

NRC Publications Archive Archives des publications du CNRC

NRCC experiments for ASTM E57 medium-range measurement error standards development

MacKinnon, David Kenneth

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23001773

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=2e49bd15-b90e-4491-b489-e80887349e6f https://publications-cnrc.canada.ca/fra/voir/objet/?id=2e49bd15-b90e-4491-b489-e80887349e6f

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

NRC Experiments for ASTM E57.02 Medium Range Measurement Error Standards Development

David MacKinnon, Ph.D., P.Eng. NRC Canada: Measurement Science and Standards ASTM E57 Executive Committee member

July 24, 2014

Executive Summary

- Standards are needed to ensure...
 - ...that materials, products, processes, and services are fit for their intended purpose(s), and
 - ...that personnel are competent
- Standards for non-contact 3D imaging systems are slowly beginning to emerge
 - ASTM standards for medium-range (2 to 150 m range) systems under development
 - ISO active in non-contact CMM and laser tracker standard development
- The National Research Council Canada (NRCC) has been working closely with NIST and other partners in the development of two proposed ASTM standards for medium-range 3D imaging systems

Presentation Format

- Background on NRCC and ASTM
- Importance of standards for non-contact 3D imaging systems
- Current status of 3D imaging standards development
- NRCC contributions to ASTM medium-range standards development
- Concluding remarks
- Questions

About the Presenter

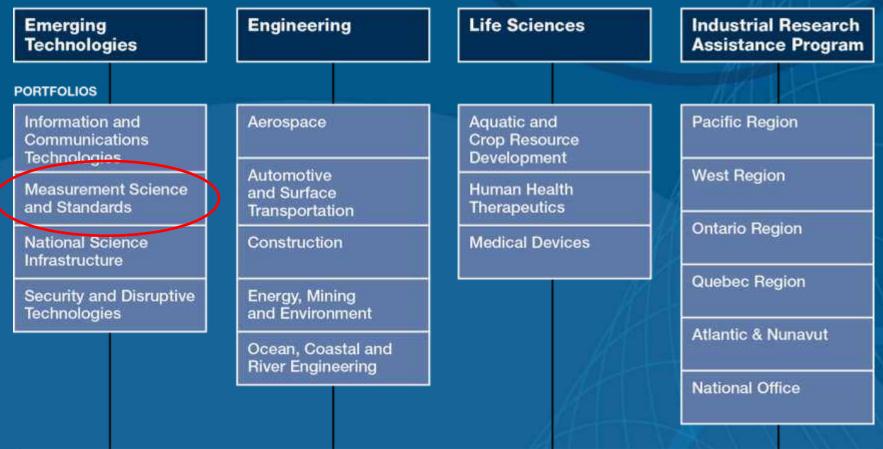
David MacKinnon

- Research Officer with Measurement Science and Standards at NRC (Canada's National Measurement Institute)
- Ph.D. Systems Engineering, B.Sc. Mathematics, Professional Engineer
- 20+ years experience in statistical analysis and 10+ years experience with 3D imaging systems (development, modelling, metrology)
- Recording Secretary of the ASTM E57 Executive Committee

National Research Council of Canada

About NRCC

- 2012-13 budget: \$774M
- Over **4,000** employees and 650 volunteer and independent visitors
- Wide variety of disciplines and broad array of services and support to industry


IRAP

Research

facilities

Organizational Structure

DIVISIONS

Common Services to support portfolios and IRAP

Measurement Science and Standards is Canada National Measurement Institute

NRC.CNRC

NRCC 3D Metrology Laboratory

Environmentally Controlled Temperature: 20°C ± 0.1°C Humidity: 40% to 55%

- ISO-1 Laboratory
- Short-range and Medium-range 3D imaging systems
- Standards development
- System characterization and artefact design

