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Object-Oriented Metrics:

A Review of Theory and Practice

Khaled El Emam

1.1 Introduction

In today’s business environment, competitive pressures demand the production

of reliable software with shorter and shorter release intervals.  This is more so in

commercial high reliability domains such as telecommunications and aerospace.

One recipe for success is to increase process capability.  There is recent

compelling evidence that process capability is positively associated with

productivity and quality. (Clark, 1997; El-Emam and Birk, 2000a, 2000b; Flowe

and Thordahl, 1994; Goldenson and Herbsleb, 1995; Jones, 1999; Krishnan and

Kellner, 1999).  Quantitative management of software quality is a hallmark of

high process capability (El-Emam, Drouin, and Melo, 1998; Software

Engineering Institute, 1995).

Quantitative management of software quality is a broad area.  In this chapter

we focus on only one aspect: the use of software product metrics for quality

management. Product metrics are objective1 measures of the structure of

software artifacts.  The artifacts may be, for example, source code or analysis

and design models.

The true value of product metrics comes from their association with

measures of important external attributes (ISO/IEC, 1996).  An external attribute

is measured with respect to how the product relates to its environment (Fenton,

1991).  Examples of external attributes are testability, reliability and

maintainability.  Practitioners, whether they are developers, managers, or quality

assurance personnel, are really concerned with the external attributes.  However,

they cannot measure many of the external attributes directly until quite late in a

project’s or even a product’s life cycle.  Therefore, they can use product metrics

as leading indicators of the external attributes that are important to them.  For

instance, if we know that a certain coupling metric is a good leading indicator of

quality as measured in terms of the number of faults, then we can minimize

                                                          
1 Objective means that if you repeatedly measure the same software artefact (and the

artefect does not change), then you will get the same values.  This is because in most

cases the metrics are automated.  The alternative is to have subjective metrics.  Subjective

metrics are not covered in this chapter.



coupling during design because we know that in doing so we are also reducing

rework costs.

Specifically, product metrics can be used in at least three ways: making

system level predictions, early identification of high-risk software components,

and the construction of preventative design and programming guidelines.  These

uses allow an organization, for instance, to get an early estimate of quality, and

to take early action to reduce the number of faulty software components.

Considerable effort has been spent by the software engineering research

community in developing product metrics for both procedural and object-

oriented systems, and empirically establishing their relationship to measures of

important external attributes.  The latter is known as the empirical validation of

the metric.  Once the research community has demonstrated that a metric or set

of metrics is empirically valid in a number of different contexts and systems,

organizations can take these metrics and use them to build appropriate

prediction models and guidelines customized to their own context.

The objective of this chapter is to provide a review of contemporary object-

oriented metrics.  We start by describing how object-oriented metrics can be

used in practice by software organizations.  This is followed by an overview of

some of the most popular object-oriented metrics, and those that have been

studied most extensively. The subsequent section describes current cognitive

theories used in software engineering that justify the development of object-

oriented metrics.  This is followed by a further elaboration of the cognitive

theory to explain the cognitive mechanisms for metric thresholds.  The empirical

evidence supporting the above theories is then reviewed. The chapter is

concluded with recommendations for the practical usage of object-oriented

metrics, a discussion of the match between the empirical results and the theory,

and directions for future research.

1.2 The Practical Use of Object-Oriented Metrics

In this section we describe how product metrics can be used by organizations for

quality control and management.

1.2.1 Making System Level Predictions

Typically, software product metrics are collected on individual components for a

single system.  Predictions on individual components can then be aggregated to

give overall system level predictions.  For example, in two recent studies using

object-oriented metrics, the authors predicted the proportion of faulty classes in

a whole system (El-Emam, Melo, and Machado, 2001).  This is an example of

using predictions of fault-proneness for each class to draw conclusions about the

overall quality of a system.  One can also build prediction models of the total

number of faults and fault density (Evanco, 1997).  Similarly, another study



used object-oriented metrics to predict the effort to develop each class, and these

were then aggregated to produce an overall estimate of the whole system’s

development cost (Briand and Wuest, 1999).

1.2.2 Identifying High-Risk Components

The definition of a high-risk component varies depending on the context. For

example, a high-risk component may be one that contains any faults found

during testing (Briand, Basili, and Hetmanski, 1993; Lanubile and Visaggio,

1997), one that contains any faults found during operation (Khoshgoftaar, Allen,

Jones, and Hudepohl, 1999), or one that is costly to correct after an error has

been found (Almeida, Lounis, and Melo, 1998; Basili, Condon, El-Emam,

Hendrick, and Melo, 1997; Briand, Thomas, and Hetmanski, 1993).  Recent

evidence suggests that most faults are found in only a few of a system’s

components (Fenton and Ohlsson, 2000; Kaaniche and Kanoun, 1996; Moller

and Paulish, 1993; Ohlsson and Alberg, 1996).  If these few components can be

identified early, then an organization can take mitigating actions. Examples of

mitigating actions include focusing defect detection activities on high-risk

components by optimally allocating testing resources (W. Harrison, 1988), or

redesigning components that are likely to cause field failures or be costly to

maintain.

Early prediction is commonly cast as a binary classification problem.2 This

is achieved through a quality model that classifies components into either a high

or low risk category.  An overview of a quality model is shown in Figure 1.1.  A

quality model is developed using a statistical modeling or machine learning

technique, or a combination of techniques.  This is done using historical data.

Once constructed, such a model takes as input the values on a set of metrics (M1

… Mk) for a particular component, and produces a prediction of the risk

category (say either high or low risk) for that component.

A number of organizations have integrated quality models and modeling

techniques into their overall decision making process.  For example, Lyu et al.

(Lyu, Yu, Keramides, and Dalal, 1995) report on a prototype system to support

developers with software quality models, and the EMERALD system is

reportedly routinely used for risk assessment at Nortel (Hudepohl, Aud,

Khoshgoftaar, Allen, and Mayrand, 1996a, 1996b).  Ebert and Liedtke describe

the application of quality models to control the quality of switching software at

Alcatel (Ebert and Liedtke, 1995).

