. By applying

this approach, equal weight can be given tomutations regardless

of their frequency, thereby allowing for detection of mutations

that may have important biological implications but may not

be detected due to their low frequency. Network profiling allows

for the examination of the collective effect of genomic

alterations, i.e., functionally-mutated genes, on cancer hallmark
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Figure 1 Kaplan–Meier survival plot for luminal A breast cancer

patients with and without PIK3CA mutation

Survival plots are shown between luminal A subtype breast tumor

patients with (n= 137, red) and without (n= 211, blue) PIK3CA

mutation. P values were obtained by conducting log-rank test.
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networks that better represent the phenotypic consequences of

mutated genes.

Thus, for each luminal A tumor sample, we applied a net-

work propagation algorithm (see Methods). Briefly, for a given

sample, we mapped all the ‘functionally-mutated genes’ (i.e.,

missense mutations) onto the survival network. These mutated

genes are treated as ‘seeds’ and used for the network propaga-

tion algorithm. Finally, all the network genes on the survival

network had ‘heating scores’. Thus, for that sample, we

obtained a network-profile where each network gene had a

‘heating score’. This network profile is similar to the gene

expression microarray data. Finally, each luminal A tumor

sample has its own unique network-profile based on its muta-

tions. The network profiles of these samples were then normal-

ized (see Methods).

A FFL harboring PIK3CA mutations predicts clinical outcomes

Based on the network analysis, a positively regulating FFL is

one of the most biologically meaningful network motifs.

Therefore, we focused on identifying significant FFL circuits

throughout our newly-constructed cancer survival network.

The hypothesis is that FFL positively-regulating motifs exist

in the subset of luminal A tumor samples harboring the

PIK3CA mutation that may be involved the cancer process.

First, from the luminal A tumor survival network, we cal-

culated all possible gene combinations in a FFL configuration,

resulting in 23,576 FFLs. Second, due to the volume of combi-

nations, we stratified important genes involved in these interac-

tions. We downloaded the tumor RNA-seq expression data

from the TCGA for the tumor samples from which the muta-

tions were used in the network. The genes significantly modu-

lated between the PIK3CA mutated and non-mutated luminal

A tumors were selected, thus resulting in 1621 genes. Only the

FFLs containing all the genes that are modulated genes were

selected. This restricted the possible FFL configurations to

111 FFLs. We found that among the 111 FFLs, �70% of

the FFLs of PIK3CA-mutated breast luminal A tumors harbor

SHC1, which encodes the SH2 domain-containing transform-

ing protein 1 (Figure 4). In contrast, this specific FFL was not

significantly enriched in any of the non PIK3CA-mutated

luminal A tumor samples.

It is important to note that in our analysis, if using gene

mutation data alone, none of the genes in the positively regu-

lating FFL would have been identified, since the mutation fre-

quency of PDGF-D, FLT1, and SHC1 are very low across all

breast cancer samples. These results highlight the power of the

network-profiling approach and the Cancer Hallmark Net-

work Framework-based approach. These results further sug-

gest that in PICK3CA-mutated luminal A tumor samples, a

positive FFL consisting of a master regulator (i.e., PDGF-

D), a second regulator (i.e., FLT1), and an output node (i.e.,

SHC1) work together with PICK3CA mutations. PDGF-D

encodes platelet-derived growth factor D, which is known

for its involvement in cell growth, division, and angiogenesis.

PDGF-D has been documented as a popular drug target in

cancer therapeutics since its receptor is active in the stroma

TF1

TF2

G1

Figure 2 The diagram of a feed forward loop

Network motifs in a feed forward loop configuration with nodes

representing genes and lines and arrows represent gene regula-

tions. Transcription factor (TF1) regulates the second transcrip-

tion factor (TF2), both of which regulate a target gene (G1).

Figure 3 Survival network construction for luminal A breast cancer

The data from exome sequencing, genome-wide RNAi screening, copy number variations, and gene expression profiles of 5 individual

luminal A breast cancer cell lines were examined and genes selected for survival and proliferation. These selected genes were mapped to the

human signaling network to create luminal A breast cancer-specific survival network and from this network, all possible regulating feed

forward loop configurations were identified.
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of solid tumors [20]. FLT1 encodes a member of the vascular

endothelial growth factor (VEGF) receptor, which are trans-

membrane tyrosine kinases involved in angiogenesis and vas-

culogenesis, suggesting that FLT1 may be implicated in

cancer cell invasion [21]. SHC1 is an adaptor that couples

activated growth factors to receptors in signaling pathways.

