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Optical stimulated nutation echo

A. Szabo
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6

R. N. Shakhmuratov*
Kazan Physical-Technical Institute, Russian Academy of Sciences, 10/7 Sibirsky Trakt Street, Kazan 420029, Russia

~Received 1 August 1996!

Observation of the optical analog of the delayed nutation echo @V. S. Kuz’min et al., Zh. Éksp. Teor. Fiz. 99,

215 ~1991! @Sov. Phys. JETP 72, 121 ~1991!# recently shown in nuclear magnetic resonance is reported. We

call this echo a stimulated nutation echo ~SNE! in analogy to the three-pulse-stimulated echo that is

produced from a hole pattern burnt into an inhomogeneous line. In a SNE two-pulse sequence, the first pulse

burns a train of holes into the inhomogeneous absorption spectrum and its duration tp is stored. After a long

delay time the second pulse burns its own train of holes. When coincidence of these holes takes place, the SNE

occurs at a time t5tp following the start of the second pulse. Thus the second pulse reads exactly the duration

of the first pulse. It is shown that for a Gaussian-shaped beam, the echo becomes sharper and well recogniz-

able. This echo may be used for Rabi frequency measurement and spectral diffusion studies.

@S1050-2947~97!01302-4#

PACS number~s!: 42.50.Md, 76.60.Lz

I. INTRODUCTION

Optical nutation is a commonly used, simple method of
Rabi frequency measurement for ions excited by a laser
@1–5#. The Rabi frequency contains useful information about
transition dipole matrix elements as well as the driving field
amplitude. Delayed nutation @5–9# is an extension of this
method for the measurement of population difference relax-
ation time T1. In this paper we consider a different nutation
effect, the stimulated nutation echo ~SNE!, the optical analog
of an echo recently seen in nuclear magnetic resonance @10#,
which combines the possibility of measurement of both Rabi
frequency and T1 simultaneously. This method provides bet-
ter resolution for Rabi frequency measurement as the SNE
has 2.6 times larger amplitude than the transient nutation
signal. Moreover, it allows the study of spectral diffusion in
solids, similar to the three-pulse-stimulated echo.

II. THEORY

We consider the effect of a two-pulse sequence resonant
with an ensemble of two-level particles. Pulse I of duration
tp burns a train of holes in the inhomogeneous absorption
spectrum of the sample. The structure of the hole train is
determined by the product xtp , where x is the Rabi fre-
quency. After a delay time td , the long pulse II starts to
excite its own train of holes. When the Rabi frequency is the
same for both pulses, the second hole train coincides with the
first exactly at a time t5tp , where t is measured from the
beginning of pulse II. Interference of the holes produces a
two-component hole in the absorption spectrum. The first
component is smooth and does not contain oscillations in the
frequency domain at t5tp . The second component has a
doubled frequency of oscillations. The particles’ response on

the driving field depends strongly on their state. When they
are excited periodically over the spectrum, then due to inter-
ference of different spectrum components, the averaged re-
sponse approximately cancels. This cancellation is clearly
shown in transient nutation decay. The appearance of a
nonoscillating component of the hole at a time t5tp gives a
nonzero response. Thus the duration of the first pulse is
stored in the spectrum and the second pulse reads it. The
SNE arising during pulse II appears exactly at a time tp after
switching on of the pulse.

To demonstrate this we consider the solution of the
simple optical Bloch equations

u̇1Dv1u/T250,

v̇2Du2xw1v/T250, ~1!

ẇ1xv1~w2w0!/T150,

which follow from density-matrix equation of motion for a
two-level particle. The Bloch vector amplitudes u , v , and
w are related to the density-matrix elements by r12

5
1
2 (u1iv)e iVt, the dipole term, and r222r115w , the popu-

lation difference term. We also define the tuning parameter
D5v2V , where v is the frequency splitting of the two-
level particle and V is the driving field frequency. Specifi-
cally, we consider low-temperature solids where the dipole
dephasing time T2 is much shorter than the population decay
time T1.

