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Abstract – Curriculum improvement and graduate 

attributes assessments have become recently a serious 

issue for many Canadian engineering schools. Collecting 

assessment data concerning graduate attributes and the 

students’ learning is an important step of curriculum 

evaluation and the continuous improvement process. To 

be successful, this improvement process needs 

appropriate methods and tools for data analysis.  

Recent developments in the field of Psychometrics and 

Educational Data Mining (EDM) provide 

multidimensional item response models able to take into 

account student and curriculum attributes as parameters. 

The primary intent of these new models is to predict 

student successes based on students past performance and 

the assessment map underlying the tests they completed.  

We demonstrate in this paper that these models can 

also be used to analyze the assessment map. In the 

psychometric and Educational Data mining literature, 

assessment maps are usually represented as a parameter 

that associates items to competencies in a matrix called 

Q-matrix. This concept draws its origins from the Rule-

Space Model that was introduced in the eighties to 

statistically classify student item responses into a set of 

ideal response patterns associated to different cognitive 

skills.  

A method based on the Additive Factor Model has 

been successfully implemented to analyse the Q-matrix 

corresponding to the assessment maps used in the 

graduate assessment process. The results of 17 

volunteering anonymous students completing 36 courses 

at the Université de Moncton between winter 2010 and 

fall 2015 semesters was analysed with our method. 

Results obtained provided interesting and useful 

information regarding the assessment map and the 

overall assessment process that are presented and 

discussed in this paper. 

 

Keywords: Engineering Education; Educational Data; 

Mining; Additive Factor Model; Predictive Modeling; Q-

matrix; Curriculum Improvement; Engineering Graduate 

Attributes. 

 

 

1. INTRODUCTION 
 

The Canadian Engineering Accreditation Board 

(CEAB) requires that each engineering program 

institution demonstrates that the graduates of a program 

possess twelve attributes (Accreditation Criteria 3.1) and 

the institution must have processes in place that 

demonstrate that the program outcomes are being assessed 

in the context of these graduate attributes, and that the 

results are applied to the further development of the 

program [1]. The CEAB requires also that engineering 

programs must continually improve (Accreditation 

Criteria 3.2) [1].  

The Engineering Programs at the Université de 

Moncton (UdeM) have been accredited since 1972 for 

civil engineering, since 1990 for mechanical engineering 

and since 1998 for electrical engineering. Following many 

recommendations of the Engineering Graduate Attribute 

Development Project (EGAD) [2], the Engineering 

Faculty of UdeM started in 2012 the implementation of a 

continuous curriculum improvement process based on the 

12 graduate attributes as defined by the CEAB. The 

EGAD website [3] released in 2011 contains all the 

relevant and related information. 

In June 2015, the three UdeM engineering programs 

(civil, electrical, and mechanical) were accredited for 

another 6 years. The curriculum improvement and 

graduate attributes assessment still have many challenges 

to overcome and during the coming years more emphasis 

will be placed mainly on the evaluation of data being 

collected and to overall improve the process.  

Data was previously collected in Excel spreadsheets 

and for each engineering program, more than 140 Excel 

files were created every year. A report for the graduate 

attribute assessments is generated based on these files at 

the end of the academic year. For the 5-year programs 
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analysis, a migration to database management system was 

necessary. With huge amount of data, this approach 

helped a lot for the data collecting process but didn’t solve 
yet the data analysis problem.  

To be able to extract relevant information from the 

collected data, several data mining approaches [4] have to 

be considered for graduate attribute contexts. Many 

methods have great potential to be used and some have 

been already applied successfully to model learning 

activities and to generate recommendations for student’s 
learning [5]. For example, a regressive model has been 

used for predicting graduate-level performance using 

undergraduate performance indicators [6]. Another 

method is the Additive Factor Model (AFM). It was 

introduced in 1995 to predict student later performances 

based on prior learning attempts [7]. AFM has been used 

for student modeling in Instructional Factors Analysis in 

2006 [8,9]. AFM is a multidimensional model where the 

probability of success may depend not only on one, but 

potentially several skills. The relationship between items 

and skills is defined by the Q-matrix [10,11,12]. The 

AFM is used as a multidimensional item response model 

able to take into account student and curriculum attributes 

as parameters.  