There are three isoforms: p66Shc is involved in cellular lifespan

and regulates reactive oxygen species (ROS) production in

mitochondrial matrix [22], while the two other isoforms,

p52Shc and p46Shc, are linked to tyrosine kinases in the Ras

pathway [23].

The FFL (PDGF/FLT1/SHC1) is associated with clinical outcomes

To test if the FFL (PDGF/FLT1/SHC1) is associated with clin-

ical outcomes, we conducted survival analysis of patients with

luminal A breast cancer and PICK3CA mutation (Kaplan–

Meier plots and log-rank tests) by comparing patients with

the FFL (PDGF/FLT1/SHC1) (n = 100) and those without

the FFL (PDGF/FLT1/SHC1) (n = 37). Surprisingly, the

recurrence rates of the PIK3CA-mutantation/SHC1-loop+

luminal A tumor patients were lower in the first 5 years after

diagnosis than PIK3CA-mutantation/SHC1-loop� luminal A

tumor patients (P < 0.01, log-rank test, Figure 5). These

results were in stark contrast to those observed between the

luminal A tumor patients with PIK3CA mutations (n = 137)

and those without PIK3CA mutations (n = 211) (Figure 1).

These findings suggest that the luminal A tumor patients har-

boring the PIK3CA mutations and the FFL(PDGF/FLT1/

SHC1) have significantly longer survival than patients harbor-

ing PIK3CA mutations in their tumor only.

To further validate these results, we applied a proliferation

index which is derived from expression values of 11 prolifera-

tion genes from the prediction analysis of microarrays (PAM)

50 gene set. PAM50 proliferation index was previously used

for predicting tumor progression in breast cancer patients

[24], and the predictive value of the PAM50 proliferation score

has been demonstrated in other breast cancer patient cohorts

as well [25]. We showed that when PAM50 was applied, the

average expression of 11 proliferation genes (Figure 6) were

significantly lower in the PIK3CA-mutated sample cohort har-

boring the FFL (PDGF/FLT1/SHC1) loop than those in the

PIK3CA-mutated-tumors without the FFL motif (P = 0.008,

t-test). In comparison, there were no significant differences in

the expression of these 11 genes between tumors with and

tumors without the PIK3CA mutation. Lower expression of

these 11 genes indicate a lower proliferation rate (i.e., longer

survival for the patient) of a tumor sample [24]. Therefore,

the results of the PAM50 proliferation index are consistent

with the results of the FFL motif analysis mentioned above,

suggesting that the FFL motif PDGF/FLT1/SHC1 participates

Human signaling network 

(6000+ genes) 

Survival network 

(2767 genes) 

Survival network 

significant to PIK3CA 

(1621 genes) 

(3 genes) 

PDGF 

FLT1 

SHC1 

Select essential genes 

in 5 luminal A breast 

cancer cell lines  

DEGs between luminal 

breast cancer tumors 

with PIK3CA mutation 

and tumors without 

PIK3CA mutation 

23,576 possible FFL 

configurations  

111 possible FFL 

configurations  

mFinder 

Enriched FFL present in 

> 70% tumor samples 

with PIK3CA mutation 

Figure 4 Workflow diagram to select the positive regulating FFLs

In the luminal A breast cancer survival network, there are 23,576 FFLs. Genes from the survival network were further stratified by

selecting only those differentially expressed between luminal A tumors with mutation in PIK3CA and tumors without mutation in

PIK3CA. The resulting network containing 1621 genes yielded 111 possible FFLs. To select FFLs important in PIK3CA-mutated tumors,

we obtained the network propagation score values for each gene based on mutation status in each tumor and input these data into

mFinder. One FFL pattern was found, of which gene interaction ratio was higher than average for each of the 3 nodes in the FFL and

enriched in >70 tumor samples. FFL, feed forward loop; DEG, differentially-expressed gene.
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in a critical underlying mechanism for cancer cell proliferation

in luminal A PIK3CA-mutated tumors.

Discussion

To date, no algorithms have been developed for constructing

predictive models using genome sequencing data. In this study,

we applied our recently-proposed Cancer Hallmark Network

Framework to investigate the genome mutations on a cancer

survival network, one of the key cancer hallmark networks.

