

NRC Publications Archive Archives des publications du CNRC

The transmission loss of 203 mm thick prestressed precast concrete hollowcore floors Mahn, Jeffrey

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.4224/23002895 Client Report (National Research Council of Canada. Construction), 2018-03-28

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=59bb30be-b77c-4df7-b739-b0343a1a34f2 https://publications-cnrc.canada.ca/fra/voir/objet/?id=59bb30be-b77c-4df7-b739-b0343a1a34f2

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

The Transmission Loss of 203 mm Thick Prestressed Precast Concrete Hollowcore Floors

Canadian Precast/Prestressed Concrete Institute Report A1-012467.2 28 March, 2018

Conseil national de recherches Canada

Executive Summary

The transmission loss and impact insulation of floors comprised of 203 mm (8 in) thick precast/prestressed concrete hollowcores slabs were evaluated in the direct floor testing facility at the National Research Council.

The first floor of concrete hollowcore slabs had a mass per unit area of 269 kg/m² without grout and a mass per unit area of 273 kg/m² once the grout was applied between the slabs.

The second floor of concrete hollowcore slabs had a mass per unit area of 301 kg/m^2 without grout and a mass per unit area of 305 kg/m^2 once the grout was applied between the slabs. This floor was also tested with a 25.4 mm (1") underlayment which was poured directly onto the concrete hollowcore slabs and with a carpet and underpad on the underlayment.

The results of the measurements are summarized in Table 1.

Floor	Topping	Carpet	STC	IIC
203 mm (8") concrete hollowcore slabs with grout - 273 kg/m ²	None	None	55	23
203 mm (8") concrete hollowcore slabs with grout - 305 kg/m ²	None	None	54	23
203 mm (8") concrete hollowcore slabs with grout - 305 kg/m ²	25.4 mm (1") underlayment poured directly on the concrete hollowcore slabs	None	55	25
203 mm (8") concrete hollowcore slabs with grout - 305 kg/m ²	25.4 mm (1") underlayment poured directly on the concrete hollowcore slabs	6 mm (1/4") carpet with an 8 mm (5/16") underpad	55	72

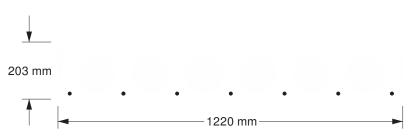
Table 1: Summary of the sound transmission class (STC) ratings and the impact insulation class (IIC) ratings for the floors.

NAC-CNAC

Table of Contents

1. Measurement Results	1
1.1 Hollowcore slabs 203 mm thick with a mass per unit area ¹ of 269 kg/m ²	1
1.2 Hollowcore slabs 203 mm thick with a mass per unit area ¹ of 301 kg/m ²	7
1.3 Hollowcore slabs 203 mm thick with a mass per unit area ¹ of 304 kg/m ² with a topping of 25.4 mm (1") of floo underlayment poured directly on the slabs	
1.4 Hollowcore slabs 203 mm thick with a mass per unit area ¹ of 304 kg/m ² with a topping of 25.4 mm (1") of floo underlayment poured directly on the slabs and a short pile carpet with pad on the underlayment	
1.5 Footnotes10	3
References1	7
Appendix A - Explanation of the transmission loss measurements A-	1
Appendix B - Explanation of the impact sound transmission measurements	3

1. Measurement Results


1.1 Hollowcore slabs 203 mm thick with a mass per unit area¹ of 273 kg/m²

Client: Canadian Precast/Prestressed Concrete Institute

Specimen: 203 mm (8") thick floor comprised of four precast prestressed concrete hollowcore slabs with an average mass per unit area of 269 kg/m² grouted together.

Specimen ID: A1-012467-1X

Specimen Description:

Figure 1: One 203 mm concrete hollowcore floor slab cross-section (nominal dimensions shown - not to size)

<u>Bare hollowcore</u>: Four 1212 mm wide x 3988 mm long x 201 mm thick (actual average values) concrete hollowcore slabs were grouted together to form a concrete hollowcore floor.

Grout: The edges were grouted with 75 kg of Sakrete Mortar Mix.

Perimeter: The perimeter between the specimen and the test frame was packed with sand.

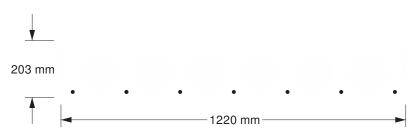
Element	Actual Average Thickness (mm)	Mass (kg)	Mass per unit area (kg/m²)
203 mm thick concrete hollowcore slabs	201	5195	269
Sakrete mortar mix		75	4
Total		5270	273

Specimen Properties:

- The test specimen was mounted in the NRC Construction acoustic floor test frame opening which measures 4.71 m x 3.79 m.
- The area used for the calculations of the airborne sound transmission loss was the specimen opening area of 17.85 m². The area used for mass per area for the floor elements is 19.32 m² (4.88 m x 3.96 m).