                                                          
2 It is not, however, always the case that binary classifiers are used. For example, there

have been studies that predict the number of faults in individual components, for

example, (Khoshgoftaar, Allen, Kalaichelvan, and Goel, 1996), and that produce point

estimates of maintenance effort, for example, (Jorgensen, 1995; Li and Henry, 1993).
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Figure 1.1. Definition of a quality model.

In the case of object-oriented metrics, an example of a quality model was

presented in a recent study using design metrics on a Java application (El-Emam

et al., 2001).  This model was developed using logistic regression (Hosmer and

Lemeshow, 1989):

( )DITOCMECNAIe 06.147.1464.097.31

1
+++−−+

=π (2.1)

Here, the π  value gives the predicted probability that a class will have a

fault, NAI  is the total number of attributes defined in the class, OCMEC  is

the number of other classes that have methods with parameter types of this class

(this is a form of export coupling), and DIT  is the depth of the inheritance tree

which measures how far down an inheritance hierarchy a class is.  NAI,

OCMEC, and DIT are examples of object-oriented metrics.  In fact, in this case,

all of these metrics can be easily collected from high-level designs, and

therefore one can in principle use this model to predict the probability that a

class will have a fault at an early stage of development.  A calibration of this

model, described in (El-Emam et al., 2001), indicated that if the predicted

probability of a fault is greater than 0.33, then the class should be flagged for

special managerial action (i.e., it is considered high risk).

The metrics in the above example are class-level static metrics.  Object-

oriented metrics can also be defined at the method-level or at the system-level.

Our focus here is only on class-level metrics.  Furthermore, metrics may be

collected statically or dynamically.  Static metrics can be collected by an

analysis of the software artifact.  Dynamic metrics require execution of the

software application in order to collect the metric values, which makes them

difficult to collect at early stages of the design.  Our focus in this chapter is on

static metrics.



1.2.3 Design and Programming Guidelines

An appealing operational approach for constructing design and programming

guidelines using software product metrics is to make an analogy with

conventional statistical quality control: identify the range of values that are

acceptable or unacceptable, and take action for the components with

unacceptable values (Kitchenham and Linkman, 1990).  This means identifying

thresholds on the software product metrics that delineate between acceptable

and unacceptable.  In summarizing their experiences using software product

measures, Szentes and Gras (Szentes and Gras, 1986) state “the complexity

measures of modules may serve as a useful early warning system against poorly

written programs and program designs. .... Software complexity metrics can be

used to pinpoint badly written program code or program designs when the

values exceed predefined maxima or minima.”  They argue that such thresholds

can be defined subjectively based on experience.  In addition to being useful

during development, Coallier et al. (Coallier, Mayrand, and Lague, 1999)

present a number of thresholds for procedural measures that Bell Canada uses

for risk assessment during the acquisition of software products.  The authors

note that the thresholds result in 2 to 3 percent of the procedures and classes that

are flagged for manual examination.  Instead of thresholds based on experience,

some authors suggest the use of percentiles for this purpose.  For example,

Lewis and Henry (Lewis and Henry, 1989) describe a system that uses

percentiles on procedural measures to identify potentially problematic

procedures.  Kitchenham and Linkman (Kitchenham and Linkman, 1990)

suggest using the 75
th

 percentile as a cut-off value.  More sophisticated

approaches include identifying multiple thresholds simultaneously, such as in

(Almeida et al., 1998; Basili et al., 1997).

In an object-oriented context, thresholds have been similarly defined by

Lorenz and Kidd as (Lorenz and Kidd, 1994) “heuristic values used to set ranges

of desirable and undesirable metric values for measured software.”  Henderson-

Sellers (Henderson-Sellers, 1996) emphasizes the practical utility of object-

oriented metric thresholds by stating that “An alarm would occur whenever the

value of a specific internal metric exceeded some predetermined threshold.”

Lorenz and Kidd (Lorenz and Kidd, 1994) present a number of thresholds for

object-oriented metrics based on their experiences with Smalltalk and C++

projects. Similarly, Rosenberg et al. (Rosenberg, Stapko, and Gallo, 1999) have

developed thresholds for a number of popular object-oriented metrics that are

used for quality management at NASA GSFC.  French (French, 1999) describes

a technique for deriving thresholds, and applies it to metrics collected from

Ada95 and C++ programs. Chidamber et al. (Chidamber, Darcy, and Kemerer,

1998) state that the premise behind managerial use of object-oriented metrics is

that extreme (outlying) values signal the presence of high complexity that may

require management action. They then define a lower bound for thresholds at the

80
th

 percentile (i.e., at most 20% of the observations are considered to be above



the threshold). The authors note that this is consistent with the common Pareto

(80/20) heuristic.

1.3 Object-Oriented Metrics

Structural properties that capture inter-connections among classes are believed

to be important to measure (for example different types of coupling and

cohesion).  This is because they are considered to affect cognitive complexity

(see next section). Object-oriented metrics measure these structural properties.

Coupling metrics characterize the static usage dependencies among the classes

in an object-oriented system (Briand, Daly, and Wuest, 1999). Cohesion metrics

characterize the extent to which the methods and attributes of a class belong

together (Briand, Daly, and Wuest, 1998). In addition, inheritance is also

believed to play an important role in the understandability of object-oriented

applications.

A considerable number of such inter-connection object-oriented metrics have

been developed by the research community. For example, see (F. Brite e Abreu

and Carapuca, 1994; Benlarbi and Melo, 1999; Briand, Devanbu, and Melo,

1997; Cartwright and Shepperd, 2000; Chidamber and Kemerer, 1994;

Henderson-Sellers, 1996; Li and Henry, 1993; Lorenz and Kidd, 1994; Tang,

Kao, and Chen, 1999).  By far, the most popular of these is the metrics suite

developed by Chidamber and Kemerer (Chidamber and Kemerer, 1994) (known

as the CK metrics).  In fact, it has been stated that for historical reasons the CK

metrics are the most referenced (Briand, Arisholm, Counsell, Houdek, and

Thevenod-Fosse, 1999), and most commercial metrics collection tools available

at the time of writing also collect these metrics.  Another comprehensive set of

metrics that capture important structural characteristics, namely different types

of coupling, have been defined by Briand et al. (Briand et al., 1997).  We will

focus our attention on these two sets of metrics since they have also received a

considerable amount of empirical study.  A summary of these metrics can found

in Table 1.1.  Many of the metrics can be collected at the design stage of the life

cycle. Table 1.1 indicates which of these metrics can be accurately collected at

the design phase. If the entry in the “Des” column is “Y”, then the metric is

typically available during design.