We showed that FFL (PDGF/FLT1/SHC1) is significantly

enriched in the PIK3CA-mutated luminal A tumor patients,

and furthermore, that the luminal A tumor patients harboring

the PIK3CA mutation and this novel positively regulating loop

in their tumors have significantly longer survival than those

containing PIK3CA mutation only in their tumors. This obser-

vation can be obtained only when we applied the cancer hall-

mark network framework-based approach to the genome

sequencing data, indicating that the network and systems

approaches are critical in studying the genome sequencing

data, either for interpreting the data to gain biological mean-

ings or for constructing predictive models. It is well known

that data interpretation and predictive model construction

using genome sequencing data have been very challenging until

now. The current study demonstrates that the cancer hallmark

network framework is a powerful concept and tool for reveal-

ing molecular mechanisms and constructing predictive models

using genome sequencing data.

The predictive power of the FFL (PDGF/FLT1/SHC1) in

the PIK3CA-mutated luminal-A tumor patients demonstrated

in this study could be further validated in other breast cancer

cohorts when genome sequencing data for these cohorts are

available in the future. Importantly, based on the findings in

this study, it could be hypothesized that the FFL network motif

in the PIK3CA-mutantion/SHC1-loop+ samples may induce a

protective mechanism, thus incurring a significantly-reduced

recurrence rate in the first 5 years after diagnosis. These results

were further validated using the PAM 50 proliferation score

that showed the tumors harboring the PIK3CA-mutant/

SHC1-loop+ had significantly slower progression rate.

SHC1 (ShcA) gene encodes three proteins: The

ubiquitously-expressed p46 and p52 are derived from alternate

translation initiation. p66 is produced through differential pro-

moter usage and experimental data have shown that its levels

are highly variable in cancer cells [26]. p66ShcA has been

shown to be involved in the breast cancer plasticity by induc-

ing epithelial-to-mesenchymal transition [27]. In contrast, our

findings suggest an underlying regulating mechanism through

PDGF-D and FLT1, driven by PIK3CA mutation in breast

tumors.

Small molecule inhibitors have been used to treat cancers

by targeting growth factor receptors and therefore these recep-

tors have become attractive therapeutic targets to treat cancer
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Figure 5 Kaplan–Meier survival plot for the PIK3CA-mutated

luminal A breast cancer patients with and without the SHC1 FFL in

their tumors

Survival plots are shown between luminal A subtype breast tumor

patients harboring PIK3CA driver gene-mutated SHC1 FFL

(n= 100, red) and those without the SHC1 FFL (n= 37, blue).

P values were obtained by conducting log-rank test. FFL, feed

forward loop.
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Figure 6 PAM 50 proliferation index analysis for the luminal A

breast cancer patients

Mean PAM50 proliferation index was plotted for gene expression

between PIK3CA-mutated luminal A breast cancer patients with

and without the SHC1 FFL; and between luminal A breast cancer

patients with and without the PIK3CA mutation. PAM50 prolif-

eration index comprises 11 proliferation genes that were previ-

ously used for predicting tumor progression in breast cancer

patients [20]. P values were obtained by conducting t-test. PAM,

Prediction Analysis of Microarrays.
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using small molecule inhibitors [28]. FLT1 is the primary

receptor driving angiogenesis during cancer progression and

anti-FLT1 antibodies have been shown to suppress tumor

growth as FLT1 is expressed in both tumor and stromal cells

[29]. Therefore, in vitro test on breast cancer cells harboring

the active FFL (PDGF/FLT1/SHC1) using small molecule

inhibitor drugs such as sunitinib, which also targets the PDGF

receptors, could be an interesting validation experiment in the

future.

PIK3CA is frequently mutated in cancer and almost every

drug company has a clinical trial underway to test inhibitors

targeting the PI3K-AKT-mTOR pathway. However to date,

responses of solid tumors to PI3K pathway inhibitor

monotherapy remain unremarkable with a rapid emergence

of drug resistance [30]. A recent study on cell lines has demon-

strated that the presence of PIK3CA mutations can sensitize

cancer cells to mTOR inhibitor, everolimus [31]. This finding

could lead to another predictive angle and biological valida-

tion in the future.

In summary, taking a systems approach based on the can-

cer hallmark network framework, we found that the

FFL (PDGF/FLT1/SHC1) is significantly enriched in

the PIK3CA-mutated luminal-A tumor patients. More impor-

tantly, the luminal-A tumor patients harboring the PIK3CA

mutation and this positively regulating loop in their tumors

have significantly longer survival than those whose tumors

containing PIK3CA mutation only. Further validation of the

FFL (PDGF/FLT1/SHC1) as predictive factor for the survival

of the PIK3CA-mutated luminal-A tumor patients is neces-

sary. More investigation of the molecular mechanisms of the

FFL (PDGF/FLT1/SHC1) in the PIK3CA-mutated luminal-

A tumor patients could lead to better predictions and more

personalized treatment.

