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ABSTRACT

A detailed analysis of the operation of the second harmonic
magnetic modulator has been developed, with excitation voltage of
either sinusoidal or rectangular form, and with the assumption of
rectangular B-H loop of the cores in which the dynamic coercive
force is taken into consideration. A simple expression for the second-
harmonic component in the voltage waveform appearing across the
output winding of the modulator has been derived.

As the coercive force is affected by the degree of saturation
and by the frequency, the paper includes a discussion of the influence
of the coercive force on both the amplitude and phase shift of the
second harmonic output.

The comparison between the theoretical and experimental
results has shown good agreement.
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FIGURE CAPTIONS

Circuit of the Modulator
Rectangular Hysteresis Loop
Ideal Magnetization Characterists

Waveshapes for magnetic modulator with sinusoidal excitation
(A) Supply Voltage, (B) Flux density without d.c. signal,
(C) Flux density with d.c. signal, (D) Load current,

Normalized amplitude of second harmonic current as function of
nonconducting interval @

Normalized amplitude of second harmonic current as function of
normalized amplitude of sinusoidal excitation voltage,

Phase angle of second harmonic current as function of normalized
amplitude of sinusoidal excitation voltage

Variation of second harmonic current amplitude with sinusoidal
excitation voltage amplitude for the case: R_=2,5KQ, RL=5KQ,
R_=500Q, I =0.75 m.a. P

Variation of second harmonic current amplitude with sinusoidal
excitation voltage amplitude for the case: R_=3,2KQ, Rﬂ=lOKQ’
R =1KQ, I_=0.48 m.a. P

Variation of second harmonic current amplitude with sinusoidal
excitation voltage amplitude for the case: R _=5KQ, R,=10KQ, R =500%,
1,=0.75 m.a. P :

Waveshapes for magnetic modulator with rectangular excitation,
(A) Supply voltage, (B) Flux density without d.c. signal,
(C) Flux density with d.c. signal, (D) Load current.

Normalized amplitude of second harmonic current as function of
normalized amplitude of rectangular excitation voltage,

Phase angle of second harmonic current as function of normalized
amplitude of rectangular excitation voltage.

Variation of second harmonic current amplitude with rectangular
excitation voltage amplitude for the case: R_=5KQ, RL=10KQ, Rn=2009,
IC=1.12 m.a, D c

Variation of second harmonic current amplitude with rectangular excitation

voltage amplitude for the case: Rp=lOKQ, %L=10KQ, RC=EOOQ, IC=1°12m.a°



OPERATION OF THE SECOND-HARMONIC MAGNETIC MODULATOR
WITH SINUSOIDAL AND SQUARE WAVE EXCITATION VOLTAGES

— I.M.H. Saad —

Introduction

The primary object of this paper is to develop an
analytical expression for the second-harmonic component in the
voltage waveform appearing across the output winding of the
second-harmonic magnetic modulator of the type shown in Fig. 1.
A review of literature indicates that very little work has been
done concerning the analysis of the operation of this circuit.
The expression for the second-harmonic component is derived
for both sinusoidal and rectangular excitation voltages.
In getting these expressions a methodl, which has been used in
the analysis of magnetic amplifier circuits, is modified to
suit this type of magnetic circuit

The analysis of the modulator circuit is based on the
assumption of a rectangular hysteresis loop of the core
material as shown in Fig. 2. The hysteresis loops have vertical
flanks and a width which is equal to double the dynamic coercive
force HC. The saturation branches of the hysteresis loops are
horizontal. The values of Hc and BS are determined from the
major dynamic loops of the cores at the operating frequency.