NRC CNRC

ASTM E57 Committee on 3D Imaging Systems

ASTM International

- Founded in 1898
 - Initially to develop standards for railroads
- Formerly American Society for Testing and Materials, became ASTM International in 2001
- Voluntary consensus standards
 - More than 12,000 standards currently in use around the world
 - Currently 143 active technical committees
- More than 30,000 contributors from over 150 countries
- Key operating principles:
 - coherence, consensus, effectiveness, impartiality, relevance, transparency

NRC CNRC

ASTM E57 (3D Imaging Systems)

ASIA INTERNATIONAL Standards Worldwide

- Formed in 2006
 - NRC Canada was one of the founding committee members
- Initial focus 3D imaging system specification and performance evaluation for applications
- Current focus medium-range systems and data interoperability
- 4 standards have been completed with 2 under development
- Challenges
 - Much more work to be done due to the lack of standards
 - Need proactive support of industry

NC CNRC

ASTM E57 Standards Development

Completed

- E2544: Standard Terminology for 3D Imaging Systems
- **E2611**: Standard Practice for Best Practices for Safe Application of 3D Imaging Technology
- E2807: Standard Specification for 3D Imaging Data Exchange
- **E2919**: Evaluating the Performance of Systems that Measure Static, Six Degrees of Freedom (6DOF), Pose

Under Development

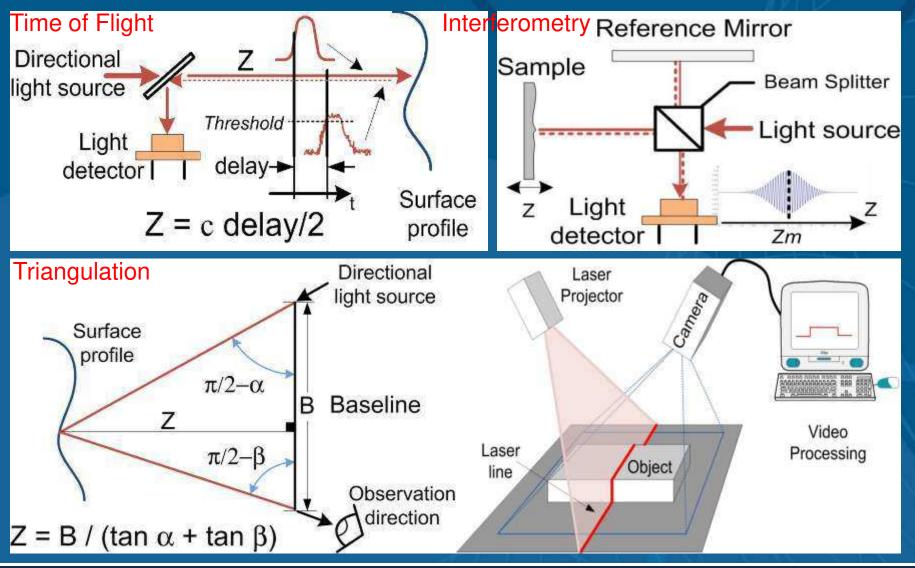
- WK12373: Evaluation of Relative Range Error for Medium-Range 3D Imaging Systems
- WK43218: Evaluating the Point-to-point Distance Measurement Error for a 3D Imaging System

NCCNC

Why are non-contact 3D imaging systems standards important?

Problems with Contact 3D Imaging Systems

CMM (Coordinate measuring machines) and Articulated Arm systems typically use a stylus in contact with the surface


- Problems:
 - Slow (no more than several hundred hertz)
 - Can cause damage to surface
 - Limited volume

- Faster scan times
- No surface contact so no damage
- Wide range of imaging volumes from sub-millimetre to kilometres