Even though some of the metrics can be collected at design time, in practice,

they are frequently collected from the source code during validation studies.

Out of the metrics set shown, only the CK metrics suite currently is known to

have a number of commercial and public domain analyzers (for Java see

(CodeWork, 2000; Metameta, 2000; Power-Software, 2000b), and for C++ see



(Devanbu, 2000; ObjectSoft, 2000; Power-Software, 2000a))3.  In addition there

is at least one tool that can be used to collect the CK metrics directly from

design documents (Number-Six-Software, 2000).

Table 1.1. Summary of object-oriented metrics.

Metric

Acronym

Des Definition

CBO N This is the Coupling Between Object Classes coupling metric

(Chidamber and Kemerer, 1994). A class is coupled with another if

the methods of one class use the methods or attributes of the other,

or vice versa. In this definition, uses can mean as a member type,

parameter type, method local variable type or cast.  CBO is the

number of other classes with which a class is coupled.  It includes

inheritance-based coupling (i.e., coupling between classes related

via inheritance).  A variant of CBO, known as CBO’, excludes

inheritance based coupling (Chidamber and Kemerer, 1991).

RFC N This is the Response for a Class coupling metric (Chidamber and

Kemerer, 1994). The response set of a class consists of the set M of

methods of the class, and the set of methods invoked directly by

the methods in M (i.e., the set of methods that can potentially be

executed in response to a message received by that class).  RFC is

the number of methods in the response set of the class.  A variant

of RFC excludes methods indirectly invoked by a method in M

(Chidamber and Kemerer, 1991).

DIT Y The Depth of Inheritance Tree (Chidamber and Kemerer, 1994)

metric is defined as the length of the longest path from the class to

the root in the inheritance hierarchy.

NOC Y This is the Number of Children inheritance metric (Chidamber

and Kemerer, 1994).  This metric counts the number of classes that

inherit from a particular class (i.e., the number of classes in the

inheritance tree down from a class).

… continued on the following page

                                                          
3 Note that this is not a comprehensive list of tools available on the market today. Also,

please note that not all of the analyzer will collect all of the CK metrics; some only

collect a subset.



Table 1.1. Summary of object-oriented metrics (continued from the previous page).

WMC Y4 This is the Weighted Methods per Class metric (Chidamber and

Kemerer, 1994), and can be classified as a traditional complexity

metric.  It is a count of the methods in a class. It has been

suggested that neither methods from ancestor classes nor friends in

C++ be counted (Basili, Briand, and Melo, 1996; Chidamber and

Kemerer, 1995).  The developers of this metric leave the weighting

scheme as an implementation decision (Chidamber and Kemerer,

1994).  Some authors weight it using cyclomatic complexity (Li

and Henry, 1993).  However, others do not adopt a weighting

scheme (Basili et al., 1996; Tang et al., 1999).  In general, if

cyclomatic complexity is used for weighting then WMC cannot be

collected at early design stages.  Alternatively, if no weighting

scheme is used then WMC becomes simply a size measure (the

number of methods implemented in a class), also known as NM.

LCOM N This is a cohesion metric that was defined in (Chidamber and

Kemerer, 1994). It measures the number of pairs of methods in the

class that have no attributes in common, minus the number of pairs

of methods that do.  If the difference is negative, the metric value is

set to zero.

IFCAIC

ACAIC

OCAIC

FCAEC

DCAEC

OCAEC

IFCMIC

ACMIC

OCMIC

FCMEC

DCMEC

OCMEC

OMMIC

IFMMIC

AMMIC

OMMEC

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

These coupling metrics are counts of interactions among classes.

The metrics distinguish among the class relationships (friendship,

inheritance, none), different types of interactions, and the locus of

impact of the interaction (Briand et al., 1997).

The acronyms for the metrics indicate what types of

interactions are counted:

• The first or first two letters indicate the relationship:

• A: coupling to ancestor classes;

• D: coupling to descendents;

• F: coupling to friend classes;

• IF: inverse friend coupling; and

• O: other, (i.e., none of the above).

• The next two letters indicate the type of interaction

between classes c and d:

• CA: there is a class-attribute interaction between

classes c and d if c has an attribute of type d;

… continued on the following page

                                                          
4 Only the unweighted version of WMC is available during design.  If weights are used,

then this would depend on the characteristics of the weighting scheme.  For example,

cyclomatic complexity weights would certainly not be available during design.



Table 1.1. Summary of object-oriented metrics (continued from the previous page).

WMC Y5 This is the Weighted Methods per Class metric (Chidamber and

Kemerer, 1994), and can be classified as a traditional complexity

metric.  It is a count of the methods in a class. It has been

suggested that neither methods from ancestor classes nor friends in

C++ be counted (Basili, Briand, and Melo, 1996; Chidamber and

Kemerer, 1995).  The developers of this metric leave the weighting

scheme as an implementation decision (Chidamber and Kemerer,

1994).  Some authors weight it using cyclomatic complexity (Li

and Henry, 1993).  However, others do not adopt a weighting

scheme (Basili et al., 1996; Tang et al., 1999).  In general, if

cyclomatic complexity is used for weighting then WMC cannot be

collected at early design stages.  Alternatively, if no weighting

scheme is used then WMC becomes simply a size measure (the

number of methods implemented in a class), also known as NM.

1.4 Cognitive Theory of Object-Oriented Metrics

A theoretical basis for developing quantitative models relating product metrics

and external quality metrics has been provided in (Briand, Wuest, Ikonomovski,

and Lounis, 1998), and is summarized in   

Figure 1.2.  This theory hypothesizes that the structural properties of a software

component (such as its coupling) have an impact on its cognitive complexity.

