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Phase-noise influence on coherent transients and hole burning

R. N. Shakhmuratov*
Kazan Physical-Technical Institute, Russian Academy of Sciences, 10/7 Sibirsky Trakt st., Kazan 420029, Russia

Alex Szabo
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6

~Received 1 December 1997!

Resonant excitation of an inhomogeneously broadened ensemble of two-level atoms ~TLA! by a stochastic

field with phase noise is theoretically investigated. Free-induction decay ~FID!, hole burning ~HB!, and tran-

sient nutation ~TN! are studied. We consider two kinds of driving fields, one with a free walking phase and

another with the phase locked in a limited domain. It is shown that the resonant excitation behavior depends

strongly on the noise property. Noise induced by a walking phase gives a simple contribution to the dephasing

time, T2 , of two-level atoms whereas phase locking qualitatively changes the laser-atom interaction. In the

latter case, it is shown that even when the central part of the driving field spectrum is narrower than homo-

geneous absorption line of the TLA, the wide, low intensity wings of the spectrum ~sidebands produced by the

locked phase noise!, have a strong effect on the FID, TN, and HB induced by the central, narrow part of the

spectrum. The influence of sidebands on photon echoes is also discussed. @S1050-2947~98!06210-6#

PACS number~s!: 42.50.Md

I. INTRODUCTION

The laser and other sources of coherent radiation can be

considered as oscillators with compensated damping ~i.e.,

where the gain equals the losses!. If the state of this oscillator
is stable, then any external noise influencing the parameters
of the oscillator gives only the background and does not
affect the delta-like, sharp spectrum of the output field.
Meanwhile, it is known ~see, for example, Ref. @1#! that the
phase of the laser field is in a state of indifferent equilibrium
~i.e., it is unstable!. This means that any weak external force
may shift the phase without resistance. This is a basic source
of spectral line broadening @2#. Below we consider a single
mode laser. As was shown in Ref. @2#, for example, mechani-
cal vibrations and thermal fluctuations of the cavity length
and refraction index are usually the dominant source of line
broadening of single mode lasing rather than the limit set by
spontaneous emission. Because of the phase shift by the ran-
dom force, the deltalike spectrum becomes Lorentzian with a
finite width. This width depends on phase dispersion and
correlation time tc of the noise that induces the phase shift.
The random walk of the phase or phase diffusion process
does not have any selected reference point, since the phase of
the field can shift far from the initial value by small jumps
accumulated in a large random phase shift. Technical locking
of the device phase near some reference point results in es-
sential narrowing of the field spectrum ~a discussion of the
phase locking process is presented in the Appendix!. Ran-
dom phase jumps ~less than p/2) near the reference phase
give the wide background and do not affect the central part,
which remains a delta function. Only the walk of the refer-
ence phase makes the central part broad. As the processes of
laser phase jump and reference phase jump are usually dif-
ferent, the width of the central part and background are also

different. The former is determined by the device that locks

the phase, and the latter by the laser output spectrum or

amplifier.

Stabilized sources of coherent irradiation are commonly

used for ultrahigh resolution spectroscopy. Optical transients

and hole burning are some of the methods of coherent spec-
troscopy that require a narrow laser linewidth. Therefore the
influence of the field spectrum on the transient response sig-
nal of resonant absorbers is of interest. Usually one expects
that, when the driving field spectrum is narrower than the
absorption linewidth, this field can be reliably considered as
monochromatic. Using a model of phase-locked noise, we
show that the latter condition on the narrow, sharp part of the
field spectrum is insufficient. The weak and wide sidebands,
caused by the phase-locked noise, significantly change the
saturation and transients of the excited quantum system.

Resonant interaction of an atomic system with fluctuating
classical fields has been already studied extensively @3–55#
~the list is not exhaustive!. This paper is not aimed at pro-
viding a review on this topic. We do not consider quantum
noise, as the linewidth of a single mode laser well above
threshold is not appreciably affected by spontaneous emis-
sion @2#. As mentioned above, we consider only semiclassi-
cal sources of laser line broadening such as vibration, ther-
mal fluctuation, and index fluctuation. Real lasers can exhibit
a variety of fluctuations in phase, frequency, and amplitude.
Almost all previous analyses of noisy laser-atom interactions
have been based on several models of classical fluctuating
fields. Among them are phase diffusion field ~PDF!, chaotic
field ~CF! or Gaussian noise irradiation, random jump pro-
cesses of the frequency, phase or amplitude, and shot noise
description of the fluctuating phase or frequency.

Phase diffusion field has a constant real amplitude but its
phase is a Wiener-Levy process @8,9,17,24,25,30,36,
41,51,52#. The phase diffusion model is based on the formal
analogy between the position of the particle performing a
Brownian motion and the random phase a(t) of the field.*Electronic address: shakhmuralov@dionis.kfti.kcn.ru
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The velocity of the particle corresponds to the random fre-

quency of the field v(t)5ȧ(t), which is a Gaussian white-
noise process with delta correlation

^v~ t !v~ t8!&52nPDFd~ t2t8!. ~1.1!

Even if the name PDF is strictly appropriate only in the case
when the frequency is a white noise and the phase is deter-
mined by a purely diffusive Wiener-Levy process, it is com-
monly used to indicate the more general case of finite corre-
lation time when the frequency noise is an Ornstein-
Uhlenbeck process @56,57#. The power spectrum of the field
in a generalized PDF model depends on the correlation time
of its frequency, evolving continuously from a Lorentzian to
a Gaussian profile when the correlation time increases from
zero to infinity @32,35,33,41,47#. Meanwhile, a random fre-
quency process produces phase velocity fluctuations and as a
result the phase itself changes continuously, increasing or
decreasing gradually in a random way. It is impossible to
select the reference phase within frequency fluctuating mod-
els as the phase walk is not bounded by any condition. More-
over, any abrupt, discontinuous change of the phase is be-
yond PDF and generalized PDF models. For this reason it is
more appropiate to describe the locked phase field or
bounded phase walk processes by the random phase jump
model. Random jump processes of the frequency, phase, or
amplitude of the field were considered in @3–6,10,13,
15,21,37,43–45,48,52# as they allow convenient and very
flexible manipulation of interaction parameters, permitting
nonperturbative examination of the noisy laser-atom interac-
tion. While the question ‘‘what is the origin of the noise, the
frequency fluctuation or the phase fluctuation?’’ is rather
philosophical, the close relation between the correlated jump
model and diffusion model, was shown in @6,58#.

The shot-noise model @48# of phase fluctuations assumes
that the instantaneous phase a(t) of the electromagnetic field
consists of a sum of statistically independent pulses

a~ t !5(
i51

n

a ih~ t2t i!, ~1.2!

where h(t2t8) is a causal pulse-shape function @h(t)50 for
t,0], generated at a random time t i with amplitude a i . The
correlation function of the shot-noise phase is equivalent to
the Wiener-Levy correlation function of the phase-diffusion
model. The important difference between the shot noise and
PDF model is that a(t) is not a Gaussian stochastic process.
In Ref. @48# it was shown that shot noise is strongly related
to the correlated phase jump process as both models lead to
the same Burshtein-Chapman-Kolmogorov-Smoluchowski
equation @5,6,10,21,43,48#.

Chaotic field ~CF! or Gaussian noise irradiation
@11,12,14,19,20,24,25,29–31,33,34,36,40# assumes that the
amplitude and phase are random but their fluctuations are
considered without introducing the amplitude-phase decom-
position. The amplitude of the CF is a random Gaussian
process:

E~ t !5Ex~ t !1iEy~ t !, ~1.3!