Previous analyses2’3’u

have been based upon the idealized single
valued B-H characteristic which neglects the hysteresis effect,
as shown in Fig. 3. In one paper3 the analysis has been
simplified by representing the sinusoidal excitation current as

a trapezoidal function of time. The assumption of the rectangular

B-H loop is more realistic if we take into consideration the

fact that the signal sensitivity of this type of modulator
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rises and the noise level falls with increasing excitation
frequenCy2

The analysis is based on the assumption that 1in the
absence of the d.c. signal the peak value of the excitation
voltage is such that the cores are in the normal excitation or
overexcitation condition, i.e. Em or Er has such a magnitude as
to make the flux density excursion Bm or Br equal to or greater
than Bs'

The method of analysis developed in this work is
described in the following steps:

1. With the use of the normalized gquantities which are
listed in the nomenclature the following set of nonlinear
differential equations and the m.m.f. equations of the cores
are formed., These équations are general equations which describe

the behaviour of the circuit at any instant.

dB. dB
I I1) _
i Be * A'(dt t It ) = E; (1)
dB. 4B
. I II) _
i By A'(dt t 3 > =0 (2)
dB. 4B
, (9B II> )
i, R+ 4 <dt It e’ (3)

1 1 sy = Q°
1p 1+ 1y 2"H; (4)



1 v St o= g
ic + il 1p L HII (5)

2. The analysis procedure of the magnetic modulator
circuit is divided into
Ccase (a): when the d.c. input signal is equal to zero,

case (b): when the d.c. signal is present.

3. Time intervals are found for cases a and b within
half a period of the excitation voltage from the waveforms of the
flux densities of the two cores. Within any time interval each
core may have one of two conditions; saturated or unsaturated.
Consequently the set of nonlinear differential equations 1
through 3 will become linear within the limits of any interval.

b, The expressions for the load current and the boundary
angles of the time intervals for both cases a and b may be
determined from the solution of the set of equations 1 through 5
for every interval.

5. The limiting angles of the intervals in the presence
of the d.c. signal can be expressed in terms of the limiting
angles of the intervals in the absence of the d.c. signal.

6. Taking step 4 into consideration an expression can
be derived for the second-harmonic component of the load current

by the use of Fourier's series expansion.

PART I. OPERATION WITH SINUSOIDAL WAVE EXCITATION VOLTAGE

Case a: Zero D.C. Signal (EC=O)

The waveshapes of the excitation voltage and the flux densities



of the two cores are shown in Fig. 4(A) and (B). The flux
density waves of the two cores are symmetrical in the absence
of the d.c. signal. Within half a period of the excitation
voltage two intervals can be found. These intervals depend on
the condition of the cores; saturated or unsaturated.

Nonconduction Interval

This interval continues from wt = a to wt = B. The
two cores in this interval are unsaturated. The observation of

the flux density waves and the B-H loop gives the following

relations:
HI = Hc
HII = -Hc
dt dt

Taking these relations into consideration the following equations

may be obtained from equations 1 through 5:

1 = =
i i3 =0
11 = L'H, (6)
dB; 1
35 = 7av (Bl sin wt - l'RI') H,) (7)

Conduction Interval

The limits of this interval are wt = 8 and wt = mt+ao
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Fig.4 Waveshapes for magnetic modulator with sinusoidal
excitation. (A) Supply voltage, (B) Flux density without
d.c. signal, (C) Flux density with d.c.signal,
(D) Load current.




and both cores are saturated, therefore:

dBI ) dBII .
dt dt

The substitution of this condition into equations 1, 2 and 3

gives
i = ii =0
EV
ié = §$ sin wt (8)
p

The boundary angles o and B may be obtained from two conditions:

1. At the end of the conduction interval the current ié

must be equal to -z'Hc. Consequently, substituting wt = 7 + a
in equation 8 yields:
SL'R'HC
sin o = ———%T— (9)
m
2. Integrating equation 7 between the limits wt = a and

wt = B and substituting the boundary conditions for the flux

density in core I, namely, BI = -Bs at wt o and BI = B_ at

S
wt = B, then

Q'R'HC UA‘wBS
cos o - cos B - ——EQ—— (B - a) = —— (10)
m

B
m

0 in equation 9 gives o = 0, therefore

The substitution of Hc

equation 10 reduces to

HA'mBS
1 - cos B = —gT (11)
m



which determines the value of the conduction angle B for the

case of the idealized B-H characteristic of Fig. 3.
Case b: The D.C. signal is present.