Classification of Optical 3D Imaging Systems

NCCNCC

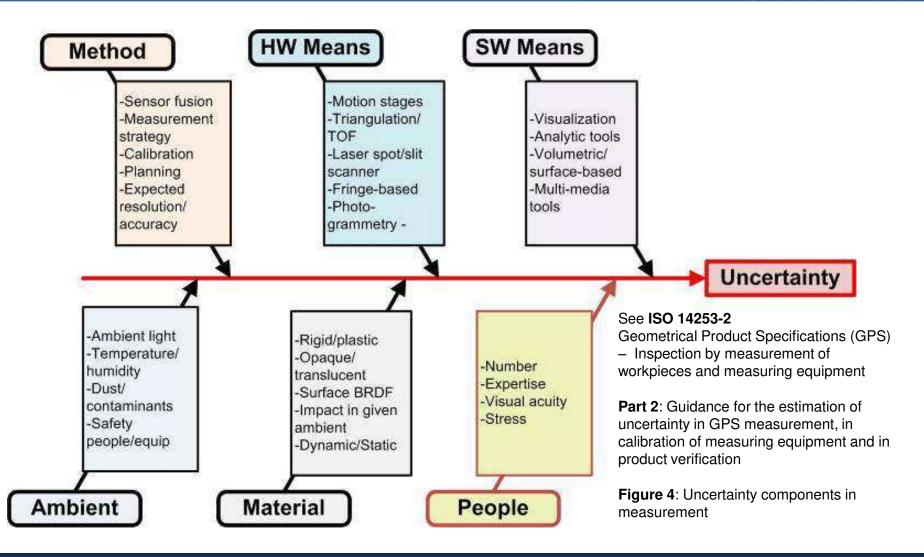
Investing in 3D Imaging Systems

3D Imaging Systems can represent a significant investment

- Initial purchase
 - CMM-based scanners: \$20,000 to \$50,000+
 - Arm-mounted portable laser scanners: \$15,000 to \$65,000+
 - Stand-alone laser scanners: \$20,000 to \$70,000+
 - White-light scanners: \$50,000 to \$130,000+
 - Laser Trackers: \$75,000 to \$150,000+
- Certification/Calibration
- Maintenance (~10% a year)/replacement (full cost with no exchange)
- Training (No certification for 3D imaging systems yet)
- Software (Enterprise-level solutions, single-solution for programming and reporting, user-friendly)
- ...plus time investment

It is critical to evaluate Fitness-for-Purpose

- Right tools
- Right measurements


Best Practices

- <u>The Right People</u>: Measurement staff should be competent, properly qualified and well informed,
- <u>The Right Tools</u>: Measurements should be made using equipment and methods that have been demonstrated to be fit for purpose,
- <u>The Right Procedures</u>: Well-defined procedures consistent with national or international standards should be in place for all measurements.
- <u>The Right Measurements</u>: Measurements should only be made to satisfy agreed and well-specified requirements,
- <u>Demonstrable Consistency</u>: Measurements made in one location should be consistent with those made elsewhere
- <u>Regular Review</u>: There should be both internal and independent assessment of the technical performance of all measurement facilities and procedures,

NPL Good Practice Guide (2005)

Sources of Measurement Uncertainty

NCCNCC

What is Metrology?

- Metrology is the science of measurement, embracing all <u>measurements</u>, made at a <u>known level of uncertainty</u>, in any field of human activity. (BIPM)
- **Measurand:** Know <u>what</u> you're measuring?
- Calibration: Know how much you can trust the measurement result?
- Traceability: How do you know measurements are <u>equivalent</u>?

"Metrology is not just a process of measurement that is applied to an end product.... it is often considerably <u>more</u> expensive to re-engineer a product at a <u>later</u> stage when it is found that it is difficult to measure, compared to designing at the <u>start</u> with the needs of metrology in mind."

Dr Richard K Leach 2003 (National Physical Laboratory, UK)

NCCNC

What are Standards

Definitions

- "A document, established by <u>consensus</u> and approved by a recognized body, that provides, for common and repeated use, rules, guidelines or characteristics for activities or their results, aimed at the achievement of the optimum <u>degree of order in a given context</u>"
- "NOTE: Standards should be based on the consolidated results of science, technology and experience, and aimed at the promotion of optimum community benefits." ISO/IEC Guide 2:2004

"A standard is a document that contains technical specifications or other precise criteria to be used consistently as a rule, guideline, or definition of characteristics, to ensure that materials, products, processes, personnel or services are competent and/or fit for their intended purpose(s)."