^E~ t !&50. ~1.4!

A stochastic model of the chaotic field is described in terms
of Langevin equation

Ė~ t !52bE~ t !1FE~ t ! ~1.5!

where FE(t) is a random force

^FE~ t !FE*~ t !&52b^uEu2&d~ t2t8!. ~1.6!

This model is closely related to the multimode free-running
lasing. Therefore we do not consider the CF model in this
paper.

II. PHASE JUMP MODELS

We consider the random phase a(t) determined by the
density of a Markovian conditional probability

w~a0 ,t0u•••uan21 ,tn21uan ,tn!5w~an21 ,tn21uan ,tn!,
~2.1!

where a0 , . . . ,an are successive values of phase at the mo-
ments of time t0,•••,tn . Condition ~2.1! is a fundamental
property of a Markovian process. The theory of phase relax-
ation is well developed for a stationary, discontinuous Mar-
kovian process @6#. Therefore we take the stationary condi-
tional probability

w~a0 ,t0ua ,t !5w~a0,0ua ,t2t0!, ~2.2!

E w~a0!w~a0 ,t0ua ,t !da05w~a !, ~2.3!

where

w~a !5 lim
t2t0→`

w~a0 ,t0ua ,t ! ~2.4!

is a probability density that does not depend on the previous
history of the process. It describes the probability of finding
the phase a at any cross section of the process.

After Burshtein @6# we consider the discontinuous process
of phase change. The random value of phase a(t) is constant
inside each time interval (t i ,t i11) and jumps stepwise at the
end of it. This time interval has a Poisson distribution

dW~ t i112t i!5expF2

t i112t i

t0~a i!
G dt i11

t0~a i!
, ~2.5!

where t0(a i) is a mean dwell time between jumps, generally
depending on the value of a i inside the time interval. The
conditional probability of a phase jump from value b to
value a is given by the function f (bua). When the dwell
time does not depend on phase value, the density of condi-
tional probability of discontinuous Markovian process obeys
the forward Kolmogorov-Feller equation @6,43,45,48,59#

]

]t
w~a0 ,t0ua ,t !52

1

t0

w~a0 ,t0ua ,t !

1

1

t0
E w~a0 ,t0ub ,t ! f ~bua !db

~2.6!
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with the initial condition

w~a0 ,t0ua ,t0!5d~a2a0!. ~2.7!

Solution of this equation describes the normalized, stationary
density of the conditional probability if the relations

E f ~bua !da51, ~2.8!

E w~a0! f ~a0ua !da05w~a ! ~2.9!

are valid. The random process a(t) is completely determined
by the functions w(a), f (a0ua) and dwell time t0 .

Classification of the phase noise was first introduced by
Burshtein @6#. He defined the function f (a0ua) as

f ~a0ua !5 f ~a2ja0!5 f ~ja02a !, ~2.10!

where the parameter j characterizes the correlation between
two successive values of phase.

~1! When j50 the random process is uncorrelated

f ~a0ua !5w~a ! ~2.11!

since the phase a does not depend on its value prior to the
jump. Here each jump reproduces the stationary distribution
of phase w(a).

~2! Phase jump is anticorrelated when j521. A two-state
jump process a56a ~telegraph noise! with transition prob-
ability of

f ~a0ua !5d~a1a0! ~2.12!

satisfies this condition.
~3! When j→1, the phase jump is a correlated process.

The function f (a2a0) is even and its width gives the phase
shift value after the jump. When this width is zero,

f ~a0ua !5d~a2a0! ~2.13!

the process is ineffective. A small width specifies a process
with small phase jumps from the initial value a0 . For this
process, the Kolmogorov-Feller equation ~2.5! is reduced to
the Fokker-Plank equation @6,58#. Solution of the latter de-
scribes the phase diffusion when 12j!1. By means of
small jumps, the phase of the field can go very far from the
initial value.

We introduce a new addition to the phase noise classifi-
cation. Whereas the function f (a0ua) describes the correla-
tion between successive jumps, the stationary distribution
function w(a) specifies the reference point of phase. When

w~a !5const, ~2.14!

E w~a !da51, ~2.15!

the reference point is absent as all values of the phase have
equal probability and it is not possible to select some par-
ticular reference phase. If the function

w~a !5w~a2a0!5w~a02a ! ~2.16!

is centered near the value a0 , then the latter is a reference
point, as the phase walks randomly near it. The phase has a
mean value of

^a&5E aw~a2a0!da5a0 , ~2.17!

whereas for the process with phase distribution ~2.14!, we
have ^a&50 since the value of a0 is indefinite.

III. PHASE DIFFUSION FIELD

The correlated phase jump model (j51) without a refer-
ence point w(a)5const @see Eqs. ~2.14! and ~2.15!# is a
good description of the phase diffusion process when the
jump size is small. This model was developed in @5,6# to
analyze the influence of noise on atom evolution in a reso-
nant field. The Rabi oscillation of the population difference,
transition probability, and luminescence of the atom excited
by the field with correlated @5,6# and uncorrelated @3,4# phase
jumps were considered. We apply this model to a theoretical
study of polarization transients and hole burning in the inho-
mogeneous spectrum of impurity-ion crystals excited by
phase-noise field.

To define the parameters of the phase diffusion field

E(t)5E0e ivt1ia(t) we consider the field correlation function

^E~ t !E*~ t0!&5E0
2K~ t2t0!e iv~ t2t0!, ~3.1!

K~ t2t0!5^e ia~ t !2ia~ t0!&

5E E e i~a2a0!w~a0!w~a0 ,t0ua ,t !dada0 .

~3.2!

Multiplying the Kolmogorov-Feller equation ~2.6! on

e i(a2a0)w(a0) and integrating the result over a and a0 , we
get

]

]t
K~ t2t0!52

1

t0
~12^e iu& !K~ t2t0!, ~3.3!

^e iu&5E e iu f ~u !du , ~3.4!

where u5a2a0 . Fourier transform of its solution

K~ t !5exp~2t/t1!, ~3.5!

1

t1

5~12^cos u& !
1

t0

~3.6!

gives the Lorentzian power spectrum of the field

S~v8!5Re
1

p
E

0

`

^E~ t !E*~0 !&e2iv8tdt

5

uE0u2

p

t1

11~v2v8!2t1
2

. ~3.7!

When, for example, the phase jump size has a Gaussian dis-
tribution
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f ~u !5

1

aA2p
expS 2

u2

2a2D ~3.8!

then the half width of the power spectrum is

n5

1

t1

5

12exp~2a2/2!

t0

. ~3.9!

For a process with a small jump size (a!1), the half width
is reduced to

n5

a2

2t0

~3.10!

and the effective dwell time t1 becomes much longer than
t0 . Therefore the field spectral width n is much smaller than
the phase jump frequency n051/t0 when the phase changes
by small jumps. With growing jump size (a@1), the condi-
tional probability f (u) tends to a uniform one and finally it
coincides with the phase distribution w(a)5const. As a re-
sult, the correlated process approaches the uncorrelated pro-
cess and the effective dwell time t1 becomes equal to the
real dwell time t0 . Thus the increase of the phase jump size
leads to an increase in width of the field spectrum from the
value n ~3.10! to n0 .

To calculate the two-level atom response to such phase
fluctuations, we first use Burshtein’s @5,6# equation for the

partial density matrix r̂(a):

d r̂~a !

dt
52

i

\
@Ĥ~a !, r̂~a !#2

1

t0

r̂~a !