Pulse I (tp!T2 ,T1) burns a population-difference hole
train described by expression

w~D ,tp!5S x

g
D 2

~12cosgtp!21, ~2!

where g2
5D2

1x2 and the condition of w0521 is implied.
Considering the particles satisfying the condition gtp5pn ,*Electronic address: shakhmuratov@ksc.iasnet.ru
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one can recognize those that return to the ground state ~when
n is even! and those in the excited state ~when n is odd!. For
a long delay time (td@T2) between pulses, the dipole com-
ponents u and v vanish. Therefore, at the moment of the
switching on of pulse II (t50), the particle states are deter-
mined only by the population difference

w~D ,tp1td!5@w~D ,tp!11#exp~2td /T1!21. ~3!

For excitation at the center of a symmetric, inhomogeneous
absorption line f (D), the transient nutation signal induced by
pulse II is described by @5#

^v~ t !&5E
2`

`

v~D ,t ! f ~D !dD , ~4!

where v(D ,t) is a solution of Eqs. ~1! with the initial condi-
tion ~3!. When t!T2 ,T1, we obtain

v~D ,t !5

x

g
sin~gt !w~D ,tp1td!. ~5!

One can rewrite Eq. ~5! as

v~D ,t !52

x

g
singt1

x3

2g3 @2singt2sing~ t1tp!

2sing~ t2tp!#expS 2

td

T1
D ~6!

and show that there are two kind of integrals in Eq. ~4!, i.e.,

^v~ t !&52 f ~0 !H M 1~ t !2~M 2~ t !2
1
2 @M 2~ t1tp!

1M 2~ t2tp!# !expS 2

td

T1
D J , ~7!

where

M 1~ t !5E
2`

` x

g
sin~gt !dD ,

~8!

M 2~ t !5E
2`

` S x

g
D 3

sin~gt !dD ,

and the distribution f (D) is taken to be flat. The Laplace
transform

M 1,2~p !5E
0

`

M 1,2~ t !exp~2pt !dt[L$M 1,2~ t !% ~9!

of these integrals are simple functions

M 1~p !5

px

Ap2
1x2

,

~10!

M 2~p !5S x

p
D 2

@p2M 1~p !# .

The inverse Laplace transform

M 1~ t !5L
21$M 1~p !%[

1

2pi
E

c2i`

c1i`

e iptM 1~p !dp ~11!

of the first is known @11#, i.e.,

M 1~ t !5pxJ0~xt !, ~12!

where J0(x) is a zeroth-order Bessel function. The second
function can be found by applying the convolution theorem
@11#

L
21$F1~p !F2~p !%5E

0

t

F1~ t2t !F2~t !dt . ~13!

The result is

M 2~ t !5px2H t2xE
0

t

~ t2t !J0~xt !dtJ . ~14!

Finally, we get the expression for transient response of the
system on pulse II,

^v~ t !&52px f ~0 !FJ0~ t8!1$K~ t8!2
1
2 @K~ t81T !

1sgn~ t82T !K~ ut82Tu!#%expS 2

td

T1
D G , ~15!

where sgn(t82T) is the sign of the difference t82T ,
t85xt , and T5xtp . Below we shall sometimes drop the
prime in the notation so that the time t is a dimensionless
parameter and we drop the dependence on delay time td to
simplify mathematical expressions. Here the function K(t) is

K~ t !5E
0

t

~ t2t !J0~t !dt5t@L~ t !2J1~ t !# , ~16!

L~ t !5E
0

t

J0~t !dt , ~17!

and J1(t) is a first-order Bessel function. Before analysis of
the signal ~15!, let us consider the time derivative of the v

component ~5!,

v̇~D ,t !5x cos~gt !w~D ,tp!. ~18!