Cognitive complexity is defined as the mental burden of the individuals who

have to deal with the component, for example, the developers, testers,

inspectors, and maintainers.  High cognitive complexity leads to a component

exhibiting undesirable external qualities, such as increased fault-proneness and

reduced maintainability. Accordingly, object-oriented product metrics that affect

cognitive complexity will be related with fault-proneness.

It should be noted that if a cognitive theory is substantiated, this could have

important implications.  It would provide us with a clear mechanism that would

explain the introduction of faults into object-oriented applications.

                                                          
5 Only the unweighted version of WMC is available during design.  If weights are used,

then this would depend on the characteristics of the weighting scheme.  For example,

cyclomatic complexity weights would certainly not be available during design.

Structural Class
Properties

(e.g., coupling)

Cognitive
Complexity

External Attributes
(e.g., fault-proneness,

maintainability)

affect

affect

indicate

Figure 1.2. Theoretical basis for the development of object-oriented product metrics



1.4.1 Distribution of Functionality

In applications developed using functional decomposition, functionality is

localized in specific procedures, the contents of data structures are accessed

directly, and data central to an application is often globally accessible (Wilde,

Matthews, and Huitt, 1993).  Functional decomposition is believed to make

procedural programs easier to understand because such programs are built upon

a hierarchy in which a top-level function calls lower level functions to carry out

smaller chunks of the overall task (Wiedenbeck, Ramalingam, Sarasamma, and

Corritore, 1999).  Hence tracing through a program to understand its global

functionality is facilitated.  This is not necessarily the case with object-oriented

applications.

The object-oriented strategies of limiting the responsibility of a class and

reusing it in multiple contexts results in a profusion of small classes in object-

oriented systems (Wilde et al., 1993).  For instance, Chidamber and Kemerer

(Chidamber and Kemerer, 1994) found in two systems studied6 that most classes

tended to have a small number of methods (0-10), suggesting that most classes

are relatively simple in their construction, providing specific abstraction and

functionality.  Another study of three systems performed at Bellcore7 found that

half or more of the methods are fewer than four Smalltalk lines or two C++

statements, suggesting that the classes consist of small methods (Wilde et al.,

1993).  Many small classes imply many interactions among the classes and a

distribution of functionality across them.

In one experimental study with students and professional programmers

(Boehm-Davis, Holt, and Schultz, 1992), Boehm-Davis et al. compared

maintenance time for three pairs of functionally equivalent programs

(implementing three different applications amounting to a total of nine

programs). Three programs were implemented in a straight serial structure (i.e.,

one main function, or monolithic program), three were  implemented following

the principles of functional decomposition, and three were implemented in the

object-oriented style, but without inheritance. In general, it took the students

more time to change the object-oriented programs, and the professionals

exhibited the same effect, although not as strongly.  Furthermore, both the

students and professionals noted that they found that it was most difficult to

recognize program units in the object-oriented programs, and the students felt

that it was also most difficult to find information in the object-oriented

programs.

                                                          
6 One system was developed in C++, and the other in Smalltalk.
7 The study consisted of analyzing C++ and Smalltalk systems and interviewing the

developers for two of them.  For a C++ system, method size was measured as the number

of executable statements, and for Smalltalk size was measured by uncommented

nonblank lines of code.



Widenbeck et al. (Wiedenbeck et al., 1999) make a distinction between

program functionality at the local level and at the global (application) level.  At

the local level they argue that the object-oriented paradigm’s concept of

encapsulation ensures that methods are bundled together with the data on which

they operate, making it easier to construct appropriate mental models and

specifically to understand the individual functionality of a class.  At the global

level, functionality is dispersed among many interacting classes, making it

harder to understand what the program is doing.  They support this in an

experiment with equivalent small C++ (with no inheritance) and Pascal

programs whereby the subjects were better able to answer questions about the

functionality of the C++ program.  They then performed an experiment with

larger programs.  The number of correct answers for the subjects with the C++

program (with inheritance) on questions about its functionality was not much

better than guessing. While this study was done with novices, it supports the

general notions that high cohesion makes object-oriented programs easier to

understand, and high coupling makes them more difficult to understand.

1.4.2 A Cognitive Model

Cant et al. have proposed a general cognitive theory of software complexity that

elaborates on the impact of structure on understandability (Cant, Jeffery, and

Henderson-Sellers, 1995). At the core of the cognitive theory proposed by Cant

et al. (Cant et al., 1995) is a human memory model, that consists mainly of

short-term and long-term memory.8  In the same light, Tracz (Tracz, 1979) has

claimed that “The organization and limitations of the human memory are

perhaps the most significant aspects of the human thought process which affect

the computer programmer.”   Hence, there is a some belief within the software

engineering community that the human memory model is a reasonable point of

departure for understanding the impact of structural properties on

understandability.

Cant et al. argue that comprehension consists of both chunking and tracing.

Chunking involves recognizing groups of statements and extracting from them

information which is remembered as a single mental abstraction.  These chunks

are further grouped together into larger chunks forming a hierarchical structure.

Tracing involves scanning through a program, either forwards or backwards, in

order to identify relevant chunks. Subsequently, they formulate a model of

cognitive complexity for a particular chunk, say D, which is the sum of three

components: (1) the difficulty of understanding the chunk itself; (2) the

                                                          
8 Tracz (Tracz, 1979) also discusses very-short-term memory, which plays a role in

attention and perception.  However, this does not play a big role in cognitive theories that

are used to associate software product metrics to understandability.  Neither does the

concept of extended-memory presented by Newell and Simon (Newell and Simon, 1972).

Therefore, they will not be discussed fruther.



difficulty of understanding all the other chunks upon which D depends; and (3)

the difficulty of tracing the dependencies on the chunks upon which D depends.

Davis (Davis, 1984) presents a similar argument where he states “Any model of

program complexity based on chunking should account for the complexity of the

chunks themselves and also the complexity of their relationship.”