1

1

t0
E r̂~b ! f ~bua !db1R̂„r̂~a !…, ~3.11!

where Ĥ(a) is a Hamiltonian of the two-level atom excited
during a dwell time t0 by the field portion of phase a and

R̂„r̂(a)… is an operator that describes the density matrix re-
laxation induced by internal interactions. We have to find the
mean phase difference of the field and induced atomic polar-
ization, as just this value characterizes the field absorption.
This phase difference is defined by a variable

s12~a !5r12~a !exp~2ivt2ia1ikz !, ~3.12!

where 1 ~2! denotes ground ~excited! state and k is a field
wave number. Its mean value, as well as the mean value of
the population difference

^s12&5E s12~a !da , ~3.13!

w̄5E @r22~a !2r11~a !#da ~3.14!

satisfy the equations

ẇ̄5ix~^s12&2^s21& !2

1

T1
~w̄2w0!, ~3.15!

^s12
˙

5^s21
˙ &*5S iD2

1

T2

2

1

t1
D ^s12&1i

x

2
w̄ , ~3.16!

which are derived from Eq. ~3.11! by simple averaging. Here
T1 and T2 are relaxation times of population difference and
polarization, respectively; D5v02v is a detuning param-
eter from the atomic resonant frequency v0 ; x52mE0 /\ is
the Rabi frequency, and m5m125m21 is a dipole transition
matrix element. We also define w0 as the thermal equilib-
rium population difference.

Equations ~3.15! and ~3.16! are reduced to the conven-
tional Bloch equations by the substitution

ū5^s121s21&; v̄52i^s122s21&. ~3.17!

Their solution gives the mean value of polarization in the
instant reference frame linked rigidly to the field phase and
hence allows calculation of the field absorption. Phase noise
results in additional dephasing of polarization in this frame,
as its decay rate is modified as

1

T2m

5

1

T2

1

1

t1

. ~3.18!

Therefore the correlated phase walk leads to broadening of
the absorption line in the same way as fluctuation of the
resonant frequency.

IV. RANDOM PHASE FIELD WITH A REFERENCE

POINT: HOLE BURNING AND POLARIZATION

TRANSIENTS

As an example of a random phase field with a reference
point, we consider the well-known phase telegraph noise
~PTN! model. The phase changes instantly between two val-
ues a and 2a , whereas its mean value is zero and just this
value is the reference phase of the field. Oscillations of popu-
lation difference and luminescence of a two-level atom ex-
cited by the field with PTN were considered in @45,48#. We
extend this analysis to hole burning and polarization tran-
sients.

As the transition probability of PTN is described by ex-
pression ~2.12!, the Kolmogorov-Feller equation ~2.6! is re-
duced to

]

]t
w~a0,0ua ,t !52

1

t0

w~a0,0ua ,t !1

1

t0

w~a0,0u2a ,t !.

~4.1!

For the initial condition

w~a0,0ua ,0!5d~a2a0! ~4.2!

its solution is

w~a0,0ua ,t !5

1

2
da ,a0

F11expS 2

2t

t0
D G

1

1

2
da ,2a0

F12expS 2

2t

t0
D G . ~4.3!
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Taking into account that the equilibrium distribution function
of PTN is

w~a0!5
1
2 da0 ,a1

1
2 da0 ,2a ~4.4!

one can calculate a two-dimensional distribution function for
this process

c~a0,0ua ,t !5w~a0!w~a0,0ua ,t ! ~4.5!

and then an autocorrelation function

^E~ t !E*~0 !&5E0
2e ivtH cos2a1expS 2

t

tc
D sin2aJ ,

~4.6!

where tc5t0/2 is the correlation time of PTN. The power
spectrum of the driving field is given by the Fourier spec-
trum of the function ~4.6!

S~v8!5

E0
2

p H cos2a d~v82v !1

tcsin2a

11~v82v !2tc
2J .

~4.7!

The PTN field can be considered as consisting of two
fields, one is coherent with an amplitude Ecoh5E0cos a and
the other is random with a constant amplitude Enoise

5E0usin au and fluctuating phase 6p/2, the total phase jump
being p ~see Fig. 1!. Therefore its spectrum contains two
lines, the sharp deltalike line and broad Lorentzian one. The
ratio of the integral intensities of these fields is given by

Inoise

Icoh

5tan2a , ~4.8!

I i5E
2`

`

S i~v8!dv8, ~4.9!

where i denotes noise or coh and S i is the spectrum of i field
component. When, for example, a5p/4, both fields have the
same integral power. However, the power of the coherent
field Ecoh is stored in an infinitely narrow frequency band,
whereas the power of noise component is spread over a
broad line with half width ~HW! of g51/tc . We realize that
the phase of the coherent field also walks in a real experi-
ment due to instability of the reference oscillator. For ex-

ample, the linewidths of stabilized lasers used in an ultrahigh
resolution spectroscopy of solids are in the range 300–2000
Hz @60–63#. As this width is much smaller than homoge-
neous absorption linewidth of most impurity ions in solids,
the field is considered to be coherent and one can drop its
contribution to T2 @see Sec. III, Eq. ~3.18!#. Here we assume
that the phase of the reference oscillator undergoes a diffu-
sion process.

If the spectrum of a power source with unlocked phase
has, for example, a 1-MHz half width, then because of phase
locking to the phase of the reference oscillator, the output
spectrum shows two components: a sharp one with HW of
say 1000 Hz and a broad one with HW of 1 MHz. When the
integral intensities of both components are equal (a5p/4),
the spectral power density of the sharp component differs
strongly from that of the wide component. The wide compo-
nent is 30 dB less intense than the narrow one.

Below we show that this weak, broad component strongly
influences the two-level atom saturation by the coherent
component, whereas saturation by the wide component is
unaffected by the coherent part. The resultant saturation is
seen to be a two-component line. The narrow part of the line
is produced by combined effect of the fields Ecoh and Enoise

on two-level atoms while the second, wide part is burnt only
by incoherent field Enoise .

To describe this saturation, we use the Burshtein equation
~3.11! as in a previous section. First we calculate the two-
level atom response to the coherent field Ecoh , i.e., the fol-
lowing mean values

ūcoh1i v̄coh52^r12~a !&exp~2ivt1ikz !, ~4.10!

w̄5^r22~a !2r11~a !& ~4.11!

@compare them with expressions ~3.12!–~3.14!, ~3.17!#. They
are defined in the reference frame related to the phase of field
Ecoh . Then the Burshtein equation takes the form

ẋ~Wnoise ,t !52~ L̂01WnoiseL̂1!x~Wnoise ,t !1x~2Wnoise ,t !

1w~Wnoise!L̂ , ~4.12!

ẋ~2Wnoise ,t !52~ L̂02WnoiseL̂1!x~2Wnoise ,t !

1x~Wnoise ,t !1w~2Wnoise!L̂ ,

~4.13!

where

x5F ucoh

vcoh

w
G ; L̂0F t2 z 0

2z t2 2Wcoh

0 Wcoh t1

G ;

L̂15F 0 0 1

0 0 0

21 0 0
G ; L̂5w0~ t121 !F 0

0

1
G . ~4.14!

Variables ucoh , vcoh , and w are defined relative to the phase
of field Ecoh , i.e., w5r22(a)2r11(a), ucoh1ivcoh

52r12(a)exp(2ivt1ikz). Two dimensionless parameters,

FIG. 1. Phase diagram of phase-telegraph noise field. Ecoh is a

coherent component with a constant phase and amplitude. Enoise is a

noise component with phase jumping randomly over 6p .
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Wcoh5xt0cos a and Wnoise5xt0sin a, correspond to Rabi
frequencies of the coherent and incoherent fields; z5Dt0 is
a dimensionless detuning and time t is chosen in units t0 ;

t1,2511

t0

T1,2

. ~4.15!