	Airborne So	ound Transmissio	on Loss, <i>TL</i> , in Accordance v	with ASTM E 90
Client:	С	PCI	Test ID:	TLF-18-008
Date of test:	1:	3 February, 2018	Specimen I	D: A1-012467-1X
Area S of th	ie test eleme	e nt: 17.85 r	ⁿ² Mass per unit Area:	273 kg/m ²
Room	Vo	lume (m ³)	Air Temperature (°C)	Relative Humidity (%)
Upper		175.1	20.7 to 20.9	43.2 to 43.9
Lower		176.9	20.8 to 20.9	32.3 to 33.5
		1	•	•
Frequency <i>f</i> (Hz)	<i>TL</i> one-third octave (dB)	80	Transmission Loss	••••••
50	27*	70	Reference Curve	
63	43*	Airborne Sound Transmission Loss, TL, in dB	•••• Facility Flanking Limit	
80	44	ے. لے ا		
100	40	, T		
125	40	8 60 -		
160	40	noia		
200	41	miss		
250	43	Se 50 -		
315	46		·· / /	
400	50	no		
500	51	ŭ e		
630	53	ų 40 -		
800	55	Airk		
1000	57			
1250	59	30 -		
1600	60		5 5	
2000	60			
2500	62		2	2 1
3150	66	20 63	125 250 500	1000 2000 4000
4000	69		Frequency, f, i	
5000	68		rrequency, i, i	111112
Sum of Deficiencies	30 dB	the STC contour fitt	measured sound transmission loss for ed to the measured values according dicplayed range) is 10 dB below the	g to ASTM E413-16. The dotted line
Maximum Deficiency	5 dB at 250 Hz and 315 Hz	facility. For any fre- line, the reported	displayed range) is 10 dB below the quency band where the measured tra- value is potentially limited by fla ue value may be higher than that m	ansmission loss is above the dotted inking transmission via laboratory
Sound Transmissi Class (STC		graph show deficien described in the fitt	ncies where the measured data are ing procedure for the STC, defined in in the graph are outside the STC cont	less than the reference contour as ASTM E413-16. The shaded cells in
No. of test re	eport:	A1-012467.2	Signature:	See signature page
Name of tes	t institute:	National Researc	h Council Date:	28 March 2018

N	lormalized Ir	npact Sound Pre	essure Levels in	Accordance	with ASTM E 4	92
Client:	C	PCI		Test ID:	IIF-18-008	
Date of test:	1	3 February, 2018		Specimen I	D: A1-012467	-1X
Area S of th	e test eleme	ent: 17.85	m ² Mass	Mass per unit Area:273 kg/m²		273 kg/m²
Room	Vo	lume (m ³)	lume (m ³) Air Temperature (°C)		Relative Hu	imidity (%)
Upper		175.1	21.9 to	0 21.9	34.5 to	0 35.3
Lower		176.9	20.3 to	20.3	27.6 to	27.6
	NIIODI	90 T				
Frequency f	NISPL one-third					
(Hz)	octave (dB)	80 -				
50	60					
63	57	- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0				~
80	60	70 - 55				
100	63	Ž.		1		
125	61	- 60 L	\sim			
160	62	ang	\sim			
200	64	Jes				
250	70	월 50 -				
315	69	Sur				
400	70	pact				
500	71	트 40 -				
630	73	alize				
800	74	Ę				
1000	75	Ź 30 -				
1250	76		· · · · · ·			
1600	77	20 -			8	
2000	80	-			5 6	
2500	78	-			••••	
3150	77		63 125	250 500	1000 2000 4	4000
4000	74	-	00 120			
5000	74			Frequency, f, in I	12	
	/+] 				
Sum of Positive Differences	19 dB	specimen. The das	he measured norm hed line is the IIC he dotted line is the	contour fitted to	the measured value	ues according to
Maximum Positive Difference	8 dB at 3150 Hz	room during this measured NISPL is	test (may be below less than 10 dB above ars at bottom of groups	v the displayed i ve the dotted line	range). For any fi , the reported value	requency where es were adjusted
Impact Insulation Class (IIC)		data are greater th	an the reference cor he graph are outside	ntour as defined ir	n ASTM E989-06. Sh	
No. of test re	port:	A1-012467.2		Signature:	See signature p	bage
Name of test	institute:	National Researce	ch Council	Date:	28 March 2018	


1.2 Hollowcore slabs 203 mm thick with a mass per unit area¹ of 305 kg/m²

Client: Canadian Precast/Prestressed Concrete Institute

Specimen: 203 mm (8") thick floor comprised of four precast prestressed concrete hollowcore slabs with an average mass per unit area of 301 kg/m² grouted together.