The presence of the small d.c. signal upsets the symmetry of
the flux density waves and creates new intervals within half a
period of the excitation voltage, as shown in Fig. 4(C). The
width of these intervals depends on the value of the d.c.

ampere-turns. According to Fig. 4(C) four intervals can be

found within half a cycle. The limiting angles of these intervals

and the condition of the cores are listed in the following table:

No. of Interval | Limits of Interval Conditions of the Cores
Core 1 Core 11

1 0q and 05 unsaturated unsaturated

2 05 and a3 saturated unsaturated
3 as and o saturated saturated

4 o and-n + g saturated unsaturated

The equations which describe the behaviour of the circuit during
each interval may be derived from the set of equations 1 through
5. Two conditions must be taken into account:

1. For any core in the unsaturated condition H = iHC,
where the sign + or - applies, depending on whether the flux

density excursion is ascending from —BS to BS or descending

from Bs to -Bs.



—9—
2. %% is equal to zero for any core in the saturated
condition.

Interval 1

The m.m.f. equations for this interval are

1 =
L HC ié + ié + ik
(12)
-1 = 1 | - 1
2 HC iC + il i

These two equations show that the sum ié plus (ié + ii) and the
difference ié minus (ié + ii) are equal to the same value Q'Hc.

Therefore the following two relations must be valid:

i, = -1 (13)

ié = Z'Hc (14)

Consequently, the following relations can be deduced from

equations 1, 2, 3, 13 and 14:

~E!
1! = _T__E_T (15)
L Rc + Rl
aB; ;| Ry
— = ' v 1R
dt ﬁ'_ LEm sin wt + ﬁ-g——_*_—RE EC L RpHC (16)
dBry 1 [ Ry
= =F ! ] IRt
I 2ATLEm sin wt + FZ—:—ﬁz EL + L RpHc (17)

Interval 2

The m.m.f. equation of core II becomes
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' |
ic + iz

and the expressions for the currents in the mo

and the flux density derivative for core II are found from

equations 1, 2, 3 and 18.

=}

1
10 = ==

i (%1)s
t = 2 1 - IR

i 3 Em sin wt % RpHc + Ri + 1} E!

L —

R;L' R! N

2 ! = - __2 1 5 TR 1

lp 3 L_l + Ri) Em sin wt + 2 Rch + Ec
dB -R!R! R!

II_ 2 c 1 - tR? __p_ !

3= = "3 A (Em sin wt L RpHc - Ré Ec

where

Interval 3

During this interval, the circuit equatio

1
iZ

\
11 =
P "

Interval 4

The m.m.f. equation of core IT is

RV

= R! 1 1
a Rp (Rg * Rc) + R

o

=

R

—_— 1 - ]
2 2 [ém sin wt L

L

!
C
1

C

sin wt

- 1
2 Hc

R'

- B E;]
c
c

(18)

dulator circuits

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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1t 51 = gt
ic':+il lp ZHC

(26)
and the current and flux density equations are
Rl Rl
. c
1y = 7 |Bg sin wt + 2'RIH, ﬁi- E! (27)
Ry R
2~ 1R _Db '
5 [ sin wt + 2 RpHc +(RJ'L + l) Ec:] (28)
l l
) —9 E' sin wt - &'R'H_ + E! (29)
a Ri m ce c
daB -R!R! R!
II - 2' Cc t T _E
3= = T L {ém sin wt + 2 RéHc R] Eé} (30)

Interval 5

The rate of change of flux density for core II during
this interval is:

dEII 1 Ri
= ! _ TR
3% ST (,' T R'7' E!' sin wt L RpHC (31)

Four relationships which determine the values of the

angles Gps Op, O3 and o), may be found from the following con-
ditions:

(a) At the end of interval 4, which corresponds to point 2
on the

B-H loop, core I comes out of positive saturation

Hence
the sum of the m.m.f.'s at that point is equal to -%'H

Taking



this condition into consideration and substituting wt = 7 + 0q
in equations 27 through 29 an expression for a, can be deduced

in the form

=

R'&2'H R
c

sin o, = P + i
1 E& (Rc

2 c

R
(b) At the end of interval 3, which corresponds to point 4

on the B-H loop, core II comes out of negative saturation.

