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Abstract

We describe the systems entered by the

National Research Council Canada in the

SemEval-2016 Task1: Crosslingual Semantic

Textual Similarity. We tried two approaches:

One computes a true crosslingual similarity

based on features extracted from lexical se-

mantics and shallow semantic structures of the

source and target fragments, combined using

a linear model. The other approach relies

on Statistical Machine Translation, followed

by a monolingual semantic similarity, relying

again on syntactic and semantic features. We

report our experiments using trial data, as well

as official final results on the evaluation data.

1 Introduction

The SemEval-2016 Semantic Textual Similarity

(STS) evaluation (task1) introduced a crosslingual

track. Given a Spanish-English bilingual fragment

pair, the goal is to compute the degree of equiva-

lence between them. This offers additional chal-

lenges compared to the “STS Core” track, where

both fragments are in the same language (English or

Spanish in 2014-15). The crosslingual track requires

potentially to detect which fragment is in which lan-

guage, perform further language processing accord-

ingly, and estimate lexical and semantic similarities

across languages.

In our work, we investigated two approaches. In

the first approach, we try to build a true crosslingual

similarity based on a number of features computed

from both fragments. One of these features projects

Spanish words into an English embedding space in

order to compute similarities in that space. Other

features compute various kinds of syntactic and se-

mantic overlap between the fragments. These fea-

tures are combined in a linear model estimated on

the trial data, and combined with an isotonic regres-

sion (de Leeuw et al., 2009) layer in order to account

for non-linearity in the scores.

The second approach uses a Statistical Machine

Translation system to map Spanish fragments to En-

glish, then relies on a monolingual semantic similar-

ity between the translated fragment and the English

fragment. Various monolingual similarity features,

using embeddings, syntactic and semantic informa-

tion, are computed and combined again using a lin-

ear model followed by an isotonic regression layer.

In the next section, we describe the two ap-

proaches and their components: SMT system,

crosslingual and monolingual feature extraction, and

the output layer fitting the features to the seman-

tic similarity scores. We then describe the corpora

used to fit the features to the output similarity score,

and make various modeling choices (Section 3). We

present our experimental results on the trial and test

data in Section 4.

2 System description

We describe our two approaches: the direct crosslin-

gual similarity using embedding mapping (EMAP

run) and the use of Machine Translation followed by

a monolingual semantic similarity (MT1 and MT2).

2.1 Crosslingual Embedding Mapping

Feature Extraction: We evaluate the semantic

similarity of the given text based on two levels: lex-
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ical semantics and shallow semantic structure.

One of the trivial ways to evaluate the crosslingual

lexical similarity is using the alignment probability

of an alignment model trained with a large-scale par-

allel corpus.1 However, the alignment model does

not evaluate the meaning similarity of words as well

as the vector space model which is explicitly trained

to evaluate semantic similarity. We therefore pro-

pose to combine the two models: given a Span-

ish word, we first look up in the alignment model

for a list of the most probable (5-best) aligned En-

glish word (the mapping step); we then evaluate

the lexical similarity of each entry in the 5-best list

against the target English word using a word embed-

dings model. In our experiments, we used pretrained

word2vec (Mikolov et al., 2013) embeddings.2

The resulting crosslingual lexical similarity of the

targeted pair of Spanish and English words is the

highest similarity between the 5 mapped words and

the target English word. We then reconstruct the se-

mantic phrasal similarity by averaging the English-

idf-weighted crosslingual embeddings mapped lexi-

cal similarity according to the 1-1 maximal match-

ing alignment of the lexicons in the two phrases.

In addition to the flat lexical semantic feature, we

use XMEANT (Lo et al., 2014), the crosslingual se-

mantic frame based machine translation evaluation

metric, for generating shallow structural semantic

features. We use MATE (Björkelund et al., 2009)

for Spanish shallow semantic parsing and SENNA

(Collobert et al., 2011) for English shallow seman-

tic parsing. In evaluating machine translation qual-

ity, the confusion of semantic roles is a major source

of errors due to reordering. However, in evaluat-

ing STS, confusion of semantic roles is less frequent

while missing information in one of the test frag-

ments is more frequent. This motivates a further

simplification of the 12 semantic role types (Lo et

al., 2014) into 5 semantic role types: action, agent,

patient, beneficiary and others. The same phrasal se-

mantic similarity function mentioned above is used

for evaluating the role fillers similarity, instead of

the ITG-constrained crosslingual phrasal similarity

function (Lo et al., 2014).

As a result, for each pair of the test sentences,

1Part of the MT system described in Section 2.2.
2https://code.google.com/archive/p/word2vec/

Feature Description

1 Embedding-based phrasal similarity

2 XMEANT score

3,4 p,r for semantic role: action

5,6 p,r for semantic role: agent

7,8 p,r for semantic role: patient

9,10 p,r for semantic role: beneficiary

11,12 p,r for semantic role: others

Table 1: Features used by the cross-lingual and monolingual

semantic similarity. p,r stands for precision and recall.

we extracted 12 features (Table 1). The first feature

is the simple phrasal similarity by considering the

whole string of the testing sentences as one phrase.