• NIST web site

Standards for Non-contact 3D Imaging Systems

Standards for non-contact 3D Imaging Systems

ASTM E57: 3D Imaging Systems

NRC has been a key member of the E57 committee since its inception

ISO

NRC contributes to ISO standards development through membership in the SCC (Statistical Council of Canada)

- ISO/TC 213: Dimensional and geometrical product specifications and verifications
- ISO/TC 172/SC 6: Geodetic and surveying instruments

VDI/VDE 2634 (Germany)

NOT a standard, only a guideline

- Part 1: Point-to-point probing
- Part 2: Surface probing using area scanning
- Part 3: Combine different views

ISO/TC 213 - GPS

Dimensional and geometrical product specifications and verifications

ISO 10360: Geometrical product specifications (GPS) - Acceptance and reverification tests for coordinate measuring machines (CMM)

- Part 7:2011 Cartesian CMMs with imaging probing systems
- Part 8:2013 Cartesian CMMs with optical distance sensors
- Part 11 Computed Tomography (under discussion)
- Part 12 Articulated Arm CMM (working document)

ISO 25178: Geometrical product specifications (GPS) - Surface texture: Areal

- Part 602:2013 confocal chromatic probe
- Part 604:2013 coherence scanning interferometry
- Part 605:2014 point autofocus probe
- Part 606 focus variation (under development)

No ISO standards exist for non-CMM-based 3D imaging systems.

NRC CNRC

ISO/TC 172/SC 6 – Surveying

Geodetic and surveying instruments

ISO 17123: Optics and optical instruments – Field procedures for testing geodetic and surveying instruments

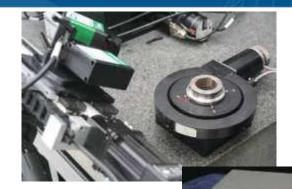
• Part 9 – Terrestrial laser scanners (on hold)

ISO 16331: Optics and optical instruments -- Laboratory procedures for testing surveying and construction instruments

• Part 2 - Terrestrial laser scanners (on hold)

Terrestrial laser scanning systems standards development on hold due to lack of participation.

NCCNRC

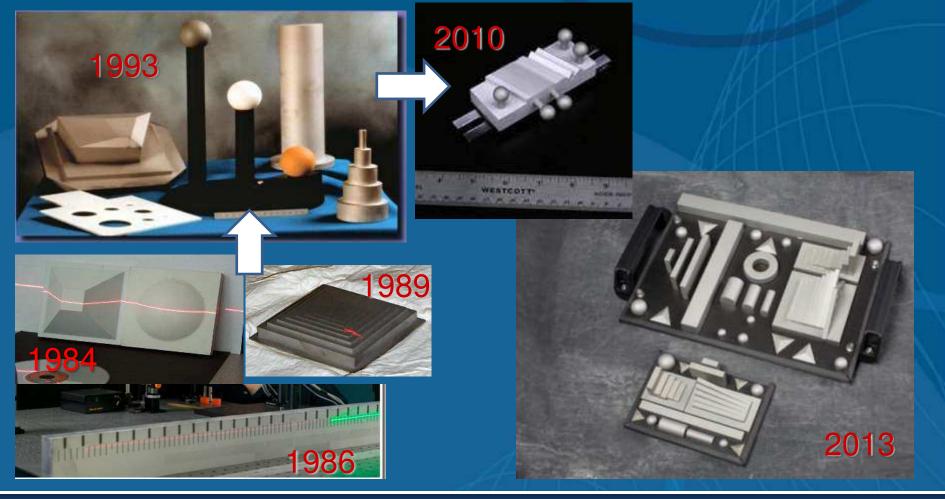

3D Imaging Systems NOT covered by ISO standards

TOF laser scanners (Lidar)

- Pulse-based
- Phase-based
- Flash
- Triangulation-based laser scanners (spot, line, cross patterns)
 - Stand-alone
 - Tracked

Photogrammetry

- Stereophotogrammetry
- Photometric stereo
- Pattern projection/structured light



NRCC 3D Imaging System Characterization Research

Artefact-based Characterization

NRC has 25+ years of artefact development experience

NCCNC

What do we mean by Characterization?