In order to operationalize this model, it is necessary to define a chunk.  Tracz

considers a module to be a chunk (Tracz, 1979).  However, it is not clear what

exactly a module is. Cant et al. (Cant et al., 1995) make a distinction between

elementary and compound chunks.  Elementary chunks consist only of

sequentially self-contained statements.  Compound chunks are those which

contain within them other chunks.  Procedures containing a number of procedure

calls are considered as compound chunks.  At the same time, procedures

containing no procedure calls may also be compound chunks.  If a procedure

contains more than one recognizable subunit, it is equivalent to a module

containing many procedure calls in the sense that both contain within them

multiple subchunks. Subsequent work by Cant et al. (Cant, Henderson-Sellers,

and Jeffery, 1994) operationally defined a chunk within object-oriented software

as a method.  However, Henderson-Sellers (Henderson-Sellers, 1996) notes that

a class is also an important type of (compound) chunk.

One factor that is contended to have an impact on complexity is chunk

familiarity (Henderson-Sellers, 1996).  It is argued that chunks that are

referenced more often (i.e., high export coupling) will be more familiar since

they are used more often.  A similar argument is made by Davis for procedural

programs (Davis, 1984).  Therefore, when tracing other chunks more traces will

lead to those with the highest export coupling. Furthermore, Henderson-Sellers

(Henderson-Sellers, 1996) applies the concept of cohesion to chunking by

stating that a chunk with low cohesion will be more difficult to recognize since

functions performed by the chunk will be unrelated, and hence more difficult to

understand.

Henderson-Sellers (Henderson-Sellers, 1996) notes that tracing disrupts the

process of chunking.  This occurs when it becomes necessary to understand

another chunk, as when a method calls another method in a different class

(method-method interaction), or when an inherited property needs to be

understood.  Such disruptions may cause knowledge of the original chunk to be

lost.  This then is contended to have a direct effect on complexity.  In fact,

tracing dependencies is a common task when understanding object-oriented

software.

Cant et al. (Cant et al., 1994) also performed an empirical study whereby

they compared subjective ratings by two expert programmers of the complexity

of understanding classes with objective measures of dependencies in an object-

oriented system.  Their results demonstrate a concordance between the objective

measures of dependency and subjective ratings of understandability.

Wilde et al.’s (Wilde et al., 1993) findings are also concordant with this

conclusion, in that programmers have to understand a method’s context of use

by tracing back through the chain of calls that reach it, and tracing the chain of



methods it uses. Their findings were from an interview study of two C++ object-

oriented systems at Bellcore and a PC Smalltalk environment. The three systems

investigated span different application domains.

Related work on mental representation of object-oriented software provides

further insights into the structural properties that are most difficult to

understand.  These works build on theories of text comprehension.  Modern

theories of text comprehension propose three levels of mental representation

(Dijk and Kintsch, 1983; Kintsch, 1986).  The first level, the verbatim

representation consists of the literal form of the text.  The second level, the

propositional textbase consists of the propositions of the text and their

relationships.  The third level, the situation model represents the situation in the

world that the text describes. Pennington (Pennington, 1987a, 1987b)

subsequently applied this model to the comprehension of procedural programs,

where she proposed two levels of mental representation. the program model and

the domain model, which correspond to the latter two levels of the text

comprehension model above. The program model consists of elementary

operations and control flow information.  The domain model consists of data

flow and program function information.

Burkhardt et al. (Burkhardt, Detienne, and Wiedenbeck, 1997) applied this

three level model to object-oriented software.  For the situation model they

make a distinction between a static part and a dynamic part.  The static part

consists of: (a) the problem objects which directly model objects of the problem

domain; (b) the inheritance/composition relationships between objects; (c)

reified objects; and (d) the main goals of the problem.  The dynamic part

represents the communication between objects and variables.  The static part

corresponds to client-server relationships, and the dynamic part corresponds to

data flow relationships. Based on this model, Burkhardt et al. performed an

experiment. They asked their subjects to study an object-oriented application

and then answer questions about it.  Subsequently the subjects were asked to

perform either a documentation or a reuse task.  The authors of the study found

that the static part of the situation model is better developed than the dynamic,

even for experts.  Furthermore, there was no difference between experts and

novices in their understanding of the dynamic part.  Their findings suggest that

inheritance and class-attribute coupling may have less of an impact on

understandability than both cohesion and coupling.

Even though the above studies suggest that inheritance has less impact on

understandability, within the software engineering community inheritance is

strongly believed to make the understandability of object-oriented software

difficult.  According to a survey of object-oriented practitioners (Daly, Miller,

Brooks, Roper, and Wood, 1995), 55% of respondents agree that inheritance

depth is a factor in understanding object-oriented programs (Daly, Miller et al.,

1995).  “Inheritance gives rise to distributed class descriptions.  That is, the

complete description for a class D can only be assembled by examining D as

well as each of D’s superclasses.  Because different classes are described at

different places in the source code of a program (often spread across several



different files), there is no single place a programmer can turn to get a complete

description of a class” (Leijter, Meyers, and Reiss, 1992).  While this argument

is stated in terms of source code, it is not difficult to generalize it to design

documents.  The study by Wilde et al (Wilde et al., 1993) indicated that, to

understand the behavior of a method, one has to trace inheritance dependencies,

which may be considerably complicated due to dynamic binding.  A similar

point was made in (Leijter et al., 1992) about the understandability of programs

in such languages as C++ that support dynamic binding.

In a set of interviews with 13 experienced users of object-oriented

programming, Daly et al. (Daly, Wood, Brooks, Miller, and Roper, 1995) noted

that if the inheritance hierarchy is designed properly then the effect of

distributing functionality over the inheritance hierarchy would not be

detrimental to understanding. However, it has been argued that there exists

increasing conceptual inconsistency as one travels down an inheritance

hierarchy (i.e., deeper levels in the hierarchy are characterized by inconsistent

extensions or specializations of super-classes) (Dvorak, 1994).  Therefore

inheritance hierarchies are likely to be improperly designed in practice. One

study by Dvorak (1994) supports this argument. Dvorak found that subjects

were more inconsistent in placing classes deeper in the inheritance hierarchy

than they were in placing them lower levels in the inheritance hierarchy.