We define two variables that are symmetric and asymmet-
ric combinations of the previous ones, i.e.,

x̄5x~Wnoise!1x~2Wnoise!, ~4.16!

xA5x~Wnoise!2x~2Wnoise!. ~4.17!

The first is the averaged density matrix. These variables obey
the equations

ẋ̄52~ L̂021 !x̄2WnoiseL̂1xA1L̂ , ~4.18!

ẋA52~ L̂011 !xA2WnoiseL̂1x̄ . ~4.19!

By Laplace transformation ~LT!

x̄~p !5E
0

`

e2ptx̄~t !dt ~4.20!

the differential equations ~4.18! and ~4.19! are converted to
algebraic equations

~ L̂01p21 !x̄~p !1WnoiseL̂1xA~p !5

L̂

p
1 x̄~0 !,

~4.21!

WnoiseL̂1x̄~p !1~ L̂01p11 !xA~p !5xA~0 !, ~4.22!

where x̄(0) and xA(0) are initial values of the variables x̄(t)
and xA(t).

Solution of these equations gives the Laplace transform of
the averaged density matrix

x̄~p !5$~ L̂01p21 !2Wnoise
2 L̂1~ L̂01p11 !21L̂1%

21

3H L̂

p
1 x̄~0 !2WnoiseL̂1~ L̂01p11 !21xA~0 !J .

~4.23!

Before switching on the field E(t), the value xA(0) was zero

and the averaged density matrix was x̄(0)5L̂/(t121). By

substituting t̄ 1,25t1,21p21, expression ~4.23! can be rewrit-
ten as

x̄~p !5@ L̂̄02Wnoise
2 L̂1~ L̂̄012 !21L̂1#21

L̂ t̄ 1

p~ t̄ 12p !
,

~4.24!

where

L̂̄05F t̄ 2 z 0

2z t̄ 2 2Wcoh

0 Wcoh t̄ 1

G . ~4.25!

Calculation of the v̄coh(p) component of the column vector

x̄(p) gives the result

v̄c~p !5

w0 t̄ 1

pt1m

WcohBt2m

z2
1Wcoh

2 ~ t2m /t1m!1Bt2m t̄ 2

, ~4.26!

where

t1m5 t̄ 11~Wnoise
2 /D !~ t̄ 112 !~ t̄ 212 !,

t2m5 t̄ 21~Wnoise
2 /D !~ t̄ 212 !2, ~4.27!

B21
511~Wnoise

2 /D ! t̄ 2 ,

D5z2~ t̄ 112 !1Wcoh
2 ~ t̄ 212 !1~ t̄ 112 !~ t̄ 212 !2.

~4.28!

If the value Wnoise50 is taken, then the expression ~4.26!
reduces to the solution of the conventional Bloch equations.
The stationary solution of equations ~4.12! and ~4.13! is ob-
tained from the limit

~ v̄coh!st5 lim
p→0

p v̄coh~p !. ~4.29!

It contains the information about the hole burnt into the in-
homogeneous spectrum of an ensemble of two-level atoms
by an infinitely long driving field pulse.

We consider the noise with a short correlation time given

the inequality t0!T1 ,T2 ,xcoh
21 ,xnoise

21 ,D21, where xcoh

5x cos a and xnoise5x sin a are Rabi frequencies of the co-
herent and incoherent fields. Then we can approximate the
values D , B , t2m , and t1m when p50 by D'8; B'1 and

~ t1,2!m5

t0

T1,2

1

Wnoise
2

2
. ~4.30!

For these conditions, expression ~4.29! takes the form

~ v̄coh!st5
w0

T1

•
xcoh~Gu /Gw!

D2
1xcoh

2 ~Gu /Gw!1~Gu /T2!
, ~4.31!

where

Gu5

1

T2

1G , Gw5

1

T1

1G , G5xnoise
2 tc . ~4.32!

The variable ( v̄coh)st describes the absorption of the field
Ecoh . Moreover it is proportional to the deviation of the sta-
tionary saturated population difference from the unperturbed

value: w02w̄st , as
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w̄st5
w0

T1Gw
H 12

xcoh
2 ~Gu /Gw!

D2
1xcoh

2 ~Gu /Gw!1~Gu /T2!
J .

~4.33!

When G@1/T1,2 ~or xnoise
2 tcT1,2@1), the hole half width for

strong saturation (xcoh
2

@Gw /T2) approaches the Rabi fre-

quency of the coherent field xcoh , as the rates Gu and Gw

become equal. This behavior is markedly different from that
of saturation of solids by a monochromatic field, i.e., by the
field Ecoh without noise Enoise . The latter burns a hole with

HW of xcohAT1 /T2, which is much larger than xcoh ~since
T1@T2). The associated free induction decay ~FID! after a
long saturating pulse with phase noise has a decay rate

GFID5

1

T2

1AGu

T2

1x2
Gu

Gw

. ~4.34!

When Gu'Gw ~or G@1/T1,2), this rate becomes anoma-
lously slow as in experiments @60,64,65#.

We now consider the transient nutation ~TN! excited by
coherent field Ecoh when the incoherent field is present. The
induced coherent polarization per particle is given by

Pcoh~ t !5

m

2
~ ūcoh1i v̄coh!e ivt2ikz, ~4.35!

where the overbar denotes an average over the noise states.
We consider an ensemble of particles with an inhomoge-
neous spectrum. The ensemble response to the driving field
is

^Pcoh~ t !&ens5
m

2
^ūcoh1i v̄coh&ense

ivt2ikz, ~4.36!

where ^ &ens denotes an average over the inhomogeneous
spectrum

^Pcoh~ t !&ens5E Pcoh~ t ,v0!F~v0!dv0 ~4.37!

and F(v0) is the particle number distribution over the inho-
mogeneous spectrum. If the driving field frequency v falls at

the center vc of the symmetric spectrum, then v̄coh(D ,t) be-

comes an even function of D , and ūcoh(D ,t) is odd since its
Laplace transform is proportional to resonant detuning z

5Dtc , i.e.,

ūcoh~p !52

w0 t̄ 1

pt1m

zWcoh

z2
1Wcoh

2 ~ t2m /t1m!1Bt2m t̄ 2

.

~4.38!

In the limit of infinite inhomogeneous width, expression
~4.24! simplifies to

^Pcoh~ t !&ens5i
m

2
F~vc!e ivt2ikzE v̄coh~v0 ,t !dv0 .

~4.39!

The Laplace transform of function v̄coh(v0 ,t) is given by
Eq. ~4.26!. We consider time scales of the function

v̄coh(v0 ,t) that are longer than tc . Therefore it is possible to
restrict the analysis to small p(upu!1). This approximation
corresponds to neglecting the fast decaying ~at rate 1/tc) part
of the solution. For this condition, Eq. ~4.26! is reduced to

v̄coh~ p̄ !5

w0

p

xcoh~Gu1 p̄ !~1/T11 p̄ !