Here time t is dimensional and td!T1. This expression is
similar to the w(D ,t) component in its time t and tp depen-
dences as it contains the product cos(gt)cos(gtp). Therefore
the hole interference is displayed much better in the deriva-

tive v̇(D ,t). The average value of the latter expression is

^v̇~ t !&5px2 f ~0 !$J1~ t !2L~ t !1
1
2 @L~ t1T !1L~ ut2Tu!#%

~19!

~here time t is normalized!. Transient effects become pro-
nounced when the area of pulse I is large (T@1). Noting
that the asymptote of the function L(t) at large t @11# is

lim
t→`

L~ t !51, ~20!

1424 55A. SZABO AND R. N. SHAKMURATOV



while

lim
t→`

J1~ t !50, ~21!

one can estimate the value of Eq. ~19! as nearly zero

@^v̇(t)&50# for the conditions t@1 and ut2Tu@1. When
the time t coincides exactly with pulse duration T , the last
term in square brackets of Eq. ~19! equals zero and the de-
rivative ~19! takes on its maximum value of

^v̇~T !&'2

p

2
x2 f ~0 !. ~22!

To analyze the behavior of Eq. ~19! near time t5T , we ex-
amine the L(t) function for small t . This function rises from
0 up to 1 almost linearly for 0,t,1. The value 1 is reached
at t.1.108 36. Then this function oscillates slightly near the
value 1 with a damped amplitude. Therefore the function
~19! becomes zero near the maximum ~22! whenever
L(ut2Tu)51. This occurs at times t1.T61.1(08 36),
t2.T64.05, t3.T67.15, etc. ~see @11#!. The value ~22! is
an absolute maximum of the function ~19!, as the local
maxima and minima of this function, lying between times
t i and t i11, are smaller by an absolute value. The time de-
pendence of Eq. ~19! for T59p is shown on Fig. 1~a!. As
the derivative of the signal approaches the absolute maxi-
mum value at t5T , the signal @Eq. ~15!# undergoes the larg-
est change near the time T attaining a maximum amplitude at
t.T61.1. To obtain the signal value @Eq. ~15!# at time
t5T and for times ut2Tu@1 we consider the time depen-
dence of the function ~16!. Taking into account the validity
of the relations K.t at t@1 ~see Appendix A! and
K(0)50 at t50, one can show that Eq. ~15! is nearly zero at
t@1, ut2Tu@1, and t5T . Thus the signal becomes zero for
t5T . The dependence of Eq. ~15! for T59p is shown on
Fig. 1~b!. By measuring the time interval t12 ~nonnormal-
ized! between the first absolute maximum and the first abso-
lute minimum of the signal, one can determine the Rabi fre-
quency, since the relation

xt12.2.22 ~23!

is valid.
To estimate the maximum amplitude of the signal at

t5t1 for large T we consider the function

F0~ t !5F1~ t !1F2~ t !,

F1~ t !5J0~ t !1K~ t !2
1
2 K~ t1T !, ~24!

F2~ t !52
1
2 sgn~ t2T !K~ ut2Tu!,

which describes the time dependence of the signal ~15!. Sub-
stitution of the asymptotes

J0~ t !5O1~1/At !, K~ t !5t1O2~1/At ! ~25!

for large t into the function F1(t) gives the result

F1~ t !5

t2T

2
1O3~1/At !, ~26!

where O i is a small value of order 1/At . The second com-
ponent F2(t) at the time t15T61.1(08 360) equals

F2~ t1!5

~ t12T !

2
@J1~ ut12Tu!21# . ~27!

Combining both, we get the signal amplitude at time t1

F0~ t1!56

1.108 36

2
J1~1.108 36!1O3~1/At1!.60.262,

~28!

^v~ t1!&.70.262px f ~0 !.

In a similar way, one can estimate the amplitudes of the local
maxima and minima at times t i (i.1). The echo amplitude
is about 25–30% of the initial maximum of the nutation
signal at t50 @see Eq. ~A6! in Appendix A#.