1.4.3 Summary

This section provided a theoretical framework that explains the mechanism by

which object-oriented metrics would be associated with fault-proneness.  If this

hypothesized mechanism matches reality, then we would expect object-oriented

metrics to be good predictors of external quality attributes, in particular fault-

proneness. In the subsequent sections, we will review the empirical studies that

test these associations.

It must be recognized that the above cognitive theory suggests only one

possible mechanism of what would impact external metrics.  Other mechanisms

can play an important role as well.  For example, some studies showed that

software engineers experiencing high levels of mental and physical stress tend to

produce more faults (Furuyama, Arai, and Iio, 1994, 1997).  Reducing schedules

and many changes in requirements may induce mental stress. Physical stress

may be a temporary illness, such as a cold.  Therefore, cognitive complexity due

to structural properties, as measured by object-oriented metrics, can never be the

reason for all faults.  For instance, the developers of a particular set of core

functionality in a system may be placed under schedule pressure since there are

many dependencies on their output.  These developers may introduce more

faults into the core classes due to stress.

It is not known whether the influence of object-oriented metrics dominates

other effects.  The only thing that can reasonably be stated is that the empirical

relationships between object-oriented metrics and external metrics are not very



likely to be strong. This is due to other effects that are not accounted for, but as

has been demonstrated in a number of studies, they can still be useful in

practice.

1.5 Object-Oriented Thresholds

As noted in above, the practical utility of object-oriented metrics would be

enhanced if meaningful thresholds could be identified.  The cognitive theory

described above can be expanded to include threshold effects. Hatton (Hatton,

1997) has proposed a cognitive explanation as to why a threshold effect would

exist between complexity metrics and faults. 9

Hatton argues that Miller (Miller, 1957) shows that humans can cope with

around 7 +/- 2 pieces of information (or chunks) at a time in short-term memory,

independent of information content.  He then refers to the text of Hilgard et al.

(Hilgard, Atkinson, and Atkinson, 1971).  Hilgard et al. note that the contents of

long-term memory are in a coded form and the recovery codes may get

scrambled under some conditions. Short-term memory incorporates a rehearsal

buffer that continuously refreshes itself. Hatton suggests that anything that can

fit into short-term memory is easier to understand and less fault-prone. Pieces

that are too large or too complex overflow, involving use of the more error-

prone recovery code mechanism used for long-term storage.  In a subsequent

article, Hatton (Hatton, 1998) extends this model to object-oriented

development. If we take a class as a definition of a chunk, then if the class

dependencies exceed the short-term memory limit, one would expect designers

and programmers to make more errors.

1.5.1 Size Thresholds

A reading of the early software engineering literature suggests that when

software components exceed a certain size, fault-proneness increases rapidly.

This is in essence a threshold effect.  For instance, Card and Glass (Card and

Glass, 1990) note that many programming texts suggest limiting component size

to 50 or 60 SLOC.  A study by O’Leary (1996) of the relationship between size

and faults in knowledge-based systems found no relationship between size and

faults for small components, but a positive relationship for large components;

again suggesting a threshold effect.  A number of standards and organizations

had defined upper limits on components size (Bowen, 1984), for example, an

                                                          
9 Hatton also suggests that components that are of low complexity do not use short-term

memory efficiently, and that failure to do so also leads to increased fault-proneness.

However, this aspect of his model has been criticised recently (El-Emam, Benlarbi, Goel,

Melo et al., 2000) and therefore will not be considered further.



upper limit of 200 source statements in MIL-STD-1679, 200 HOL executable

statements in MIL-STD-1644A, 100 statements excluding annotation in RADC

CP 0787796100E, 100 executable source lines in MILSTAR/ESD Spec, 200

source statements in MIL-STD-SDS, 200 source statements in MIL-STD-

1679(A), and 200 HOL executable statements in FAA ER-130-005D.  Bowen

(Bowen, 1984) proposed component size thresholds between 23-76 source

statements based on his own analysis.  After a lengthy critique of size

thresholds, Dunn and Ullman (Dunn and Ullman, 1979) suggest two pages of

source code listing as an indicator of an overly large component.  Woodfield et

al. (1981) suggest a maximum threshold of 70 LOC.

Hatton (Hatton, 1998) argues that the concept of encapsulation, central to

object-oriented development, lets us think about an object in isolation.  If the

size of this object is small enough to fit into short-term memory, then it will be

easier to understand and reason about.  Objects that are too large and overflow

the short-term memory would tend to be more fault-prone.

1.5.2 Inheritance Thresholds

According to the above threshold theory, objects that are manipulated in short-

term memory possessing inherited properties require referencing the ancestor

objects.  If the ancestor objects are in short-term memory then this tracing does

not increase cognitive burden. However, if the ancestor objects are already

encoded in long-term storage, access to long-term memory breaks the train of

thought and is inherently less accurate.  Accordingly, it is likely that classes will

be more fault-prone if they reference inherited chunks that cannot be kept in

short-term storage, and this fault-proneness increases as the extent of inheritance

increases.  An implication is that a certain amount of inheritance does not affect

cognitive burden, it is only when inheritance increases beyond the limitations of

short-term memory that understandability deteriorates. For example, Lorenz and

Kidd (Lorenz and Kidd, 1994), based on their experiences with Smalltalk and

C++ projects, recommended an inheritance nesting level threshold of 6,

indicating that inheritance up to a certain point is not detrimental.

1.5.3 Coupling Thresholds

When there is a diffusion of functionality, then an object in short-term memory

may be referencing or be referenced by many other objects.  If each of these

other objects is treated as a chunk and they are within short-term memory, then

tracing does not increase cognitive burden. However, if more objects need to be

traced than can be held in short-term memory, this requires retrieval (and

pattern-matching in the case of polymorphism) of many other objects in long-

term memory.  Hence, the ensuing disruption leads to comprehension

difficulties, and therefore greater fault-proneness.  Therefore, one can argue that



when the interacting objects overflow short-term memory, this will lead to an

increase in fault-proneness.  The implication of this is that a certain amount of

coupling does not affect cognitive burden, until a non-zero coupling threshold is

exceeded.