The second feature is the XMEANT score. The re-

maining 10 features are the precision and recall of

the 5 semantic role types used in XMEANT.

Fitted Output Layer: Most of the extracted fea-

tures are correlated with the gold standard semantic

similarity score, by capturing various aspects of the

similarity. In order to combine these features, we

estimate a linear combination by fitting a least mean

squares linear regression on the trial data gold stan-

dard similarity score.3 Although it may be desirable

to combine features in a non linear way, the amount

of available annotated data severely limits our ca-

pacity to estimate non-linear models. We improve

the modeling slightly by fitting a non-linear transfor-

mation of the estimated score produced by the linear

combination, with the constraint that the transforma-

tion preserves the ordering of scores. This is done

through isotonic regression, using the efficient im-

plementation available in R (de Leeuw et al., 2009).

In order to avoid overfitting to the limited number of

training example, we use a 10-fold cross-validation

estimator on the trial data to select the appropriate

features and check the performance of the isotonic

regression layer.

2.2 MT + Monolingual Similarity

Statistical Machine Translation. All Spanish

text was translated to English using an SMT sys-

tem based on Portage, the NRC’s phrase-based SMT

technology (Larkin et al., 2010). The system was

3We use the glm function in R.
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trained using standard resources – Europarl, Com-

mon Crawl (CC) and News & Commentary (NC)

– totaling approximately 110M words in each lan-

guage. Phrase extraction was done by aligning the

corpora at the word level using HMM, IBM2 and

IBM4 models, using the union of phrases extracted

from these separate alignments for the phrase ta-

ble, with a maximum phrase length of 7 tokens.

Phrase pairs were filtered so that the top 30 trans-

lations for each source phrase were retained. The

following feature functions are used in the log-linear

model: three 5-gram language models with Kneser-

Ney smoothing (Kneser and Ney, 1995), i.e. one

for each of Europarl, CC and NC data, combined

linearly (Foster and Kuhn, 2007) to best fit NC

data; lexical estimates of the forward and back-

ward translation probabilities obtained either by rel-

ative frequencies or using the method of (Zens and

Ney, 2004); lexicalized distortion (Tillmann, 2004;

Koehn et al., 2005); and word count. The parame-

ters of the log-linear model were tuned by optimiz-

ing BLEU on the development set using the batch

variant of MIRA (Cherry and Foster, 2012). Decod-

ing uses the cube-pruning algorithm of (Huang and

Chiang, 2007) with a 7-word distortion limit.

For any given input in Spanish, the SMT system

produces the translation that is most likely with re-

gard to its own training data; that translation may

be arbitrarily distant from the English sentence to

which it will be compared in the STS task. These ar-

bitrary surface differences may complicate the task

of measuring semantic similarity. To alleviate this

problem, we bias the MT system to produce a trans-

lation that is as close as possible on the surface to

the English sentence. This is done by means of log-

linear model features that aim at maximizing n-gram

precision between the MT output and the English

sentence. The relative weights of these features are

set to maximize BLEU on the trial data. This op-

timization is performed separately from that of the

other features, using a simple grid-search approach.

Systems MT1 and MT2 are the top-ranking systems

in this regard: MT1 uses unigram/bigram/trigram

weights 16/4/1, while MT2 uses 16/2/2.

Feature Extraction. The features extracted in this

run are essentially the same as those in the crosslin-

gual approach, except that the lexical semantic sim-

ilarity is now directly evaluated using the mono-

lingual word embeddings model. Similarly, the

structural semantic similarity is now evaluated us-

ing MEANT (Lo et al., 2015) instead of XMEANT,

and the semantic role similarity features are obtained

by evaluating the semantic parses in the same lan-

guages.

Fitted Output Layer. This output layer is essen-

tially the same as the one in the crosslingual ap-

proach, but estimated on the monolingual features.

One key advantage here is that we rely on a monolin-

gual semantic similarity. We can then fit the mono-

lingual models on English trial and test data from

previous STS tasks. We combine the 2012 to 2014

development and test sets totaling 10,662 examples,

instead of the 103 trial bilingual pairs available for

the crosslingual task.

3 Textual Similarity Data

Monolingual. In order to estimate parameters of

the monolingual similarity, we use 10,662 English

pairs from the 2012 to 2014 development and test

sets. We test this similarity on the 2015 test data,

comprising 3000 examples in 5 different test sets.

Crosslingual. We use the 103 Spanish-English

pairs provided as trial data for the crosslingual task

for two purposes. We estimate the crosslingual simi-

larity output layer, and we compute performance es-

timates for all our runs. In order to tune the output

layer (in particular to select the relevant features),

we compute an unbiased estimator of the prediction

performance using cross-validation on the data used

for fitting (103 examples in crosslingual, 10,662 in

monolingual).