Now we consider the signal measured by optical detector.
The field

E0~ t !5E0e iVt

induces a polarization

FIG. 1. ~a! Calculated time dependence of the nutation signal

derivative @plane-wave excitation, Eq. ~19!#. Time is normalized as

described in the text and zero time corresponds to the beginning of

the second pulse. The first pulse width is T59p . The nutation echo

is centered at time T after the start of the second pulse. ~b! Calcu-

lated time dependence of the nutation signal @derivative shown in

~a!# for plane-wave excitation, Eq. ~15!.
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p~ t !5i
dN

2
^v~ t !&e iVt

in the sample, where d is a transition dipole matrix element
and N is the impurity number density. This polarization ex-
cites the response field

Er~ t !52i
VNl

«0c
p~ t ! ,

where l is the length of the sample, which is assumed to be
optically thin. The optical field reaching the detector is the
sum of the laser field and the emitted sample field. Since the
optical detector is a square law device, we must calculate the
intensity present at the detector, which is

I~ t !5c«0ES~ t !ES
*~ t ! ,

where ES(t)5E0(t)1Er(t). Now Er!E0 for any optically
thin sample, so the term proportional to uEru

2 may be ignored
and

I~ t !5c«0~E0
2
12E0Er!.

Finally, we obtain

I~ t !5I01VNldE0^v~ t !&, ~29!

where I05c«0E0
2.

Equation ~29! was derived assuming plane-wave excita-
tion. However, the laser beam has a Gaussian profile, which
means that E0 should be replaced by E0exp(2R2/2a2),
where a is the beam radius. Neglecting diffraction effects,
the observed signal for a large area detector is then reduced
to the integral of Eq. ~29! over the beam profile,

S52pE
0

`

I~ t !R dR . ~30!

As will be shown later, this averaging of the Rabi frequency
distribution over the beam profile increases the sharpness of
the echo signal since, in addition to the hole interference in
the resonant frequency domain, there is also a hole interfer-
ence in the Rabi frequency domain. The result of the integral
~30! calculation ~see Appendix B! is

S5S0F12

2plNV f ~0 !d2

c«0\
F3~ t !G , ~31!

where S05pa2I0,

F3~ t !5

J1~ t !

t
1$K1~ t !2

1
2 @K1~ t1T !

1sgn~ t2T !K1~ ut2Tu!#%exp~2td /T1! ,

~32!

K1~ t !5

1

2
E

0

tF2

3
t2tS 12

t2

3t2D GJ0~t !dt .

~Here time t is normalized.!

Analysis of Eqs. ~31! and ~32! is somewhat similar to that
of Eq. ~15! for the condition td!T1. The function K1(t) is
related to K(t) as

3K1~ t !5K~ t !2J2~ t !, ~33!

whereas its time derivative is

K̇1~ t !5

1

3
FL~ t !2J1~ t !12

J2~ t !

t
G . ~34!

Therefore, the derivative of the time-dependent part of the
signal ~31!

Ḟ3~ t !52

J2~ t !

t
1K̇1~ t !2

1

2
@K̇1~ t1T !1K̇1~ ut2Tu!# ~35!

is small for t@1 and ut2Tu@1. It reaches a maximum value
of 1/6 at the echo time t5T . The zeros nearest this maxi-

mum of the function Ḟ3(t) occur at t15T61.5142 when

K̇1(ut2Tu)51/3. Here the pulse area is assumed to be large
(T@1). The function F3(t) is small at t@1, ut2Tu@1, as
well as echo time t5T . The echo amplitude reaches its maxi-

mum value at t15T61.5142 when the derivative K̇1(t) is
zero. Its value is

F3~ t1!56
1
2 J2~1.5142!1O4~ t1!,

where the last term is small, i.e.,

O4~ t1!5

sinS t11T2

p

4
D

A2p~ t11T !3
1••• .