Materials and methods

Data collection

We obtained the exome sequencing data for the 5 breast cancer

luminal subtype cell lines originally from ATCC

(MDAMB453, SKBR3, T47D, MCF7, and ZR751). Micro-

array and copy number data were downloaded from the

Cancer Cell Line Encyclopedia (CCLE) database (http://

www.broadinstitute.org/ccle/home). Genome-wide RNAi

screening data of cell survival and proliferation for these cell

lines were downloaded from the COLT-Cancer database [32].

Breast cancer tumor whole-exome sequencing sample data

were retrieved from TCGA.

Luminal A survival network construction

To construct the network, the essential genes, driving regula-

tors, and proliferation-influencing genes for the luminal A

breast cancer were mapped onto the human signaling network

and then the nodes and their links were extracted to create a

luminal A-specific survival network (Figure 3). Our current

manually-curated network is the largest literature-curated

human signaling network, containing more than 6000 proteins

and 63,000 relations (Version 7, http://www.cancer-systemsbi-

ology.org/HuamnSignalingNet_v7.csv). These gene interac-

tions represent activation, inhibition, and complexes that

play roles in cell signaling. The network is updated every year

using data from sources include BioCarta, Cell Signaling Tech-

nology (CST) Pathways, Pathway Interaction Database (PID),

Information Hyperlinked over Proteins (iHOP), and review

papers on cell signaling [5]. To obtain the essential genes, driv-

ing regulators, and proliferation-influencing genes for the

luminal A breast cancer, for the RNAi screening of the entire

genome, we obtained the gene activity rank profile (GARP)

scores of the 5 luminal A breast cancer cell lines and RNAi-

screening P values. Details for calculating GARP scores and

RNAi-screening P values were described previously [33]. If a

gene in a cell line has a RNAi-screening P value <0.05 and

is not a housekeeping gene, we defined it as a ‘‘cancer-

essential gene”. The P value cut off for defining the cancer-

essential genes was supported by validation experiments [33].

A ‘‘proliferation-influencing gene” was defined as a gene in a

given cell line having an RNAi-screening P value <0.1 but

>0.05. Knocking down a proliferation-influencing gene will

not lead to cell death but significantly reduces cell growth

and survival. We then determined that an essential gene and

a proliferation-influencing gene in these cell lines should be

among the top 75% of the expressed genes for that cell line

as described previously [34].

Amplified genes were incorporated into the network if they

had a GISTIC score >0.3 and were among the top 50% of the

expressed genes for that cell line. The GISTIC cut-off of 0.3 is

widely used to define gene amplifications [35,36]. We selected

genes that were essential for cell survival if an amplified gene

had an RNAi-screening P value <0.4, in the assumption that

knocking down the driving regulators would affect cell growth

and survival. These genes were nominated as ‘driver regula-

tors’ to the cancer cell growth and survival.

The definitions of these terms were based on certain RNAi-

screening P value cut-offs. The cut-off values were tested by

changing the RNAi-screening P values for these genes

(P< 0.03 or 0.03 < P < 0.1 or P < 0.5 for cancer-essential

genes, proliferation-influencing genes, and driving regulators,

respectively). The analysis was rerun and the results were sim-

ilar to those obtained using the original cut-offs.

Network propagation, motif detection, and proliferation index

score

The network profile for each luminal A breast cancer tumor

sample was generated from the newly-constructed luminal A

survival network. This was done based on the tumor muta-

tional profiles. Each tumor missense mutated gene was pro-

jected as seeds onto luminal A survival network. We then

applied the network propagation algorithm to obtain diffusion

scores of the genes within the network. We applied a scaling

factor of 100,000 to the heating scores and then conducted

data transformation using the median centering and z-score

between sample approach [37]. The network motifs were

extracted using the mFinder tool. The detailed description of

using the tool has been described previously [13].

PAM50 proliferation score was measured based on differ-

ential expression of the 11 proliferation genes, including

MKI67, CDC20, BIRC5, CCNB1, CDCA1, CEP55, KNTC2,

PTTG1, UBE2C, RRM2, and TYMS, as previously demon-

strated [24].
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