4 Experimental results

4.1 Results on trial data

For the crosslingual embedding mapping (EMAP

run), the only gold standard data available is the 103

trial set pairs. In order to get an unbiased estimate

of the performance, we compute a 10-fold cross-

validation estimator. We use it to select the best sub-

set of features. Figure 1 shows that the choice of fea-

tures has a large impact, with estimated performance

ranging from 0.64 (for all features) to 0.71 with the

four features with highest correlation with the gold
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Figure 1: Cross-validated correlation when adding new fea-

tures, ranked by individual correlation with the gold standard.

The optimal CV estimate (solid+triangle curve) is obtained with

four features (1, 2, 7 and 10).

Top1 Linear Isotonic

EMAP .674 .659∗ .708∗

MT1 .714 .723 .731

MT2 .713 .720 .727

Table 2: Estimated results on the trial data (∗ estimates from

10-fold cross-validation).

standard. These four features are: the crosslingual

similarity score, the XMEANT score and two se-

mantic role features. The cross-validated correla-

tion for the linear model and isotonic regression are

0.659 and 0.708, respectively (Table 2). For our sub-

mitted run EMAP, we re-estimated the linear mode

and isotonic regression on all 103 trial examples and

used those models to estimate scores on the two test

sets (301 and 2973 examples, respectively).

For the MT1 and MT2 runs, the monolingual sim-

ilarity is trained on the available monolingual STS

data from 2012 to 2014. In order to test the result-

ing similarity, we apply it to the 2015 test data, and

obtain an average correlation of .713 on the five test

sets, significantly below the best performing system

at the 2015 task (.801 average). We also apply the

monolingual STS to the trial data after forced decod-

ing and feature extraction and obtain an estimated

trial correlation of .727–.731 (Table 2).

Run News MultiSource Mean

(301) (294)

MT1 0.876 0.646 0.762

MT2 0.878 0.631 0.756

EMAP 0.719 0.411 0.567

Table 3: Official evaluation results for our three runs.

4.2 Test results

Test results computed by the organizers are shown

in Table 3. Average test results and results on the

News part are significantly higher than estimated on

the trial data. A large difference is not unexpected

considering the test data was clearly very different

from the trial data. The average fragment length is

3-4 times larger on News than on trial, for ex-

ample. We can conjecture that the higher perfor-

mance on the News test set may actually be due to

the longer fragments providing more information to

estimate the similarity. On the Multisource test set,

on the other hand, all our runs perform poorly. We

also note that the performance of the EMAP run is

much worse, relative to the MT runs, than could be

anticipated from the trial data performance (Table

2). We analyse these differences below.

4.3 Analysis

MT vs EMAP: As noted above, performance of

EMAP was disappointing on the test set, and the

gap with MT runs much larger than expected from

the trial data. Two main reasons can explain this.

First, MT uses monolingual word embeddings di-

rectly, and second, we could use 10,662 monolin-

gual pairs with reference STS scores to fit and tune

the feature combination model. By contrast, for lack

of cross-lingual embedding vectors, the EMAP run

had to rely on word alignment to map Spanish words

to English embeddings, and the feature combination

model could only use 103 cross-lingual pairs with

reference STS scores.

MultiSource performance is lower than perfor-

mance on the News part of the test set for almost

all systems involved in the evaluation (FBK being

the notable exception). The difference is particu-

larly pronounced for our runs: our MT runs are only

.035 below the top run on News, which is likely not
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significant on 301 examples;4 our performance on

MultiSource, on the other hand, is .17 to .40 below

the top runs. Given that this gap is especially pro-

nounced for our systems, we can not rule out for-

matting errors of inconsistencies on our side. Fur-

ther investigation will be needed to clarify this.

Running Time: One attractive feature of both our

approaches is that they rely on shallow semantic fea-

tures which are easy and fast to obtain using seman-

tic role labeling. The MT runs rely on a SMT system

which is expensive to train, but this can be done off-

line. Once trained, producing translations is of the

order of ten sentences per second. The linear feature

combination model is also fast to train and apply, re-

quiring a single dot product between the 12 features

and a similarly-sized parameter vector.5

5 Conclusion

We described the systems used for the submissions

of the National Research Council Canada to the

crosslingual semantic textual similarity task. We ex-

perimented with two approaches. The first estimates

a true crosslingual similarity combining lexical se-

mantics and shallow semantic structure. The sec-

ond uses Machine Translation in combination with

a monolingual semantic similarity. We found that

the latter outperforms the former. We conjecture

that this may be due to the very limited amount of

crosslingual data available. By contrast, there are

very large corpora available for training a reasonably

efficient MT system, and we can rely on a lot of data

from previous STS tasks to build a monolingual se-

mantic similarity. Test results indicate that our ap-

proach performs relatively well on the News test

set, but suffers on the Multisource test set. In

addition, the crosslingual approach performs much

worse on average on the test data than estimated

on the limited trial data. This suggests that it is

hard to build a competitive, truly crosslingual ap-

proach from little reference data, when it is possible

to rely on thousands to millions of examples to build

a SMT+monolingual similarity pipeline.

4Assessing statistical significance would require access to

the predictions of the best run.
5Prediction for the 301+2973 test examples takes 24ms.
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