How "good" are these systems? That depends on....

- ...what is being scanned? (surface material, volume, etc.)
- ...what are the requirements? (resolution, precision, accuracy, etc.)
- ...where is it being used? (workspace, temperature, lighting, etc.)
- ...who is using it? (novice, skilled, expert)

To evaluate "fitness-for-purpose", we need a way to characterize each system so that they can be compared...

- ...to the project or client specifications (Can it do the job?)
- ...to other similar 3D imaging systems (Which is the best fit?)
- ...to better understand costs: equipment, training, software, maintenance

NC.CNC

La III etrologie... la science des menuros Metrology... the Science of Measurement

Portable Characterization Toolkit (PCT)

- Designed for short-range (5 cm to 2 m) triangulation-based laser systems
- System-independent GD&Tbased characterization
- Can characterize system performance for 12 different GD&T parameters
- Lightweight and portable
- Two designs:
 - PCT-G-120: Small (120 mm) volume
 - PCT-G-240: Medium (240 mm) volume

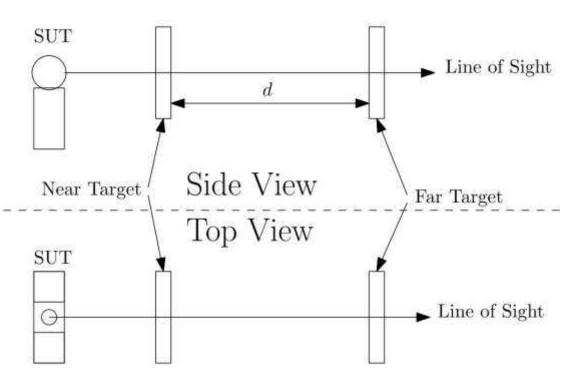
ASTM E57 Working Groups

- Two ASTM working groups currently active
 - WK12373: Evaluation of Relative Range Error for Medium-Range 3D Imaging Systems
 - WK 43218: Evaluating the Point-to-Point Distance Measurement Error for a 3D Imaging System
- Both working groups are focused strictly on medium-range (2 m to 150 m range) 3D imaging systems
 - Pulse Lidar
 - Amplitude-modulated continuous-wave (AM-CW)
 - Frequency-modulated continuous-wave (FM-CW)
- NRCC and NIST are actively involved in laboratory testing to support development of these standards

NC CNRC

Derived versus Measured points

 Introduces a complicating factor into development of both proposed standards.


Measured point: Obtained directly by the instrument **Derived point:** Obtained through mathematical manipulation of multiple measured points


- Examples:
 - Geometric center of a plane
 - Geometric center of a sphere
- The mathematical manipulation might introduce bias and/or error into the derived point

WK12373: Relative Range Error

- Completed one round of balloting
- Relative (not absolute) range measurement error
- Measured between flat plates

NC.CNCC

Relative Range Error Procedure

- 1. Align target plate with front face normal along line-of-sight
 - a) Derive the geometric centre (**R**₁) using reference instrument (RI)
 - b) Derive the geometric centre (M₁) using system under test (SUT)
- 2. Repeat at different distance from SUT to obtain \mathbf{R}_2 and \mathbf{M}_2
- 3. Calculate reference distance $d_{ref} = ||\mathbf{R}_2 \mathbf{R}_1||$
- 4. Calculate test distance $d_{meas} = ||\mathbf{M}_2 \mathbf{M}_1||$
- 5. Calculate the relative range error $E_{range} = d_{meas} d_{ref}$

Geometric Centre Estimation

1. Segmentation

- a) Visually eliminate all points not associated with the surface
- b) Resulting data set S_{full} contains only points from the target plate

2. Plane Fitting

- a) Select all points S_{TLS} from S_{full} far enough from the edges to be unaffected by them
- b) Perform total least-squares (TLS) fit of an infinite plane P_{TLS} to S_{TLS}