~Gw1 p̄ !@D2
1~Gu1 p̄ !~1/T21 p̄ !#1xcoh

2 ~Gu1 p̄ !
~4.40!

where p̄5p/t0 .
Averaging over the inhomogeneous spectrum

^v̄coh~ p̄ !&ens5F~vc!E v̄coh~v0 , p̄ !dv0 ~4.41!

gives the Laplace transform of the ensemble’s ^v̄coh( p̄)&ens

component

^v̄coh~ p̄ !&ens5
pF~vc!w0xcoh~1/T11 p̄ !

pAxcoh
2

1~Gw1 p̄ !~1/T21 p̄ !
AGu1 p̄

Gw1 p̄
.

~4.42!

When T1→` , we can use the approximation applied in @66#
and obtain

^v̄coh~ t !&ens5pF~vc!w0xcohJ0~xmt !expS 1/T21G

2
t D ,

~4.43!

where xm5xcohA12z2; z5(12xnoise
2 tcT2)/2xcohT2 and

J0(x) is the zeroth-order Bessel function.
The transient nutation signal ~4.36! with amplitude ~4.43!

demonstrates an additional decay rate

GTN5

1

2
S 1

T2

1G D , ~4.44!

which is intensity dependent as G5xnoise
2 tc . This depen-

dence is qualitatively similar to the observed one in Ref. @67#

Gexp5a1bx , ~4.45!

where a'1/2T2 and b52.431022 ~sample No. 1!. Both
decay rates grow with excitation intensity increase, however,
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one is square and the other is linearly dependent on the Rabi
frequency. The linear dependence of GTN is described in Ref.
@68# by a different model of the phase-locked noise, where
the phase distribution near the reference phase is Lorentzian.

To clarify this effect, we reconstruct from Laplace trans-

forms ūcoh(p), v̄coh(p) and w̄(p) the modified Bloch equa-
tions

u̇̄coh52D v̄coh2Guūcoh , ~4.46!

v̇̄coh5D ūcoh1xcohw̄2G
v
v̄coh , ~4.47!

ẇ̄52xcohv̄coh2Gww̄1

w0

T1

, ~4.48!

which are valid for the frequency range of uDu!1/tc when
t@tc . Modified relaxation rates are

Gu5

1

T2

1G , G
v
5

1

T2

, Gw5

1

T2

1G . ~4.49!

Then we consider the two-level atom ~TLA! as a spin S

51/2 in a constant magnetic field H0 . Interaction of the Sz

spin component with this field (z axis is parallel to H0) leads
to energy splitting of the TLA. The field H1(t), rotating in
the x-y plane is similar to resonant excitation when the rota-
tion frequency is equal to the TLA transition frequency. In a
reference frame rotating with field H1(t), spin S does not see
the field H0 and therefore it undergoes precession around
field H1 . The result is the resonant spin-flip or resonant TLA
transitions. This simple picture is well known in nuclear
magnetic resonance @69#. Within this picture it is easy to
explain TLA behavior in the two fields, Ecoh and Enoise .

Since the w̄ component is equivalent to the Sz spin compo-

nent, ūcoh is equivalent to the Sx component ~which is in

phase with the coherent field in the rotating frame!, and v̄coh

is equivalent to the Sy component, we can represent TLA

interaction with fields Ecoh and Enoise as shown in Fig. 2. We

see that the Ecoh field induces a resonant transition since it is

transverse to the w̄ component. The effective spin undergoes

a precession around Ecoh and its projection on the w̄ axis is
changed. Field Enoise induces a resonant transition for the

same reason. Moreover Enoise induces the change of ūcoh

component in a random way, as it is transverse to this com-
ponent also. Thus the noise field Enoise contributes to the

relaxation of the ūcoh and w̄ components, i.e., to the Gu and

Gw rates. Since this field is parallel to v̄coh component, it has
no effect on this component and the G

v
rate remains un-

changed.
Equations ~4.46!–~4.48! with modified relaxation rates

~4.49! describe TLA saturation by the coherent component of
the field when, in addition, the incoherent component in-
duces relaxation and saturation ~the noise saturates TLA with

a rate G5xnoise
2 tc). Modified equations ~4.46!–~4.48! are

valid over a frequency range that is smaller than the noise
band g51/tc . Over a frequency range comparable with g ,
we must use the exact solution ~4.24! of equations ~4.12! and
~4.13!. Then, for example, the Laplace transform of TLA
population difference takes the form

w̄~p !5

w0

p
$12~Wcoh /t1m!F1~p !%$12~Wnoise / t̄ 1!F2~p !%, ~4.50!

F1~p !5

Wcoht2m

z2
1Wcoh

2 ~ t2m /t1m!1Bt2m t̄ 2

, ~4.51!

F2~p !5

Wnoise~ t̄ 212 !

z2
1Wnoise

2 ~ t̄ 212 !/ t̄ 11Wcoh
2 ~ t̄ 212 !/~ t̄ 112 !1~ t̄ 212 !2

. ~4.52!

It consists of two components. The first ~narrow! describes

TLA saturation by the field Ecoh , and the second ~broad! is

burnt by the field Enoise . The narrow component is described

by the term with function F1(p). Relevant modified Bloch

equations include decay rates ~4.49!. The wide component is

described by the term with function F2(p). If we put Ecoh

50 and EnoiseÞ0, then it is possible to reconstruct from Eq.

~4.50! other modified Bloch equations

FIG. 2. Two-level atom interaction with coherent and incoherent

fields. These fields induce precession of the components that are

transverse to them. The Ecoh field induces change of the w̄ and v̄coh

components. The Enoise field causes random change of the w̄ and

ūcoh components.
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u̇noise52Dvnoise2S 1

T2

1g D unoise , ~4.53!

v̇noise5Dunoise1xnoisewnoise2S 1

T2

1g D vnoise , ~4.54!

ẇnoise52xnoisevnoise2
wnoise2w0

T1

, ~4.55!

which describe TLA saturation by incoherent field Enoise .
We introduced here the variables unoise , vnoise , wnoise to
distinguish them from those defined in Eqs. ~4.10! and
~4.11!. It should be emphasized that the absorption of field

Enoise is not described by ūcoh , v̄coh components of the

Bloch vector, although the TLA population difference w̄ is
correct. The latter saturates as

w̄5wnoise5wst1~w02wst!e2Gt, ~4.56!

where

G5

xnoise
2 g

D2
1g2

, wst5w0

D2
1g2

D2
1g2

1xnoise
2 gT1

. ~4.57!

Here, the rate G is defined over an extended frequency range,
comparable to that defined in Eq. ~4.32!. Below we derive
the TLA response for the combined field Ecoh1Enoise and
show the validity of Eqs. ~4.53!–~4.55!.

V. ABSORPTION OF THE FIELD WITH PHASE NOISE

The mean value of polarization in the reference frame

linked rigidly to the field phase is described by ū and v̄

functions defined in Eq. ~3.17!. We need not derive the equa-

tions for them, as there is a relation between ū , v̄ , and

ūcoh , v̄coh components, i.e.,

ū5 ūcohcos a1vAsin a; v̄5 v̄cohcos a2uAsin a ,
~5.1!

where uA and vA are asymmetric combinations of partial
Bloch-vector components @see Eqs. ~4.16! and ~4.17!#

uA5ucoh~a !2ucoh~2a !; vA5vcoh~a !2vcoh~2a !.
~5.2!

The latter are related to the mean value of the Bloch vector
according to Eqs. ~4.21!–~4.24! as

xA~p !52Wnoise~ L̂̄012 !21L̂1x̄~p !. ~5.3!