In this paper, AFM uses the curriculum maps as 

knowledge components and analyze if item mapping is 

appropriate. The objective is to make sure that the 

assessment maps (Q-matrix) are consistent with the results 

obtained by students. This also provides faculty members 

and students with evidence-based confidence in the 

quality of the assessment performed and the abilities 

measured.  

 

 

2. CURRICULUM MAPPING 
 

The CEAB has developed statement of the graduate 

attributes that engineering students are expected to 

demonstrate at the time of graduation. Each engineering 

schools has established a set of indicators which define 

what students must do to be considered competent in each 

attribute [3]. These indicators are measurable and used to 

evaluate student learnings. A Curriculum Map is used to 

define relationship between indicators and learning 

experiences (e.g. courses, co‐ops, co‐curricular activities). 

A table representation is used to show which learning 

experiences (e.g. courses) is selected to develop abilities 

and to assess indicators to demonstrate the graduate 

attribute acquisition.  

The Faculty of Engineering at UdeM, with more than 

400 students enrolled in three different programs, started 

the implementation of graduate attribute process in 2012.  
 

The engineering programs at UdeM share the same set 

of indicators (total of 44) but have different curriculum 

maps. Each indicator is assessed for all students without 

sampling in different courses using a same evaluation 

rubric. Students selected for this studies are enrolled in the 

electrical engineering program. It takes 5 years with 48 

courses (150 credits) of full time studies. The electrical 

engineering course progression is shown in the next 

figure. 

 

 
Fig. 1. Electrical engineering course progression 

 

Many courses related to other disciplines such as 

mathematics, physic and chemistry couldn’t be used for 
the Graduate Attributes development or assessments. 

Total of 12 compulsory courses which are common to the 

three engineering programs at UdeM, have been excluded 

from the process. Optional Courses have been also 

excluded from the process. Remaining courses more than 

27 have not been used all for indicator evaluations. 

Assessment mapping used only the courses where students 

have the opportunity to demonstrate Gradute Attribute 

related skills they have been developing. Fig. 2 shows an 

assessment map for the 4th year courses. In this figure the 

indicators are shown with UdeM labels. They have been 

labeled and numbered using the letters Q and R (QR for 

qualité requise: Graduate Attribute in French) and a 

number to in indicate the Graduate attribute as listed by 

the CEAB (for example 04 for Problem analysis) and the 

indicator number. For example, the first indicator to 

assess the first listed Graduate Attribute (A knowledge 
base for engineering) is QR011.  
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Fig. 2. Assessment map for the electrical engineering 

4th year courses  

 

In order to accomplish the graduate attribute process 

implementation, the responsibilities have been shared 

between Faculty Level Comity, Departments Level and 

Faculty Members. Fig. 3 summarize these responsibility 

sharing. 

 

a)  

b)  
Fig. 3. Graduate attributes responsibilities at UdeM Faculty of 

Engineering: a) Curriculum mapping and assessment  
b) Data collection and analysis 

 

The development of indicators and rubrics was 

accomplished at the faculty level. The faculty members 

have to select indicators developed or to assess in each 

course. This information is used at the department level to 

build maps for curriculum graduate attribute development 

and for indicators assessments. 