3. Boundary Estimation

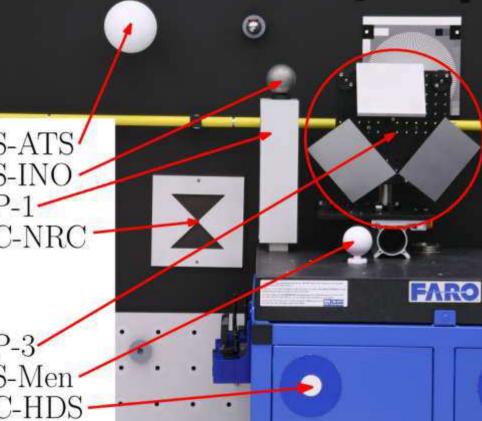
- a) Use best available method on \mathbf{S}_{full} to estimate the target plate face edges
- b) Use those edges to place bounds on P_{TLS}
- 4. Geometric Centre Estimation
 - a) Use the bounds on P_{TLS} to estimate the geometric centre M_i of the target plate face.

NC CNRC

WK43218: Point-to-Point Measurement Error

- Measures error in estimating the distance between two points in the environments
- Development process
 - 1. Select target types
 - 2. Correlating RI and SUT measurement results
 - 3. Identify complicating issues for point-to-point measurement error evaluation
 - 4. Development of test strategy
- Spheres were favoured as the preferred target type
 - Visible from a variety of angles
 - How well do RI sphere centers correlate to SUT sphere centres?

NC.CNC


Test 1: Target Type Repeatability Comparison

- Compare repeatability performance of different target types
 - C: Contrast (not easily measured by the RI)
 - S: Sphere (visible from a wide range of angles)
 - **P:** Plane (consistent noise profile)
- Repeatability based on 10 scans of all targets
- Compare software options
 - Bundled: Software that was sold with the system
 - Embedded: Software on the SUT
 - Common: non-vendor-specific software
- Spheres are preferred, but how well do other targets compare?
- Selected target must be measurable by both RI and SUT
- Must be highly repeatable for all scanning systems
 - · Each test to be performed on a different scanning system

NRC CNRC

Target Repeatability Evaluation Scanner #1

Rank	Target + Software	
1	C-HDS + Bundled	1
2	S-ATS + Common	C ATTO
3	C-NRC + Bundled	S-ATS S-INO
4	S-Men + Common	P-1
5	S-INO + Common	C-NRC
6	P-1 + Common	
8	P-3 + Common	P-3
8	S-ATS + Bundled	S-Men C-HDS

Target Repeatability Evaluation Scanner #2

Rank	Target + Software	C-ATS
1	C-NRC + Bundled	S-ATS
2	C-GW + Bundled	S-INO
3	S-ATS + Common	C-NRC
4	C-ATS + Bundled	C-GW
5	S-ATS + Bundled	
6	S-INO + Common	
8	P-1 + Common	FAR
8	P-3 + Common	P-3
9	S-INO + Bundled	C-HDS

Target Repeatability Evaluation Scanner #3

Rank	Target(Angle) + Software	
1	C-HDS + Embedded	
2	S-ATS + Common	
3	S-Bal + Common	
5	P-1 + Common	
5	S-ATS + Embedded	/
6	C-Lei(45°) + Embedded	
8	C-ATS(45 [°]) + Embedded	
8	C-NRC + Embedded	
9	C-ATS(0°) + Embedded	