Only the mean value of polarization ~calculated in the instan-
taneous reference frame! provides reliable information about

the field absorption coefficient ~proportional to v̄ compo-
nent!. Substitution of Eq. ~5.3! into Eq. ~5.1! gives its
Laplace transform

v̄~p !5

w0

p H B
t̄ 1

t1m

F1~p !cos a

1F12

2~ t̄ 11 t̄ 212 !WcohBF1~p !

~ t̄ 112 !~ t̄ 212 !t1m

GF2~p !sin aJ ,

~5.4!

where functions F1(p) and F2(p) are defined in Eqs. ~4.51!
and ~4.52!. The TLA response consists of two parts, one with
a narrow spectrum @function F1(p)] and another with a wide
spectrum @function F2(p)]. If we put xcoh50 and xnoise

Þ0, then the wide component coincides with a solution of
modified Bloch equations ~4.53!–~4.55! for the
unoise , vnoise , wnoise variables. There is only one difference,
an extra sin a function which comes from the phase averag-
ing of power absorption. Below we clarify the origin of this
difference.

When the driving field

E~ t !52E0cos~vt1a ! ~5.5!

has a random phase a , we cannot use the common expres-
sion for field absorption. We must start from first principles
and derive a modified one. It is well known that power ab-
sorption takes place when there is a phase difference be-
tween the field and TLA response. Power absorption by a
unit volume is described by @70#

A5

v

2p
E

t50

t5T

E~ t !dP~ t !, P~ t !5N~m12r211m21r12!,

~5.6!

where P(t) is the TLA polarization; N is the number of
TLAs per unit volume and T52p/v is the field oscillation
period. There are two possibilities of defining TLA polariza-
tion. The first one is

P~ t !5mN@u cos~vt1a !2v sin~vt1a !# , ~5.7!

where u1iv52s12 and s12 is defined in a reference frame
linked with the instant phase of the field @see Eq. ~3.12!#.
Substitution of this polarization into Eq. ~5.6! and calculation
of the integral over t gives the result ~it is assumed that the
phase a has not changed during the field oscillation period T

since tc@T)

A52vmE0Nv . ~5.8!

Then the phase average

^A&a52vmE0N^v&a ~5.9!

gives an expression for the field absorption. Since v is de-
fined in the instant reference frame, the mean value ^v&a

coincides with v̄ . Therefore the v̄(t) function calculated
from Eq. ~5.4! can be used directly in the expression for field
absorption ~5.9!. We see that the result coincides with the
usual expression for power absorption of the field with con-
stant phase ~5.8!.

The second way to define polarization is

P~ t !5mN~ucohcos vt2vcohsin vt !, ~5.10!
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where ucoh and vcoh are defined relative to the reference
phase. For this case, calculation of the integral ~5.6! gives

A52vmE0N~vcohcos a2ucohsin a !. ~5.11!

Phase average of the latter gives a new expression for power
absorption

^A&a52vmE0N~^vcohcos a&a2^ucohsin a&a!.
~5.12!

For phase telegraph noise, one can calculate these average
functions in the following way. Consider the phase diagram
of the field and Bloch-vector components ucoh , vcoh ,

v(6a), presented in Fig. 3. Here Ecoh denotes the coherent
component of the field; E(a) and E(2a) show the relative
phases of the field for the two states; Ecoh' , E'(a), and
E'(2a) are vectors with the p/2 phase shift relative to
Ecoh , E(a), and E(2a), respectively. The Bloch-vector
component ucoh is in phase with Ecoh whereas vcoh , v(a),
and v(2a) are phase shifted relative to Ecoh , E(a), and
E(2a), respectively. Projection of the vcoh component on
E'(6a) directions does not change with phase shift and
therefore

^vcohcos a&a5@vcoh~a !1vcoh~2a !#cos a5 v̄cohcos a .
~5.13!

Meanwhile, projection of the ucoh component on these direc-
tions changes the sign and hence

^ucohsin a&a5@ucoh~a !2ucoh~2a !#sin a5uAsin a .
~5.14!

Substitution of Eqs. ~5.13! and ~5.14! into Eq. ~5.12! gives
the result

^A&a52vmE0N~ v̄cohcos a2uAsin a ! ~5.15!

coinciding with that obtained by substitution of Eq. ~5.1! in
Eq. ~5.9!.

Thus, we have shown that the power absorption of the
field with phase telegraph noise for an ensemble of two-level

particles with a homogeneous absorption spectrum is de-
scribed by Eq. ~5.15! or Eq. ~5.9!. Taking the limit ~4.29! of
function ~5.4! on the p variable, one gets an exact expression
for power absorption:

^A&a52Nw0

v

\ H G1

Gw

BxcohF1~D !1xnoiseF2~D !

3F12

g~g1G11G2!

Gw~g1G1!~g1G2!
BxcohF1~D !G J ,

~5.16!

where

F1~D !5

xcohGu

D2
1xcoh

2 ~Gu /Gw!1BGuG
v

,

F2~D !5

xnoise~g1G2!

D2
1xcoh

2 g1~g1G2!2
1xnoise

2 ~g1G2!/G1

,

G1,25
1

T1,2

, B21
511

GG2

~g1G1!~g1G2!
, g5

g1G2

g1G1

,

and decay rates are defined in explicit form without approxi-
mation

Gu5

1

T2

1gG , G
v
5

1

T2

, Gw5

1

T1

1G , ~5.17!

G5

xnoise
2 ~g1G2!

D2
1xcoh

2 g1~g1G2!2
. ~5.18!

Examples of absorption spectra @Eq. ~5.16!# are shown in
Fig. 4. They consist of two lines; a narrow one sitting on a
broad one. The broad line arises from the incoherent compo-
nent of the field. Its half width

G incoh'Ag2
1xnoise

2 gT1 ~5.19!

may become much larger than the half width of the broad
component of the field spectrum g . For example, when
xnoise /(2p)5xcoh /(2p)5200 kHz, g/(2p)51 MHz and
T154 msec, the value G incoh /(2p)531.7 MHz becomes
comparable with frequency tuning ~Stark shift @71#! of reso-
nant atoms or exciting beam frequency shift in photon echo
experiments. Therefore atoms removed from resonance with
the central field component are still excited by the broad
component of the field. This gives a contribution G to the T2

and T1 relaxation times measured by two-pulse and three-
pulse echoes. For example, when the frequency shift is 25
MHz, this contribution to decay rates 1/T2 and 1/T1 is 64 Hz
for the above conditions and 1.6 kHz when xnoise /(2p)
5xcoh /(2p)51 MHz. For this reason, one has to be care-
ful in the interpretation of the intensity dependence of T2 ,
since the broad component of the excitation field spectrum
can give a contribution similar to the instantaneous diffusion
effect.

Our consideration is not related to the photon-echo in-
duced by delayed incoherent pulses @46,49,50,53,54#. In
these studies an incoherent optical pulse is produced by a

FIG. 3. Phase diagram of the noise field and Bloch-vector com-

ponents. Ecoh , E(6a) represent phases of these two fields.

E'(6a) and Ecoh ' indicate vectors with phases shifted by p/2

relative to the corresponding fields. ucoh , vcoh , and v(6a) are

Bloch-vector components defined in reference frames linked to the

phase of the coherent field Ecoh and random-phase field E(6a),

respectively.
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dye ‘‘laser’’ with only one mirror or a light-emitting diode.
Therefore the irradiation arises as enhanced spontaneous
emission with statistical properties close to the chaotic field
~see Introduction!. Since the pulse sequence is realized by
optical delay of a single pulse, both pulses are correlated in
phase in spite of their incoherent property.