Specimen ID: A1-012467-1F

Specimen Description:

Figure 2: One 203 mm concrete hollowcore floor slab cross-section (nominal dimensions shown - not to size)

<u>Bare hollowcore</u>: Four 1210 mm wide x 3976 mm long x 203 mm thick (average values) concrete hollowcore slabs were grouted together to form a concrete hollowcore floor.

Grout: The edges were grouted with 75 kg of Sakrete Mortar Mix.

Perimeter: The perimeter between the specimen and the test frame was packed with sand.

Element	Actual Average Thickness (mm)	Mass (kg)	Mass per unit area (kg/m²)
203 mm thick concrete hollowcore slabs	203	5809	301
Sakrete mortar mix		75	4
Total		5884	305

- The test specimen was mounted in the NRC Construction acoustic floor test frame opening which measures 4.71 m x 3.79 m.
- The area used for the calculations of the airborne sound transmission loss was the specimen opening area of 17.85 m². The area used for mass per area for the floor elements is 19.32 m² (4.88 m x 3.96 m).

	Airborne So	ound Transmiss	ion Loss, <i>TL</i> , in	Accordance w	vith ASTM E 90	
Client:	CI	PCI		Test ID:	TLF-18-081	
Date of test:	11	1 December 201	7	Specimen II	D: A1-012467-	1F
Area S of the	e test eleme	nt: 17.85	m ² Mass	Mass per unit Area:305 kg/m²		05 kg/m²
Room	Vol	ume (m³)	Air Tempe	r Temperature (°C) Relative Humidity (%)		midity (%)
Upper		175.1	19.6 t	o 19.7	37.7 to	37.8
Lower		176.9	21.0 t	o 21.0	39.4 to	39.5
Frequency f (Hz) 50 63 80 100 125 160 200 250 315 400 500 630 800 100 250 315 400 500 630 800 1000 2500 3150 4000 2500 3150 4000 5000 Sum of Deficiencies Maximum Deficiency Sound	TL one-third octave (dB) 29* 42* 38 37 36 38 41 43 45 49 51 53 57 60 62 63 65 67 71 72 27 dB 5 dB at 315 Hz	the STC contour fit (may be above the facility. For any fre line, the reported surfaces, and the t graph show deficie	2 3 3	rve ng Limit ••••• ••••• ••••• ••••• ••••••	1000 2000 n Hz or this specimen. Th g to ASTM E413-16. e flanking limit esta ansmission loss is al nking transmission easured. Bars at the less than the refere	The dotted line ablished for this pove the dotted via laboratory bottom of the ence contour as
Transmissio Class (STC)			s in the graph are ou			
No. of test rep	port:	A1-012467.2		Signature:	See signature pa	age
Name of test	institute:	National Resear	ch Council	Date:	28 March 2018	

No	ormalized In	npact Sound Pres	ssure Levels in	Accordance	with ASTM E 492
Client:	С	PCI		Test ID:	IIF-17-066
Date of test:	12	2 December, 2017	,	Specimen I	D: A1-004972-01F
Area S of the	test eleme	nt: 17.85 n	n ² Mass p	per unit Area:	305 kg/m ²
Room	Vol	ume (m³)	Air Temper	ature (°C)	Relative Humidity (%)
Upper		175.1	20.0 to	20.1	36.3 to 37.2
Lower		176.9	21.0. to	21.0	39.4 to 39.5
Frequency f f 50 63 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 5000	NISPL one-third octave (dB) 58 56 64 62 63 61 65 73 70 71 72 73 74 75 76 78 77 74 73	90 80 70 60 40 40 20 10		••••••••••••••••••••••••••••••••••••••	Hz
	70				
Sum of Positive Differences	17 dB	specimen. The dash	ed line is the IIC c	ontour fitted to	und pressure level (NISPL) for this the measured values according to ind level measured in the receiving
Maximum Positive Difference	8 dB at 3150 Hz	room during this te measured NISPL is le	est (may be below ess than 10 dB abov	the displayed e the dotted line	range). For any frequency where , the reported values were adjusted e differences; where the measured
Impact Insulation Class (IIC)	23		n the reference con	tour as defined in	n ASTM E989-06. Shaded cells in the
No. of test rep	port:	A1-012467.2		Signature:	See signature page
Name of test i	institute:	National Research	h Council	Date:	28 March 2018

1.3 Hollowcore slabs 203 mm thick with a mass per unit area¹ of 305 kg/m² with a topping of 25.4 mm (1") of floor underlayment poured directly on the slabs

Client: Canadian Precast/Prestressed Concrete Institute

Specimen: 203 mm (8") thick floor comprised of four precast prestressed concrete hollowcore slabs with an average mass per unit area of 301 kg/m² grouted together with a 25.4 mm (1") underlayment poured directly on the floor.