The echo amplitude

1
2 J2~1.5142!50.118

is about 24% of first nutation maximum

F3~0 !51/2

and 2.637 times higher than the mean amplitude of the first
minimum and second maximum of transient nutation oscil-

lations. The time dependence of the 2F3(t) and 2Ḟ3(t)
functions for T59p is shown in Figs. 2~a! and 2~b!.

Additional interference of holes in the Rabi frequency do-
main makes the echo signal much more pronounced, as it
damps the oscillations far from the echo time t5T . The time
interval t12 ~nonnormalized! between maximum and mini-
mum values of the signal becomes larger, i.e.,

t12x53.03.

This relation may be very useful for measurement of Rabi
frequencies.

III. EXPERIMENT

Stimulated nutation echoes were excited in a ruby crystal
by two optical pulses obtained by acousto-optic chopping of
a cw laser beam ~80 mW, focused to ;0.1 mm diameter in
the crystal! from a single frequency Ti:sapphire laser ~Coher-
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ent 899-21!. The sample was 1.58 mm thick with a 0.0034

wt. %Cr2O3 concentration. It was located in a magnetic field

of 7.5 kG aligned along the c axis and maintained at a tem-

perature of 2.0 K by a Lakeshore model DRC-93CA control-

ler. The 4A2(23/2)→Ē(21/2) transition of Cr31 was selec-

tively excited by the circularly polarized laser beam. The

transmitted beam was detected by a photodiode and the sig-

nal was processed by a low noise amplifier ~Stanford SR560!
followed by display on a Lecroy 9354 digital oscilloscope
~500 MHz bandwidth! after averaging 300 sweeps.

The detected two pulse sequence is shown in Fig. 3,
which clearly shows the SNE during the second pulse.
Analysis of the data indicates that the SNE occurs very near
the expected time tp after the onset of the second pulse. A
slight shift from tp occurs because of the finite rise and fall
time of the pulses. This behavior has also been simulated by
numerical studies.

We verified the influence of finite rise and fall time for the
first pulse on echo signal. By numerical calculations @12# we
found that the echo, induced by the pulse edges, was very
small ~one to two orders smaller than the normal nutation!
and very sharp in time ~about rise time!, which did not agree
with experiment.

IV. DISCUSSION AND CONCLUSION

One application of the SNE is for Rabi frequency mea-
surement using the relation xt1253.03 derived above for a
Gaussian-shaped beam. This application is particularly ad-
vantageous over conventional nutation at lower Rabi fre-
quencies where rapid damping will prevent clear observation
of the ringing. Also, the SNE provides a larger signal than
the leading edge nutation ~for pulse I, see Fig. 3!.

The ‘‘stimulated’’ or hole-burning origin of the SNE is
demonstrated by the experimental decay plot shown in Fig.
4. The echo decay closely resembles that seen for three-
pulse-stimulated echoes @13# for this sample @14# in that
there is an initial fast decay followed by a slow decay of the
form exp(2td /T1) due to population relaxation. The fast de-
cay is caused by spectral diffusion. As the frequency spacing
between adjacent dips in the hole pattern burnt by the first
pulse depends on pulse duration and Rabi frequency, the
frequency range over which diffusion occurs can be studied
by varying these parameters.

This frequency range may be estimated as follows. Adja-
cent maximum and minimum values of population differ-
ence, burnt by the first pulse, are separated by frequency

FIG. 2. ~a! Calculated time dependence of the nutation signal

@Gaussian beam excitation, 2F3(t) function, Eqs. ~31! and ~32!#.

Time is normalized as described in the text and zero time corre-

sponds to the beginning of the second pulse. The first pulse width is

T59p . The nutation echo is centered at time T after the start of the

second pulse. ~b! Derivative of the curve in ~a!.

FIG. 3. Experimental observation of the nutation echo. The sig-

nal shows the transmitted light through the sample. The first pulse

~width tp54.5 msec! is followed by a probe pulse with the echo

centered at time tp following the start of the probe pulse.