We consider excitation with a single mode laser with
locked phase. Pulses of length tp are, in effect, produced by
fast frequency tuning of the CW output beam or resonant
frequency of the atoms. Thus a certain group of the atoms are
in resonance with the field only during these frequency tun-
ing periods and out of resonance between tuning periods. As
the phase of the field fluctuates, there is no correlation be-
tween excitation pulses although the reference phase is as-
sumed to be fixed. When the pulse duration tp is shorter than
dwell time of the phase jump tc(tp!tc), each pulse can be
considered coherent and atom excitation is described by the
Bloch equations with relaxation and phase fluctuation being
neglected. The phase of the two-pulse echo signal depends
on the relation between phases of the pulses. For example,
the phase difference between the second pulse and echo sig-
nal is a211

3
2 p , where a21 is the phase difference between

second and first pulses. The echo amplitude does not depend
on this difference. As was shown above, this amplitude ac-

quires an additional damping due to the saturation of the
broad ‘‘incoherent’’ hole. The latter process is described by
Bloch equation with T1 and T2 modified according to Eqs.
~5.17! and ~5.18!. The same considerations are true for the
stimulated photon echo.

The accumulated photon echo is sensitive to the relative
phases of the exciting pulses. As was shown in @55,72,73#,
one can even get zero signal at a particular value of the phase
difference of the exciting pulses, which may be helpful in
photon echo data erasure. We do not consider this effect in
detail. We only show that there is additional damping caused
by saturation of the ‘‘incoherent’’ hole when an
accumulated-stimulated echo is produced by frequency tun-
ing and excitation by a single mode laser with locked phase.

VI. FID AFTER SATURATION BY THE FIELD

WITH PHASE-TELEGRAPH NOISE

We consider an ensemble of particles ~with an inhomoge-
neous absorption spectrum! excited by the field

E~ t !5E0exp~ ivt1ia ! ~6.1!

whose phase a undergoes a random telegraph process. Exci-
tation is switched on at t52` . It is assumed that saturation
reaches a stationary state before time t50. The hole burnt
into the inhomogeneous spectrum is described by the popu-
lation difference ~4.50!

w̄~D !5w0F12

xcoh

Gw

F1~D !GF12

xnoise

G1

F2~D !G . ~6.2!

At time t50, the field frequency v is shifted instantly to v
1V:

E~ t !5E0exp~ ivt1iVt1ia !. ~6.3!

We assume that the frequency shift V is much larger than
hole width, and consider saturated particles to be removed
from excitation at t50. Two response fields appear in the
sample, one at frequency v1V and the other at frequency
v , i.e.,

Er~ t !5E1~ t !e i~v1V !t
1E2~ t !e ivt. ~6.4!

The beam reaching the detector is the sum of the laser field
~6.3! and emitted sample field ~6.4!. Since the optical detec-
tor is a square law device, we must calculate the intensity
present at the detector, which is

I~ t !5c«0Es~ t !Es
*~ t !, ~6.5!

where Es(t)5E(t)1Er(t). Now Er!E0 for any optically
thin sample, so the term, proportional to uEru

2 may be ig-
nored and

I~ t !5I01I1~ t !1I2~ t !, ~6.6!

where

FIG. 4. Phase-telegraph-noise field absorption of a homoge-

neously broadened line vs resonant tuning ~in kHz!. TLA relaxation

times are T154 msec and T2515 msec. Half width of the broad

component of the field spectrum g/(2p) is 1 MHz. Rabi frequen-

cies of the coherent and noise components of the field are equal to

~a! xcoh /(2p)5xnoise /(2p)56 kHz and ~b! xcoh /(2p)

5xnoise /(2p)5100 kHz.
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I05c«0E0
2 ,

I1~ t !5c«0$E0E1
*~ t !e ia

1c.c.%,

I2~ t !5c«0$E0E2
*~ t !e iVt1ia

1c.c.%.

The last term on the right-hand side of Eq. ~6.6! contains the
FID signal of particles removed from excitation and second
term corresponds to transient nutation signal of particles
tuned to resonance at t50. We consider the FID signal that
is due to oscillations on the carrier frequency V .

The response field E2(t) is driven by the free precessing
polarizations of all particles excited before the frequency
switch, i.e.,

E2~ t ! e ivt
52i

vl

«0c
E

2`

`

P~v0!F~v0!dv0 , ~6.7!

P~v0!5

m

2
@ucoh~a0!1ivcoh~a0!#exp~ iv0t2t/T2!,

~6.8!

where a0 is the field phase at switching time t50. Substitu-
tion of Eqs. ~6.7! and ~6.8! into the I2(t) function gives

I2~ t !5mE0vl e2t/T2$^cos~Dt2Vt2a ! vcoh~a0!&ens

1^sin~Dt2Vt2a ! ucoh~a0!&ens%, ~6.9!

where ^ &ens denotes average over the inhomogeneous
broadening. Since the phase a changes with time, we must
average the intensity I2(t) using the phase transition prob-
ability ~4.3!:

^I2~ t !&a5E I2~ t !w~a0,0ua ,t ! da . ~6.10!

The result is

^I2~ t !&a5mE0vl e2t/T2@V~ t !1U~ t !# , ~6.11!

V~ t !5^@cos~D2V !t cosa0

1e2gtsin~D2Vt sina0# vcoh~a0!&ens , ~6.12!

U~ t !5^@sin~D2V !t cosa02e2gtcos~D2V !t sina0#

3ucoh~a0!&ens . ~6.13!

Bloch-vector components ucoh(a0) and vcoh(a0) are defined
in a reference frame linked to the phase of the coherent part
of the field Ecoh . Their values are defined by the simple
relations:

ucoh~6a !5
1
2 ~ ūcoh6uA!, ~6.14!

vcoh~6a !5
1
2 ~ v̄coh6vA!. ~6.15!

When an ensemble of two-level particles is excited by the
field ~6.1! at the center of the inhomogeneous line, then com-

ponents ūcoh(D) and vA(D) are odd functions of D , whereas

v̄coh(D) and uA(D) are even functions. This allows simplifi-

cation of Eq. ~6.11! in terms of the ūcoh , v̄coh , uA , and vA

components as follows:

^I2~ t !&a5

1

2
mE0vl e2t/T2F ^M 1~ t !&enscosVt

2

a0

a
^M 2~ t !&enssinVt G , ~6.16!

M 1~ t !5~ v̄cohcos a2e2gt uAsin a !cosDt1~ ūcohcos a

1e2gt
vAsin a !sinDt , ~6.17!

M 2~ t !5~uAcos a1e2gt
v̄cohsin a !cosDt2~vAcos a

2e2gtūcohsin a !sinDt . ~6.18!

The FID intensity ~6.16! consists of two terms, one ~with
sinVt function! depends on the sign of a0 while the other
~with cosVt function! does not. In FID experiments, the
phase a0 at the time of the frequency shift changes randomly
from shot to shot. The probability of finding phases a or
2a is equal @see Eq. ~4.4!#. Therefore averaging a large
number of FID signal sweeps will cancel out the contribution
of the term with the sinV function. Then the average FID
signal detected by the heterodyne technique is

^^I2~ t !&&a ,a0
5

1
2 mE0vl e2t/T2^M 1~ t !&enscosVt ,

~6.19!

M 1~ t !5 v̄mcosDt1 ūmsinDt , ~6.20!

v̄m5 v̄cohcos a2uA e2gtsin a , ~6.21!