Therefore the difference of the m.m.f.'s (ié + ii) minus ié is

equal to l'Hc. Utilizing this condition and equations 23

through 25 yields:
Rl
sin a4=§9——-——r)—]z—,-— (33)
c

(c) At the beginning of the first and the end of the fifth
intervals the flux density in core II has the same value BS.
Consequently the following relationship is valid:

m + a2)
dBII
3 dwt = 0 (34)

%

Substituting equations 17, 22, 30 and 31 into the preceding
equation and integrating yields:

ab
R

1
R

Cos0y + cosa, + cosay - cosGg = (a2-a1) + (b2+b3)(a3-a2) +

1 1
c 2

(b2-b3)(n+al—au) (35)



Eé R! Eé Q'R'HC
7> % T RY £ P3 T TR
m

where b, = sv—7—=7
1 Rc c m m

(d) The flux density excursion in core II from positive
saturation at wt = 0q to negative saturation at wt = a3 is
equal to —ZBS. Therefore the integration of the rate of change

of the flux density between these limits is equal to -2BS, namely

a2/w a3/w
dB dB
II II ~
J —5— dt + J —F dt = -2Bg (36)
al/w a2/w

The evaluation of this integral after the substitution of

equations 17 and 22 into 1t gives

~LATwB 2R!R!
s L ¢

Eé = 5 {%osa3 - cosa, + (b3+b2)(a3-u2{} + cosad, = COS0q

+ (by+b2) (ay=aq) (37)

A realistic and valuable approach is discussed in the
following for the evaluation of the angles a1, On, a3 and oy
from equations 32, 33, 35 and 37. This approach is based on
the assumption of a low-level - d.c. signal. Careful
observation of the flux density wave forms in the absence and
presence of the d.c. signal shows that the presence of the d.c.
signal is equivalent to the following effects on the flux
density waveform:

1. The conduction angle B is advanced by a certain




amount Aa2 for core I and retarded by another amount Aa3 for

core II.
2. The limiting angle m + O is retarded by an amount
Aal for core I and advanced by another amount Auu for core II.

Under these conditilons the boundary angles of the intervals can

be expressed as

a; = o + Aoy (38)
a, = B - Lo, (39)
o3 = B + Au3 (4o)
ay = T+ o - Aoy, (41)

and the values of Aul, Aug, Aa3 and Auu are determined from the

following equations:

R E

1 1
_ 2 c 1
Bay = TRé ¥ Ri) E; cos o (42)
R' E! 1
- . _c __-
Bay = Rl EJ cos o (43)
_ (B - a) cos o
Aa T{sin B - sin a) Aml (4h)
Aa - (B - a) cos a (L5)

Tsin B - sin a)

The derivation of these expressions from equations 32, 33, 35




and 37 is given in Appendix I.

The instantaneous value of the second harmonic com-

ponent of the load current may be defined in the form

i2 = I2a sin (2wt + ¢2)

or in the normalized form

il =1I

5 sin (2wt + ¢2)

1
2a

i I =N, I

S o
where i} N 2a o 1oa

L 22

In Appendix II is given the derivation of the following

expressions for the amplitude and phase shift of the second
harmonic component. This derivation is based on the use of

Fourier series expansion and equations of the load current

during intervals 1, 2, 3 and 4.

_ 2 1 2
Iéa—FW{j(l—cos2e)+6—Bsin26

[} ]

6. = tan—l sin 2o -~ sin 28 + 26 cos 2B
2 cos 2B - cos 20 + 26 sin 28

where

2

- 06 sin 29]

(46)

(47)

(48)

(49)

(50)

N

(51)



DISCUSSION OF THE THEORETICAL RESULTS

1. The amplitude and phase shift of the second harmonic
component of the load current can be determined easily from
equations 49 and 51. The values of the angles o and B are
found from equations 9 and 10 for a given excitation amplitude

and freguency.

2. Equation 51 shows that the amplitude of the second
harmonic current is linearly related to the input d.c. signal
and changes in phase by 180 degrees according to the actual

polarity of the d.c. signal.