1.6 Empirical Evidence

A considerable number of empirical studies have been performed to validate the

relationship between object-oriented metrics and class fault-proneness. Some

studies covered the metrics that were described earlier in this chapter, such as

(Basili et al., 1996; Briand et al., 1997; Briand, Wuest, Daly, and Porter, 2000;

Briand, Wuest et al., 1998; Tang et al., 1999).  Other studies validated a set of

polymorphism metrics (Benlarbi and Melo, 1999), a coupling dependency

metric (Binkley and Schach, 1998), a set of metrics defined on Shlaer-Mellor

designs (Cartwright and Shepperd, 2000), another metrics suite (F. Brito e

Abreu and Melo, 1996), and a set of coupling metrics (R. Harrison, Counsell,

and Nithi, 1998). Other external measures of interest that have been studied are

productivity (Chidamber et al., 1998), maintenance effort (Li and Henry, 1993),

and development effort (Chidamber et al., 1998; Misic and Tesic, 1998; Nesi

and Querci, 1998).  However, here we will focus on the fault-proneness external

measure.

It would seem that with such a body of work we would also have a large

body of knowledge about which metrics are related to fault-proneness.

Unfortunately, this is not the case. A recent study (El-Emam, Benlarbi, Goel,

and Rai, 2000) has demonstrated a confounding effect of class size on the

validity of object-oriented metrics.  This means that if one does not control the

effect of class size when validating metrics, then the results would be quite

optimistic. The reason for this argument is illustrated in Figure 1.3.  Class size is

correlated with most product metrics, and it is also a good predictor of fault-

proneness: Bigger classes are simply more likely to have a fault.

Empirical evidence supports an association between object-oriented product

metrics and size. For example, in (Briand et al., 2000) the Spearman rho

correlation coefficients go as high as 0.43 for associations between some

coupling and cohesion metrics with size, and 0.397 for inheritance metrics. Both

results are statistically significant (at an alpha level of say 0.1).

Similar patterns emerge in other studies. One study by Briand et al. (Briand,

Wuest et al., 1998) reports relatively large correlations between size and object-

oriented metrics.  In another study (Cartwright and Shepperd, 2000) the authors

display the correlation matrix showing the Spearman correlation between a set

of object-oriented metrics that can be collected from Shlaer-Mellor designs and

C++ LOC.  The correlations range from 0.563 to 0.968, all statistically

significant at an alpha level 0.05.  This result also indicates very strong

correlations with size. In further support of this hypothesis, the relationship



between size and defects is clearly visible in the study by Cartwright and

Shepperd (Cartwright and Shepperd, 2000), where the Spearman correlation was

found to be 0.759 and statistically significant.  Another study of image analysis

programs written in C++ (R. Harrison, Samaraweera, Dobie, and Lewis, 1996)

found a Spearman correlation of 0.53 between size in LOC and the number of

errors found during testing, also statistically significant at an alpha level of 0.05.

Finally, Briand et al. (Briand et al., 2000) find statistically significant

associations between 6 different size metrics and fault-proneness for C++

programs, with a change in odds ratio going as high as 4.952 for one of the size

metrics.

A number of validation studies did not control for size, such as (Binkley and

Schach, 1998; Briand et al., 2000; Briand, Wuest et al., 1998; R. Harrison et al.,

1998; Tang et al., 1999).  This means that if an association is found between a

particular metric and fault-proneness, this may be due to the fact that higher

values on that metric also mean higher size values. In the following sections, we

therefore only draw conclusions from studies that did control for size, either

statistically or experimentally.

Product
Metric

Fault-Proneness

Size

(a)

(b)

(c)

Figure 1.3. Illustration of confounding effect of class size.

1.6.1 Inheritance Metrics

As noted in (Deligiannis and Shepperd, 1999), the software engineering

community has been preoccupied with inheritance and its effect on quality.

Many studies have investigated that particular feature of the object-oriented

paradigm.

An experimental investigation found that making changes to a C++ program

with inheritance consumed more effort than a program without inheritance, and

the author attributed this to the subjects finding the inheritance program more



difficult to understand based on responses to a questionnaire (Cartwright, 1998).

Another study by Cartwright and Shepperd (Cartwright and Shepperd, 2000)

found that classes with inheritance tend to be more fault prone.  This suggests

that, holding everything else equal, understandability of classes is stable when

there is no inheritance, but falls if there is any inheritance.

In two further experiments (Unger and Prechelt, 1998), subjects were given

three equivalent Java programs to modify, and the maintenance time was

measured.  One of the Java programs was flat, in that it did not take advantage

of inheritance; one had an inheritance depth of 3; and one had an inheritance

depth of 5.  In an initial experiment, the programs with an inheritance depth of 3

on the average took longer to maintain than the flat program, but the program

with an inheritance depth of 5 took as much time as the flat program.  The

authors attribute this to the fact that the amount of changes required to complete

the maintenance task for the deepest inheritance program was smaller.  The

results for a second task in the first experiment and the results of the second

experiment indicate that it took longer to maintain the programs with

inheritance.  This was attributed to the need to trace call sequences up the

inheritance hierarchy in order to understand what a class is doing.

However, another study (Daly, Brooks, Miller, Roper, and Wood, 1996)

contradicts these findings. The authors conducted a series of classroom

experiments comparing the time to perform maintenance tasks on a flat C++

program and a C++ program with three levels of inheritance.  The result was a

significant reduction in maintenance effort for the inheritance program.  An

internal replication by the same authors found the results to be in the same

direction, albeit the p-value was larger.  This suggests an inverse effect for

inheritance depth to the one described above.

More recent studies also reported similar contradictory results. Two studies

found that there is a relationship between the depth of inheritance tree and fault-

proneness in Java programs (El-Emam et al., 2001; Glasberg, El-Emam, Melo,

Machado, and Madhavji, 2000).  However, two other studies found no such

effect with C++ programs (El-Emam, Benlarbi, Goel, and Rai, 1999, 2000).