 

 

3. DATA SET DESCRIPTION 
 

The data set used for the study was collected on a 

voluntary basis from graduating students who accepted to 

share their transcripts. Seventeen transcripts were 

collected and duly anonymized prior to run our 

experiments. Transcripts listed scores from 0 (Failure) to 

4.3 (Perfect) obtained in 24 different courses completed 

between fall 2009 and winter 2015. Each course is 

associated to one or several knowledge components and a 

total of 43 out of the 44 existing knowledge components 

are mapped to at least one course in our sample. On 

average each course has been completed 15.08 times ( = 

4.83). Two courses, GELE5584 and GELE1012 have 

been completed two and three times (respectively). The 

next smallest number of completions is for course 

GCIV5010 performed eight times. This was considered as 

a significance threshold in our study. The data set contains 

also the assessment map from which the Qmatrix was 

built, and the observations used for estimating the AFM 

model.  

The faculty pedagogical teamimplemented a 

continuous curriculum improvement process is based on 

the 12 graduate attributes defined by the CEAB. For each 

attribute between 2 and 6 indicators were defined and 

associated to the different courses of the program.  

The nature of the attributes is heterogeneous and 

covers skills that are not solely discipline-related. For 

example, “life-long learning” covers student abilities to 
“identify and to address their own educational needs in a 
changing world” or “Ethics and Equity” would evaluate 
student abilities to “apply professional ethics, 
accountability, and equity”. Some attributes might also 
overlap with others. That might be the case for “Ethics 
and Equity” and “Professionalism” or for “Problem 
Analysis” and “Investigation”, since the descriptions of 
both of these last two attributes require “Analysis”. Based 
on these twelve attributes, the faculty pedagogical team 

created a total of 44 indicators and matched them to the 

24 electrical engineering courses used for assessments. 

This created a 24 by 44 Q-matrix, where indicators play 

the role of knowledge components. 

In the resulting data set, knowledge components are 

associated to between 1 and 5 different courses (average 

γ.β6, σ=.87) while courses can evaluate from 1 to β9 
knowledge components (average 5.8γ, σ=6.98). Four 
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courses have more than 10 knowledge components: 

GCIV1011 (11 KC), GELE3422 (12 KC), GELE3700 (25 

KC) and finally GELE4700 (29 KC). Sixteen out of the 

44 knowledge components are only mapped to all of these 

last four courses. 

 

4. MODEL AND EXPERIMENTAL METHOD 
 

AFM models the probability that a student j succeeds 

on an item i by a mixed-eect logistic regression: 

 

 
 

where logit−1(x) = 1/(1+e−x) and αj represents the 

proficiency of student j, which in principle in range 

between −γ and 3, Parameters ȕ and Ȗ are key 
differentiators for AFM as a psychometric model. tjk is the 

number of times student j has practiced skill k, also known 

as the opportunity for student j on skill k. 

 

A higher value for the proficiency corresponds to a 

better overall student proficiency. Both ȕ and Ȗ parameters 

are related to skills: ȕk models the easiness and Ȗk the 

learning rate for skills k = 1...K.  

The mapping between skills and items is represented 

by a Q-matrix Q = [qik], where qik in Eq. 1 is a binary 

indicator that item i uses skill k. A simple Q-matrix is 

shown in fig. 4.  

 

 
Fig. 4. Q-matrix example with one skill per item 

 

 

The implemented algorithm used to learn the AFM 

model relies on a conjugate gradient algorithm that 

estimate parameters α, ȕ and Ȗ by maximizing the 
likelihood with a small regularization on α. Once the 
parameters are estimated, it is possible to evaluate the 

consistency of the competency matrix by tracing learning 

curves for each skill. In our investigation, a learning curve 

represents the expected performance of an average student 

as the number of opportunities (number of time the skill 

has been evaluated) grows. This is illustrated in Figure 5. 

The expected error rate decreases smoothly from above 

25% (at the first opportunity) to around 5 % at the fifth 

opportunity. This suggests that the mapping of this skill to 

the test items is adequate. 

 

 
Fig. 5: Example learning curve associated to a hypothetical 

“Skill 1”.  
 

A curve with a smooth slope usually reflects a correctly 

mapped knowledge component. In this work, we use 

analytical learning curves given by the following equation. 