3. Defining

E
2 c -
™ 2 = Iop (52)
Nc (N2'>
—|{[<=)R. + R
Nz Nc c L
equation 51 transforms into
Ioa N 2 s
T = [§ (1 - cos 28) + 67 - 6 sin Zé] (53)
2m

In Fig. 5 the normalized quantity I2a/I2m is plotted against the
value of the non-conduction interval 6. This figure shows that
the amplitude of the second harmonic component depends on the
width of the non-conduction interval and 1its value changes non-
linearly from a maximum at 6 = 180° to zero at 6 = 0.

It must be noted that in practical modulator circuits

the maximum value of the second harmonic component does not occur
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since the value of the non-conduction interval is permanently
less than 180°. This is due to the influence of the coercive

force on the loss angle a.

b, For the ideal case when HC is equal to zero the non-
conduction interval will be equal to the conducting angle B and
equation 10 transforms into

har wBs
1l - cos B = —gT— (54)
m

The theoretical value of the excitation voltage amplitude, which
corresponds to the maximum value of the second harmonic amplitude

may be found by substituting B = 180° in equation 54

El; = 2A wB (55)

Accordingly equation 10 may be written in terms of Eﬂi as follows:

E'.
cos @ - cos B - (B-a) sin a = 2 E¥£ (56)
m

On the basis of equation 50, 53 and 56 a normalized plot of
I55/Ton against Em/Emi is represented in Fig. 6 for two values
of the loss angle. These curves show the manner in which the
amplitude of the second harmonic current is affected by the

value of the amplitude of the excitation voltage and the coercive

force.

5. The variation in the phase angle of the second harmonic

output current due to different values of Em/Emi is plotted in
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Fig.7 Phase angle of second harmonic

current as function of normalized
amplitude of sinusoidal excitation
voltage.
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Fig.8 Variation of second harmonic current
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=5KQ, R, =5000,I¢=0.75 ma.
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Fig. 7 for a = 0. This plot is derived from equations 49 and
56. The analysis of these equations indicates that for practical
values of the coercive force the change in the phase of I2a/I2m

from that given in Fig. 7 is negligible.

COMPARISON BETWEEN THEORETICAL AND PRACTICAL MEASUREMENTS

The toroidal cores were made from Hymu "80", .002
inch tape thickness in aluminum case. The cores have the
following dimensions: inside diameter 2.5 inch, outside
diameter 3 inch, height 0.5 inch. The net cross-sectional area
of flux path = 0.1063 inch square and the mean path length = 8.639
inch. The number of turns of the windings on each core were

L

of the excitation voltage was 400 c/s.

Np = 1000 turns, Nc = 200 turns and N, = 2000 turns. The frequency

From the major dynamic B-H loop of the cores the values
of the dynamic coercive force and the saturation flux density

were found to be:

2y
Il

0.12 oersted

os]
Il

7500 gauss.

At a fixed value of the d.c. signal the amplitude of the
second harmonic output voltage was measured on a wave analyzer
for different values of the excitation voltage amplitude. The
results of the measurements can be normalized with respect to
the values corresponding to the normal excitation condition.

This is done for three sets of values of the parameters of the
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circuit and the experimental curves are compared with the

theoretical behaviour described by equations 9, 10, 50 and 51

in Figs. 8, 9 and 10. In Fig. 8, where Rp = 2.5 K ohms, the

effect of the loss angle on the calculated results is negligible

and the theoretical curve was plotted for the ideal case a = 0.
There are several sources of error which affect both

the calculated and measured results, mainly:

1. The difficulties in measuring the magnetic parameters
of the cores.

2. The deviation of the actual shape of the B-H loop from
the rectangular characteristic.

3. The asymmetry and noise which may exist in the waveform
of the a.c. excitation source especlally at higher values of the
excitation amplitude. If allowance is made for the preceding
sources of error, the theoretical results are in good agreement

with the experimental ones.