ūm5 ūcohcos a1vA e2gtsin a , ~6.22!

where double brackets ^^ &&a ,a0
denote averaging over a

and a0 phases. The effective components ūm and v̄m differ

from the ū and v̄ functions, defined in the instant reference
frame @see Eq. ~5.1!# by the exponent e2gt. Their stationary
subcomponents are

ūcoh52

G1

Gw

Dxcohw0

D2
1Gcoh

2
, ~6.23!

v̄coh5B
G1

Gw

Guxcohw0

D2
1Gcoh

2
, ~6.24!

uA52

gxnoisew0

D2
1G incoh

2 F12

g~g1G11G2!

Gw~g1G1!~g1G2!
BxcohF1~D !G ,

~6.25!

vA52

Dxnoisew0

D2
1G incoh

2 F12

g~G22G1!

GwGu~g1G1!
xcohF1~D !G ,

~6.26!

where
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Gcoh5ABGuG
v
1xcoh

2
Gu

Gw

, ~6.27!

G incoh5A~g1G2!2
1xcoh

2 g1xnoise
2 S g1G2

G1
D . ~6.28!

The main contribution to the FID signal is given by the

ūmsinDt term. Averaging over the inhomogeneous line gives
the following expression for the FID signal:

Š^I2~ t !&‹a ,a0
52

px2Nvlw0

2\D̄
H sin2ae2~Gn1g !t

1

cos2a

GwT1

e2GctJ e2t/T2cosVt , ~6.29!

where D̄ is the inhomogeneous line half-width — assumed to
be much larger than the widest hole in the spectrum. Here, to
simplify this expression, we keep only the first largest terms
in the expansion of the exponents’ coefficients. The time
dependence of Eq. ~6.29! is shown in Fig. 5. The FID con-
sists of a fast and slow component. The fast part is caused by
the broad ~‘‘incoherent’’! hole and the slow by the narrow
~‘‘coherent’’! hole. The narrow hole demonstrates non-Bloch
saturation @60,64,65#.

VII. CONCLUSION

We considered resonant excitation of an ensemble of two-
level atoms by a phase-noise field. A new equation of the
field absorption ~5.9!, which does not depend on the type of
random phase process, was derived. Then random-walk
phase ~phase diffusion model without reference point! and
phase fluctuation in the limited domain ~model of random
phase locked near some reference point! were considered as
examples of two different processes. We showed that inter-
action of a phase diffusion field with two-level atoms is de-
scribed by a Bloch equation with modified dephasing rate

1

T2m

5

1

T2

1n , ~7.1!

where n is a half width of the ~Lorentzian! field spectrum.
Thus, the random walk of the phase produces only an addi-
tive broadening of the absorption line. As the saturation of
this line is described by a Bloch model with modified T2m ,
the saturation broadening also increases if T1 is the longest
relaxation time of TLA. It is easy to show that free induction
decay and transient nutation are described by the same modi-
fied Bloch model.

Phase-telegraph noise is considered as an example of
locked-phase noise. The power of this field is divided into
two parts. One is compressed into a narrow (d function! line
and the other is spread over a broad frequency band. Even
when the integral intensities of them are comparable, their
spectral densities strongly differ. For example, at the center
of the narrow line, the relative intensity of the broad compo-
nent is infinitely small. When the reference phase undergoes
some additional unlocked fluctuation with a rate nc which is
smaller than basic fluctuation rate g of phase-locked noise,
then the central peak acquires a finite small broadening and
the ratio of spectral densities of broad and narrow compo-
nents at their maxima is equal to nc /g . We show that even
when this ratio is very small ~for example, the broad compo-
nent is three orders of magnitude less than the narrow com-
ponent!, the locked-phase-noise field cannot be considered to
be coherent. We show that TLA saturation by the narrow
field component is affected by the broad field component.
The latter contributes to the 1/T1 and 1/T2 relaxation rates.
When they become nearly equal, non-Bloch saturation takes
place. This increase of relaxation rates also leads to an ac-
celeration of the transient nutation decay. Moreover, we
showed that the broad component of the field saturates its
own hole in the spectrum. As the width of this hole is com-
parable with frequency switch interval in photon echo ex-
periments, we surmise that saturation by the broad field com-
ponent may affect the photon echo decay rate.
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APPENDIX

Let us consider excitation of the cavity by the field

E~ t !5E0cos@vt1a~ t !# ~A1!

with the pump rate P. For simplicity we assume that the
phase of the field a jumps by the same value u for each time
interval t0 , i.e., the field phase grows steadily with time. If
the damping rate G of the cavity is the smallest parameter
and the pump rate is the largest parameter, i.e.,

G!1/t0!P ~A2!

then for each time interval t0 , a fraction of the field with
current phase ak is stored in the cavity. The amplitude of this
stored field fraction is equal to Pt0E0 at the end of the time
interval t0 . In the time scale of the cavity excitation lifetime
Tq51/G , we have many changes of the pump field phase
since t0!Tq . For this reason many fractions of the field

FIG. 5. FID vs time ~in msec). Parameters of the field and

two-level atom relaxation times are the same as in Fig. 4 ~case b!.
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with constant, different phases are stored during the lifetime
of the cavity excitation. Thus the excited cavity field is the
sum of many field fractions with different phases. For further
simplification we consider the cavity with Tq→` . Then the
evolution of the cavity field may be presented as

En5Pt0E0~e ia01e ia11e ia21•••1e ian!, ~A3!

where an5a01nu and n5t/t0 is considered as integer, i.e.,
we look for the field evolution in the process of pump addi-
tion ~fraction by fraction! at the end of each time interval t0

and do not consider fast changes within these time intervals.
~The field fraction with a particular phase ak grows in the
cavity during the duration t0 of the corresponding pump
field fraction. The stored fraction is not changed after the
phase change of the pump as we assume infinite lifetime for
the cavity excitation.! Equation ~A3! is simplified as

En5Pt0E0e ia0 (
k50

n

e iuk
5Pt0E0e ia0

12e iu~n11 !

12e iu
.

~A4!

If the phase change u is small (u!1), then this equation is
reduced to

En5i
Pt0

u
E0e ia0@12e iu~n11 !# . ~A5!

In Fig. 6 the evolution of the pump field phase is shown,

where numbers 1,2,3, . . . indicate the current change of the

phase ~the arrow with subscript a0 indicates the initial phase

of the field in Figs. 6 and 7!. In Fig. 7 the evolution of the

phase and amplitude of the field stored in the cavity is

shown. The bold circle shows the phase-amplitude trajectory

of the stored field. Its amplitude changes between zero and

(Pt0 /u)E0 . The phase of the stored field changes between

a0 and a01p . We see that the phase of the pump field

grows steadily, whereas the phase of the stored field is

locked near phase a01p/2 within a domain (a0 ,a01p),

i.e., the phase fluctuates by 6p/2 near the phase a01p/2.

Thus we see that a regular phase change of the pump

results in phase-locked change of the cavity field. If the
pump phase changes randomly according to a diffusion pro-
cess, then any small phase shift does not essentially change
the phase of the cavity field that is locked to the first phase of
the pump. Only an accidentally large phase jump ~having a
small probability! moves the locked phase to a new state.
However, this movement takes place gradually within the
next period of small phase jumps near the new state of the
pump phase.
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@4# A. I. Burshtein, Zh. Éksp. Teor. Fiz. 49, 1362 ~1965! @Sov.

Phys. JETP 22, 939 ~1966!#.

@5# A. I. Burshtein and Y. S. Oseledchik, Zh. Éksp. Teor. Fiz. 51,
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