NCCNRC

S-Men C-HDS

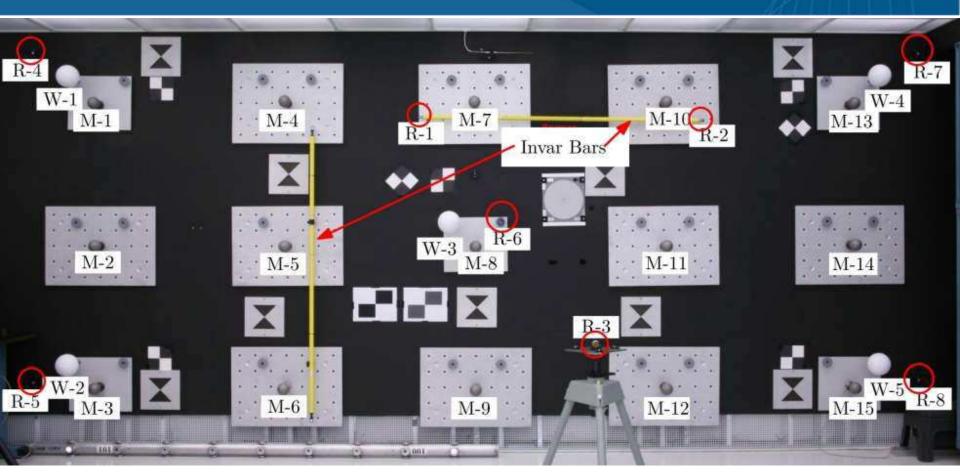
FARO

P-1 P-3

S-BAL

Target Repeatability Conclusions

- Spheres considered to be a good choice of target
- Continue testing using a combination of large white (S-ATS or similar) and small metallic (S-Bal or similar) spherical targets
- Planes no longer considered for this proposed standard
- 45 degree orientation showed some improvement for contrast targets



Test 2: Long-term Stability of Sphere Constellation

- Three target elements
 - R: Reference SMRs
 - M: Small (76.2 mm diameter) grey metallic (titanium) spheres (Baltec[™])
 - W: Large (145 mm diameter) white spheres (ATS)
- R-SMR constellation
 - X-configuration across wall (wall corners and center)
 - Horizontal and vertical Invar bars
 - Single SMR on tripod (off-wall reference)
- M-sphere constellation
 - 15 spheres in a 5 (horizontal) by 3 (vertical) grid with 1.2 meter horizontal and 0.9 meter vertical separation between spheres
- W-sphere constellation
 - X-configuration across wall

Wall-mounted Sphere Constellation

R: Reference SMRs (circled in red)M: Small grey metallic spheresW: Large white spheres

Wall Stability Test Results

Wall stability

- 1. Distance between middle SMR (R-6) and corner SMRs (R-4 to R-8) calculated on Day 0
- 2. Distance between middle SMR (R-6) and corner SMRs (R-4 to R-8) calculated on Day 5
- 3. Deviation between Day 0 and Day 5 distances computed

Results:

Maximum observed deviation was 0.02 mm

Distance between SMRs on Invar bar (R-1 to R-2) computed for comparison

- Invar ("invariable") has a low coefficient of thermal expansion (1.2 ppm/°C) so is relatively invariant to the ±0.1°C thermal fluctuation of the lab
- The bar was mounted so that any changes in wall dimensions would not affect the bar length

Results:

Maximum observed deviation was 0.02 mm

Sphere Constellation Stability Test Results

- 38.1 mm (1.5 inch) diameter SMR used to probe spheres to derive centers
- Sphere fits using constrained (known radius) fit method
- 105 distances between all sphere pairs computed
- Process repeated after 0, 1, 2, 3, 6, and 13 days
- Results:
 - Maximum average deviation was 0.01 ± 0.02 mm

Concluding Remarks

Concluding Remarks

- The ASTM is developing two proposed standards for medium-range systems
 - WK12373 relative range error evaluation
 - WK43218 point-to-point error evaluation
- These standards fill a standards development gap not currently covered by either ISO or ASME
- NRCC is actively involved in research to support the development of these standards
- Results were presented for point-to-point protocol development research
 - Measurement repeatability of possible targets for test method
 - Measurement repeatability and stability of the sphere constellation

NRC·CNRC

NRC·CNRC

Thank you

David MacKinnon, Ph.D., P.Eng.

Research Officer Tel: 613-993-0114 david.mackinnon@nrc-cnrc.gc.ca www.nrc-cnrc.gc.ca