PART II. OPERATION WITH RECTANGULAR WAVE EXCITATION VOLTAGE

Case a. Zero D.C. Signal (Ec = 0)

For this case two intervals can be found in Fig. 11(A)
and (B) within half a cycle of the excitation voltage; the non-
conduction interval from 0 to B and the conduction interval from
B8 to m. The value of B can be determined from the following
equation:

Lat' wB
S

B = E' — Z'R‘ H (57)
r P ¢
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Fig.Il Waveshapes for magnetic modulator with rectangular
excitation. (A) Supply voltage, (B) Flux density without
d.c.signal, (C) Flux density with d.c. signal,

(D) Load current.
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The derivation of this equation from the basic equations 1
through 5 is given in Appendix III. It must be noted that this
expression is valid only for the conditions of normal and over-

excitation, i.e. when the value of B is equal to or less than .

Case b. The D.C. Signal is Present
Figs. 11(C) and (D) show the instantaneous values of
the flux densities in the cores I and II and also the current in
the load circuit for this case. The effect of the d.c. signal on

the flux density waveform is to advance the conduction angle B 1

by an amount Aa2 for core I and retard it by another amount Aa3
for core II. Accordingly three intervals can be found within
half a cycle of the excitation voltage. The magnetic conditions

of the cores within every interval are listed in the following

table:
No. of Interval Limits of Interval Condition of the Cores *
Core 1 Core 1II
\
1 0 and a, unsaturated | unsaturated |
2 a2 and a3 saturated unsaturated
3 a3 and w saturated saturated

Taking this table into consideration all equations for intervals
1, 2 and 3 of Part I apply also to the same intervals of Part IT.
The only modification is the substitution of the quantity Er for
Em sin wt in all the given equations.

Two equations are required for the evaluation of the



boundary angles Oy and a3. These equations can be obtained by
making use of the conditions ¢ and d in Part I and modifying

equations 34 and 36 into:

T + 0y
dB
J 7;11:—1 dwt = 0 (58)
o
a2/w o,/w
dB dB
IT1 IT _
J —F— dt + I —¢— dt = -2B (59)
o a2/w
dBII

Substituting the expressions of 3t for the different intervals

and integrating equations 58 and 59 yields:

Ri R?
c _opt B _
bi 0y - ) (1 - bé b2)(o¢3 a2) 0 (60)
Yy A'BS RiRé
- - r 1 - - | - '
E% 2 5 (1 b3 b2)(a3 a2) + (1 b3 bl) o, (61)
R} B! R!' E! £'R'H
where bl = L = , bl = 2 —$, bl = ———E—S
1 (RT + R!) ET » "2 R' E 3 E
c L r c r r

The same approach which has been used for the determination of
the boundary angles of the intervals in the case of sinusoidal
excitation can be extended to cover the case of rectangular

excitation. Defining

B - Aac

Q
]

(62)

B + Ao



and utilizing these expressions the solution of equations 60 and

61 yields

hpr wB
E'
r
Bay = B - TTRTH &7 BT (63)
1 - PS4 L ==
[ 1 1 1
ET (RT+ R]) ET
BA' B
S
E'
r
hag = TR'E. R ET B (64)
] -~ —R ¢ __P_C
o R E
r (6] r

The instantaneous value of the load current during the half

period from 0 to w can be determined from equations 15, 19 and

23 after the substitution of Er for Em sin wt

-E!
11 = c a, > wt > 0
[} rﬁg‘I‘EIT 2
a i
= e— t ! - '
5 (En JL'RpHc RY Ec> oy > wt > a, (65)
=0

The coefficients of the Fourier series for the second harmonic
component of the load current are obtained from the preceding

equation by the same procedure of Appendix I in the following

form:




A =0 (66)

Et

A, = <
] ]
1 ﬂ(Rc + R£7

E'
c
B, = ; —~ (cos 2
1 1r(Rc + RL)

These expressions were derived by the aid of equations 62

through 64.

The second harmonic component of the load current is

(2B cos 2B - sin 2B8) (67)

B + 2B sin 2B - 1) (68)

expressed by the same equations 46 and 47 and its amplitude and

phase shift are found from equations 67 and 68 in the form

2E!
Iéa = m(R! +cR'
c 2

1 2 . %
T |z (1 - cos 2B) + B - B sin 2B

_ -1 28 cos 2B - sin 2B
¢p = tan [pos 26 + 28 5in 28 - 1

Substituting the normalized quantities from the nomenclature

into equation 69 yields

1 2 s
5 (1 - cos 2B8) + B - B sin 28

S

IZa =

c
e

—[l<=)] R. + R
Nz Nc c {

Equations 70 and 71 express the phase shift and amplitude in
terms of the d.c. input voltage, the parameters of both the

input and load circuits and the conduction angle B, which is

(69)

(70)

(71)
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given by equation 57.