 

 
 

where α is the average of all alpha parameters, 
representing an average student. 

Ideally the learning curve should follow a power law 

(Power Law of Learning) since performance (both speed 

and accuracy) improves with a power function. Even if the 

power function makes a large consensus in the learning 

communities, some researchers [13] argue that an 

exponential function might have a better fit than a power 

function in certain circumstances. In practice, a smooth 

learning curve following a power law is hard to obtain 

since it requires a large number of observation and a skill 

perfectly mapped. The calculated value of Ȗk depends also 

on the number of observations and needs to exceed some 

thresholds to be significant. While positives values of Ȗk 

should be the norm for good Q-matrices, null or negative 

values for the slope or the learning curve are not the kind 

of values expected. For example, a null slope means that 

no learning has been made along the several attempts of 

the learners. A negative value usually signifies that the 

skill has been misplaced. The learning curve can also be 

traced to detect some patterns. For example, when two 

skills are treated as the same skill [14] the observed 

learning curve shows in its beginning two spikes before 

continuing its asymptotic evolution. In this last example 

given by Corbett and Anderson, the authors draw learning 

curves directly from the observations as it is also possible 

to do with PSLC-DataShop [15]. In this paper we 

investigated only the curves calculated by AFM 

(analytical curves) from the following data set. 
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5. RESULTS AND DISCUSSION 
 

The number of courses completed by the students and 

used for indicator assessments were in the range between 

17 and 24. Usually at university, scores have to be above 

O for the student to pass the course. Keeping this way of 

defining success and failure, we obtained only 16 failures 

(n = 356 records) for 7 different students and 8 courses. 

This number of failure is relatively low and AFM would 

have difficulties to discriminate students as illustrated in 

the following figure.  

 

 
 

Fig. 6. Variation of alpha values for students 7 to 13. (Subset 
only for editing constraints).  

 

The curve with legend Alpha (original) is relatively flat 

and does not follow the variations of student average 

scores. Note that student average scores have been 

normalized between 0 and 1 in this figure while other 

values of Alphas have not been transformed. Having a 

failure rate too low to finely discriminate student 

proficiency, it was decided with the pedagogical team to 

create a new dataset in which failure would include any 

score below 2 (see curve Alpha (Cut Off) in figure 6). In 

this new dataset, the number of failures raised to 73 (n = 

356 records) for 24 different courses and impacted all 

students. As a result, the model was able to provide a 

better differentiation of student proficiency but the 

ranking was still incorrect. For instance in fig. 6, student 

11 is given slightly stronger than student 12 while in 

reality student 12 is stronger than any other students. 

Keep raising cut-off threshold would solve the ranking 

issue for high scores but also add errors to the ranking of 

lower scores. Curve Alpha (Continuous) was calculated 

with scores transformed as percentages by dividing each 

score by its maximum (4.3). As illustrated in fig. 6, 

ranking is correct and student 12 proficiency is 

significantly better than the other students. Using 

percentages when possible instead of binary observations 

to estimate AFM parameters is a work around that brought 

a better estimate of student proficiency in this case. 

Not all of the knowledge components would worth 

studying with AFM since not enough information would 

be contained in the dataset to provide meaningful 

parameters (ȕ, Ȗ). For instance, knowledge components 
that are always associated as a same group to one or 

several courses are more likely to appear as flat lines (Ȗ 
close to zero value) in learning curves plots. Depending 

on the success rates or in our experiment also scores, the 

group of the knowledge components is given a ȕ value 
that is because of the additive nature of AMF distributed 

to the ȕ measure of group knowledge components. That 
way all knowledge components of the group composed of 

sixteen items that are solely met in the items GCIV1011, 

GELEγ4ββ, GELEγ700 and GELE4700 get ȕ values that 
are for many of them identical. This is the case for 

instance of all of the 4 indicators of attribute 6 

(“Individual and team work”). In all variations of the 
dataset (Original, Cutoff, Continuous), they always get 

same values of α and ȕ in each experiment leading to 
learning curves flat with an error rate close to zero. 