Overall, then, it seems that the evidence as to the impact of inheritance depth

on fault-proneness is rather equivocal.  This is usually an indication that there is

another effect that is confounded with inheritance depth.  Further research is

necessary to identify this confounding effect and disentangle it from inheritance

depth in order to assess the effect of inheritance depth by itself.

1.6.2 Coupling Metrics

The most promising results with object-oriented metrics were obtained using

coupling metrics.  A summary of three recent results is given in Table 1.2. The

“*”  indicates that for this particular study ACMIC was not evaluated because it

had too few observations that were non-zero, and hence lacked variation. It can

be seen that both import and export coupling metrics tend to be associated with



fault-proneness.  The type of coupling depends on the system, likely a reflection

of the overall design approach.

Table 1.2. Summary of validation results for coupling metrics.

(El-Emam et al.,

1999)

(C++ system)

(El-Emam et al.,

2001)

(Java system)

(Glasberg et al.,

2000)

(Java system)

CBO X Not evaluated Not evaluated

OCAEC X X No association found

ACMIC X Not evaluated * X

OCMEC X X No association found

OMMEC X Not evaluated Not evaluated

OCMIC No association found X X

OCAIC No association found No association found X

1.6.3 Cohesion Metrics

Three studies that evaluated the effect of cohesion, in the form of the LCOM

metric, found no effect of cohesion on fault-proneness (Benlarbi, El-Emam,

Goel, and Rai, 2000; El-Emam et al., 1999; El-Emam, Benlarbi, Goel, and Rai,

2000).  This is not surprising given that the concept of cohesion is not well

understood.

1.6.4 Thresholds

A recent series of studies led by the author investigated thresholds for object-

oriented metrics (Benlarbi et al., 2000; El-Emam, Benlarbi, Goel, Melo et al.,

2000; Glasberg et al., 2000).  The first study demonstrated that an absence of

size thresholds for object-oriented classes (El-Emam, Benlarbi, Goel, Melo et

al., 2000). The remaining two studies demonstrated that an absence of threshold

effects for a subset of the metrics described earlier (Benlarbi et al., 2000;

Glasberg et al., 2000).  The results are consistent across all of the three studies:

there are no thresholds for contemporary object-oriented metrics, including class

size.

Absence of thresholds does not mean that the claims of limits on short-term

memory are inapplicable to software engineering. However, the applicability of

this cognitive model to object-oriented applications needs to be refined further.

It is plausible that a chunk in the object-oriented paradigm is a method rather

than a class. It is also plausible that dependencies between chunks need to be

weighted according to the complexity of the dependency.  These hypotheses



require further investigation.  The main result remains, however, that the

existence of thresholds for contemporary object-oriented metrics lacks evidence.

The existing object-oriented thresholds that have been derived from

experiential knowledge, such as those of Lorenz and Kidd (Lorenz and Kidd,

1994) and Rosenberg et al. (Rosenberg et al., 1999), may, however, still be of

some practical utility despite these findings.  Even if there is a continuous (i.e.,

no threshold) relationship between these metrics and fault-proneness as we have

found, if you draw a line at a high value of a measure and call this a threshold,

classes that are above the threshold will still be the most fault-prone.  This

situation is illustrated in the left panel of Figure 1.4 (whereπ  is the probability

of a fault). Therefore, for the purpose of identifying the most fault-prone classes,

such thresholds will likely work. Yet classes with values below the threshold

can still mean high fault-proneness, just not the highest.

Had a genuine threshold effect been identified, then classes with values

below the threshold represent a safe region whereby designers deliberately

restricting their classes within this region can have some assurance that the

classes will have, everything else being equal, minimal fault-proneness.  This

genuine threshold effect is illustrated in the right panel of Figure 1.4.

OO Measure

π

threshold threshold

π

OO Measure

Figure 1.4. Different types of thresholds. An arbitrarily chosen threshold is illustrated on

the left. A genuine threshold effect is illustrated on the right.

1.7 Conclusions

This chapter reviewed contemporary object-oriented metrics, the theory behind

them, and the empirical evidence that supports their use. The results obtained

thus far can provide the basis for concrete guidelines for quality management in

object-oriented applications. These can be summarized as follows:

• The most important metrics to collect seem to be those measuring the

different types of export and import coupling. Most of these metrics have



the advantage that they can be collected at the early design stages, allowing

for early quality management.  Assign your best people to work on classes

with high values on the coupling metrics.

• If historical data is available, it would be even better to rank your classes by

their predicted fault-proneness.  This involves constructing a logistic

regression model using the above coupling metrics (and a measure of size).

This model would predict the probability of a fault in each class.  Assign

your best people to work on classes with the largest predicted fault-

proneness.

• Other managerial actions that can be taken are: larger and more experienced

inspection teams for classes with high fault-proneness, and development of

more test cases for these classes.  Given that these classes are expected to be

the most fault-prone, such defect detection activities will help identify and

remove these faults before the software is released.

It is clear from the above studies that we are not yet at the stage were precise

prescriptive or proscriptive design guidelines can be developed. However, the

findings so far are a useful starting point.

The results do not, in general, disconfirm the cognitive complexity theory

presented earlier.  We did not find compelling evidence that the depth of

inheritance tree is a major contributor to fault-proneness.  However, this may be

due to other ancestor-based coupling metrics being the main effect predicted by

the theory rather than inheritance depth itself.

From a research perspective, the following conclusions can be drawn:

• Contemporary cohesion metrics tend not to be good predictors of fault-

proneness.  Further work needs to be performed at defining cohesion better,

and developing metrics to measure it.

• The evidence as to the impact of inheritance depth itself on fault-proneness

is equivocal.  This is an issue that requires further investigation.

• No threshold effects were identified.  This most likely means that the

manner in which theories about short and long term human memory have

been adapted to object-oriented applications needs further refinement.

In closing, it is important to note that the studies from which these

recommendations came from looked at commercial systems (i.e., not student

applications).  This makes the case that the results are applicable to actual

projects more convincing. Furthermore, they focused only on fault-proneness.  It

is plausible that studies that focus on maintenance effort or development effort

would give rise to different recommendations.
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