DISCUSSION OF THEORETICAL AND EXPERIMENTAL RESULTS

1. The observations of equations 48, 49 and 69, 70
indicates that the substitution of a = 0 in the expressions of
I5a
same expressions which are derived for rectangular excitation.

and ¢2 for the case of sinusoidal excitation yields the

The coercive force in the case of rectangular excitation affects
only the value of the conduction angle (equation 57) and the
non-conduction interval will be larger than that for sinusoidal
excitation. An important conclusion from these considerations
is that the choice of rectangular excitation in practical
problems is more valuable than sinusoidal excitation from the
view point of the stability of the second harmonic output and

the choice of higher excitation frequency.

2. The normalized plot of Fig. 5 is also valid for the
case of rectangular excitation after the substitution of B for

6 in that figure.
3. Consider the ideal case when Hc is equal to zero,
then equation 57 transforms into

4arw Bs
B = —=— (72)

EI
r
The excitation amplitude for the ideal condition of normal

excitation can be found from the preceding equation by sub-

stituting B = 7




—30—.

El, = & A'w By (73)

Accordingly equation 57 can be written in the form

B = "RH (74)
r pc

1 - T
Efi Eri

On the basis of equations 70, 71 and 74 the effect of variation
of amplitude of the rectangular excitation voltage on both
amplitude and phase shift of the second harmonic current is
plotted in Figs. 12 and 13 for the ideal case when HC is equal
to zero. To show the influence of the coercive force on both
I2a and ¢2 other curves are plotted in the same figures for the

case when Q'RéHc/E}i = 0.1, This value is chosen to correspond

with practical parameters of the modulator circuit.

b, The same experimental circuit and method of measure-
ment of Part I were used in the case of rectangular excitation.
The frequency of excitation was also 400 ¢/s and the value of
HC was found to be 0.1 oersted. The comparison between the
experimental and theoretical results is given in Figs. 14 and
15 for two sets of values of the parameters of the circuit.
Causes of the noticeable discrepancy between the measured and
theoretical curves at high values of Rp (Fig. 15) are believed
to be the following:

(a) At lower values of excitation voltage the value of R
becomes comparable to the value of the actual differential

reactance around the knee of the normal induction curve.
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(b) The excitation waveform is distorted at higher values

of excitation voltage.

Conclusion

The second harmonic magnetic modulator has been
analysed, with the excitation voltage of either sinusoidal or
rectangular form, and with the assumption that the cores have a
rectangular hysteresis loop in which the dynamic coercive force
is taken into consideration.

An expression which determines the steady state
amplitude and phase of the second harmonic component of the
load current has been derived for both sinusoidal and rectangular
excitations. This expression is sufficiently simple and accurate
for engineering purposes. The close agreement between the
theoretical and experimental results supports the validity of
the developed theory.

The analysis indicates that the choice of rectangular
excitation voltage improves the stabllity of the second harmonic
output and gives higher 1limit to the choice of excitation

frequency.
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APPENDIX I

For small values of Aal, Aa2, Aa3 and Aau the sine and

cosine functions may be approximated into: sinAal = Aal,

Aa2, sinAa3 = Aa3, sinAau = Aau, cosAal = cosAa2 =

sinAa2

cosAa3 cosAau = 1. Accordingly the trigonometric functions of
the angles Ay, 0o, a3 and o), can be expressed in terms of

Aal, Aa2, Aa3, Aau, sin a, cos o, sin B and cos B. Taking this
method of approximation and also equations 9 and 10 into account

the set of equations 32, 33, 35 and 37 can be linearized in the

following form:

Ri E! 1
c
Ao, = T—T———*TT = (75)
1 Rc + Rz Em cos o
R! E!
1
Aoy = =B =% (76)
y Rc 5 cos a
s coso RiRé
“UA' Yy — — - =
(=4A'w Eﬁ cosB+cosa) ~Tno Aal + = (sino 51nB)(Aa3+Aa2) 0

IRt
2RZRC
a

oe}

(Bag + Aay) - Aa2_’ + (=LAtw Ei -

(sinao - sinB){

=

coSsSa Aa. =0 (78)

- cosB + cosa) <110 1

With the aid of equations 9 and 10 the simultaneous solution of
equations 75 through 78 yields the set of equations 42 through
45.