For each different dataset variations, a subset of 

interesting knowledge components was selected based on 

the following criteria: • KC learning curve having a non-null slope (γ) 

inducing a potential learning. • KC having a realistic easiness inducing at first 

opportunity an error rate above 10 percents. • KC would have been met by almost all of the 

student and on an average superior of 2.3 

opportunities. 

Learning curves of knowledge components of interest 

are represented in figure 6, 7 and 8. All the graphs in this 

selection were limited to five opportunities since no 

opportunities above this threshold were observed. 

 

 
Fig. 7. Learning curves of interest for the original dataset. 
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On figure 7, knowledge component QR07.6 is a perfect 

curve that has a smooth slope contrary to the error rates of 

KCs QR01.1 and QR03.3 which decrease rapidly. QR01.1 

is met the first time in course GCIV2010 where 4 out the 

17 students failed with no other failure at next 

opportunities, as if students were hammered in this first 

opportunity. QR03.3 has one student who failed on the 

second opportunity inducing a not that strong “hammer” 
phenomenon. 

 

 
 
Fig. 8. Learning curves of interest for the dataset with 

Cutoff 

 

On figure 8, there is more Knowledge components 

falling in the ”hammer” pattern (QR01.1, QR04.4, 

QR07.5) since new failures have been generated and 

courses from second year have a lower average than the 

third year hence creating more cases where KCs are met at 

first time on a high failure rate course. KCs QR02.1 and 

QR01.3 bring interesting new patterns. Both of their error 

rates decrease over time (which is what is expected to 

provide evidence of learning) but their shape is far from 

the ideal illustrated in figure 5. The explanation may be 

coming from the fact that some courses with the same 

KCs have been completed the same semester. For 

instance, QR01.3 has been met by the same students 

several times in one semester in courses GELE2442, 

GELE2012 and GELE3333. However, to use AFM we 

had to calculate the opportunity number tik. Therefore, an 

odd order was used in this special cases creating an 

opportunity sequence were in reality results were obtained 

theoretically at the same opportunity number. 

 

 
 
Fig. 9. Learning curves of interest for the dataset with 

scores as continuous values 
 

 

KC QR02.3 learning curve in figure 9 is affected by 

the order issue to generate opportunity numbers. 

However, it is not the case of attribute QR02.2 which 

evaluates the capacity of students to “formulate a solving 

process to a problem”. A duplication of this knowledge 
component [1] could explain the curve, but also a possible 

mismatch with other kCS of attribute categories 2 

(Problem analysis) and 3 (Investigation) that would 

confirm a potential overlap as mentioned in a previously.  

 

 

5. CONCLUSION 
 

Using the Additive Factor Model outside of its 

“comfort zone” requires even more cautions regarding the 
assumptions that can be drawn. Comforted by our results 

and discussion with the pedagogical team, learning factor 

analysis and AFM could prove to be of great value to 

continually improve programs by providing measures of 

the assessment map through goodness of fit metrics and 

parameters values but also by the exploitation of the 

analytical learning curves generated. In the meantime, we 

discovered that going around the traditional binary results 

expectation of AFM and using instead continuous values 

that could be seen as “observation of a probable success” 

would provide benefit in the student proficiency estimates. 

Moreover, keep playing with thresholds or scores to 

variate success and failure while chasing alpha values led 

us to realize the different realities that could emerge the 

same data set. This could prove to be a good method, 

when using a data set with scores, to adjust different 

lenses in order to focus on the different and often ignored 

realities contained in the same data set. Finally, an 

engineering program is also different from an online 

exerciser or intelligent tutoring system because not all 
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courses are performed in similar conditions. For instance, 

teachers change and it would maybe make sense to 

potentially consider a “teacher factor” at some point. 
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