FIG. 4. Experimental echo amplitude dependence on pulse spac-

ing. At long times, the echo time dependence approaches the ex-

pected function exp2(t/T1), where T1 is the spontaneous lifetime.

The fast initial decay is due to spectral diffusion ~see the text!.

55 1427OPTICAL STIMULATED NUTATION ECHO



D . For the central frequency packets this D satisfies the re-
lation

~Ax2
1D2

2x !tp5p .

When uDu,x , this relation simplifies to

D.xA2p

xtp

.

If xtp5pn ~the echo is well recognized when n>3), then

D.xA2

n
. ~36!

If due to spectral diffusion the particles move over the spec-
trum for a distance larger than D , then the echo vanishes. We
are planning to discuss this question in a forthcoming paper.
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APPENDIX A

Noting the relation L(`)51, we transform Eq. ~16! to

K~ t !5tF12J1~ t !2E
t

`

J0~t !dtG . ~A1!

For large t , we use the Bessel-function asymptote

Jn~ t !5A2/pt$P~n ,t !cosa2Q~n ,t !sina%, ~A2!

where a5t2(p/4)(2n11),

P~n ,t !5 (
k50

`

~21 !k
~n ,2k !

~2t !2k ,

Q~n ,t !5 (
k50

`

~21 !k
~n ,2k11 !

~2t !2k11 ,

~n ,m !5

G~ 1
2 1n1m !

m!G~ 1
2 1n2m !

,

~A3!

G~ 1
2 1n !5

Ap

2n ~2n21 !!!,

G~ 1
2 2n !5~21 !n

2nAp

~2n21 !!!
,

~2n21 !!!5133353•••3~2n21 !.

For example, the coefficients ~A3! for Bessel functions
J0(t) and J1(t) are approximated by

P~0,t !512

9

128t2 1••• , Q~0,t !52

1

8t
1••• ,

~A4!

P~1,t !511

15

128t2 1••• , Q~1,t !5

3

8t
1••• .

Substitution of the approximation ~A2! with coefficients
~A4! into the expression ~A1! gives the result

K~ t !5t1O2~1/At !, ~A5!

where

O2~1/At !52A 2

pt
FcosS t2

p

4
D1

9

8t
sinS t2

p

4
D G1•••

is a small value of order 1/At . We calculated the

O3(1/At1) term in Eq. ~26! and obtained an improved, ap-
proximate expression for maximum and minimum values of
F0(t),

F0~ t1!560.2621O3~1/At1!,

O3~1/At1!5

1

A2p~T1t1!
FcosS T1t12

p

4
D

1

9

8~T1t1!
sinS T1t12

p

4
D G

2A 2

pt1
3sinS t12

p

4
D1••• ,

where t15T61.108 36.

APPENDIX B

Expression ~30! is reduced to three kinds of integrals,

S52pa2@I0s12plN\V f ~0 !B~ t !# ,

B~ t !5s2~ t !1s3~ t !2
1
2 @s3~ t1tp!1sgn~ t2tp!s3~ ut2tpu!# ,

s15E
0

`

e22ydy5
1
2 , s2~ t !5x2E

0

`

e22yJ0~xte2y!dy ,

s3~ t !5x4E
0

`E
0

t

e24y~ t2t !J0~xte2y!dtdy ,

where y5R2/2a2 and x5dE0 /\ . By variables substitution
of x5xte2y and x85xte2y, the second and third integrals
are transformed as

s2~ t !5

1

t2E
0

xt

xJ0~x !dx5

x

t
J1~xt !,

s3~ t !5

1

t2E
0

xt

xK~x !dx ,

where

K~x !5E
0

x

~x2x8!J0~x8!dx8.
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We calculated s3(t), integrating it in parts

s3~ t !5

1

t2 H x2

2
K~x !u0

xt
2E

0

xtx2

2
K̇~x !dxJ ,

two times. The result is

s3~ t !5

x2

2
E

0

xt H 2

3
xt2xF12

x2

3~xt !2G J J0~x !dx .
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