(77)



APPENDIX II

The instantaneous value of the load current during the

half cycle from oy to m + 0, as defined by equations 15, 19, 23

and 27 is
-E!
it = c o, £ wt <
2 RCI+R§' l\w \(12
R! R!
=_9. 1 - TR __E_l
5 (Em sin wt 2 RpHc Ré Ec) a, $ wt < ag
=0 a3 < wt oy
1 R'
- _C 1 s 1R _ 1
3 (Em sin wt + £ RpHc Ré Ec) ay < wt <7+ oy (79)

The load current waveform 1s such that it repeats itself every
half a period of the excitation voltage. In other words the
radian frequency of the load current function is equal to 2w.
Consequently the Fourier series expansion for the load current
function can be written in the following form.

A n= n=
1! = ==+ ) A_ cos2nwt + J B_ sin2nwt (80)
L 2 n=1] O n=1 B

where



(W+a1)/w
= 2 <y
Ao = = J ig dt
al/w
(w+a1)/w
An = % I ii cos2nwt dt
al/w
(n+a1)/w
B = % 1} sin2nwt dt
al/w

The evaluation of the coefficients of the Fourier
series for the second harmonic component of the load current is

obtained from equations 79 and 80.

A, =0 (81)
El

A = w(Ré : Ri) [cos2B - cos2a + 2(B-a) sin2B] (82)
E'

B, = TORT i R£7r[sin2a - sin2B + 2(B-a) cos28] (83)

The foregoing form of AO, Al and B1 was derived with the aid of
equations 9, 35, 38 through 41 and 42 through 45.
The expression for the instantaneous value of the

second harmonic current component may be written in the form

15 = I, sin(2wt + ¢,) (84)



where
_ 2 2
Iéa = Al + Bl (85)
A
¢, = tan_l(§1—> (86)
1

Substituting equations 82 and 83 into equations 85 and
86 yields the expressions for Iéa and ¢2 which are given by

equations 48 and 49.

APPENDIX III
The rate of change of fluX density in core II during
the nonconduction interval can be found from eguations 1 through

5 in the form

dB
7 = opr (Bp - 2'RgH) (87)

Accordingly an expression for B can be obtained from

the following condition

B/w

dBr

—a—t—— dt = _2BS (88)

Substituting equation 87 into 88 and solving the integral yields

equation 57.
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NOMENCLATURE
effective core area; square centimeters.
instantaneous value of flux density in core I; gausses.
instantaneous value of flux density in core II; gausses.
saturation flux density; gausses.
instantaneous value of excitation voltage; volts.
maximum value of sinusoidal applied voltage; volts.
amplitude of rectangular alternating voltage; volts.
d.c. input voltage; volts.
instantaneous value of magnetizing force in core I; oersteds.
instantaneous value of magnetizing force in éore II; ocersteds.
dynamic coercive force, oersteds.
instantaneous value of current in the input circuit, amps.
instantaneous value of current in the load circuit, amps.
instantaneous value of current in the excitation circuit, amp.
length of magnetic circuit, centimeters.
number of turns per input winding.
number of turns per load winding.
number of turns per excitation winding.
total resistance in input circuit, ohms.
total resistance in load circuit, ohms.

total resistance in excitation circuit, ohms.

' ' =
e/N,, E} = E /N, EL = E /N .

p’ m
1 = 1 =
ich, iz ilNl’ ip ipr.
2 . 2 v oo 2
R,/NJ, Rj = Ry /Ny, Ry Rp/Np.

2/0 . bw, A' = A.1o‘8.
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