Specimen ID: A1-012467-2F

Specimen Description:

Figure 3: Floor of 203 mm thick precast concrete hollowcore slabs with a 25.4 mm underlayment poured directly on the floor.

<u>Bare hollowcore</u>: Four 1212 mm wide x 3988 mm long x 201 mm thick (average values) concrete hollowcore slabs were grouted together to form a hollowcore floor.

Grout: The edges were grouted with 75 kg of Sakrete Mortar Mix.

Perimeter: The perimeter between the specimen and the test frame was packed with sand.

<u>Topping</u>: 25.4 mm (1") underlayment poured directly on the floor. The underlayment had a mass per unit area of 37 kg/m² and a compressive strength of 1.02 to 1.32 kg/m² (3500 psi to 4500 psi).

Specimen Properties:

Element	Actual Average Thickness (mm)	Mass (kg)	Mass per unit area (kg/m²)
203 mm thick concrete hollowcore slabs	203	5809	301
Sakrete mortar mix		75	4
25.4 mm underlayment	25	951	49
Total		5270	354

- The test specimen was mounted in the NRC Construction acoustic floor test frame opening which measures 4.71 m x 3.79 m.
- The area used for the calculations of the airborne sound transmission loss was the specimen opening area of 17.85 m². The area used for mass per area for the floor elements is 19.32 m² (4.88 m x 3.96 m).

	Airborne So	ound Transmis	ssion Loss, <i>TL</i> , ir	n Accordance w	vith ASTM E 90	1
Client:	C	PCI		Test ID:	TLF-18-001	
Date of test:	1	0 January, 201	8	Specimen II	D: A1-012467	-2F
Area S of th	e test eleme	ent: 17.8	35 m ² Mass	per unit Area:	3	354 kg/m²
Room	Vo	lume (m ³)	Air Tempe	erature (°C)	Relative Hu	midity (%)
Upper		175.1	24.6	24.6 to 24.7 30.5 to 30.8		0 30.8
Lower		176.9	22.0	to 22.0	36.3 to	36.7
	•	1	ł			
Frequency f (Hz) 50	<i>TL</i> one-third octave (dB) 34*	80	— Transmission — Reference Cu		•••••	
63	34 46*	罗 70	····· Facility Flank	ing Limit		
80	40	Airborne Sound Transmission Loss, TL, in dB				
100	38	°, H				
125	38			•••		
160	37	.5 60				
200	42	niss				
250	43	ansr				
315	46	Tra				
400	49	0 0 50				
500	52	S SU	•••			
630	54	or				
800	57	Airb	$ \mathbf{X} \mathbf{z} $			
1000	60		:\ ///			
1250	64	40				
1600	66	1 f				
2000	67	· · · · · · · · · · · · · · · · · · ·	5	5 5 5		
2500	68	-	1	2		
3150	70	30		500	1000 0000	1000
4000	74	1	63 125 2	250 500	1000 2000	4000
5000	73	1		Frequency, f, i	n Hz	
Sum of Deficiencies	29 dB	the STC contour	the measured sound fitted to the measure the displayed range)	ed values according	g to ASTM E413-16	. The dotted line
Maximum Deficiency	5 dB	facility. For any line, the report surfaces, and th	frequency band when ted value is potentia e true value may be l	re the measured tra ally limited by fla higher than that me	ansmission loss is a nking transmissior easured. Bars at th	bove the dotted via laboratory e bottom of the
Sound Transmissi Class (STC		described in the	iciencies where the n fitting procedure for eas in the graph are or	the STC, defined in	ASTM E413-16. Th	
No. of test re	eport:	A1-012467.2		Signature:	See signature p	age
Name of test	t institute:	National Rese	arch Council	Date:	28 March 2018	

No	ormalized Im	pact Sound Pres	sure Levels in A	cordance w	vith ASTM E 492	
Client:	CF	PCI		Test ID:	IIF-18-001	
Date of test:	10	January, 2018		Specimen ID): A1-004972-02F	
Area S of the	e test elemer	nt: 17.85 m	² Mass per	Mass per unit Area:354 kg/m²		
Room	Volu	ume (m ³)	Air Temperati	ure (°C)	Relative Humid	ity (%)
Upper		175.1	25.1 to 25	5.2	30.9 to 32.	1
Lower		176.9	22.0 to 22	2.0	37.3 to 37.	6
Frequency f (Hz) 50 50 63 80 100 125 1 160 2 250 3 315 400 500 630 800 1 100 1250 315 400 2000 2 500 630 800 1 1000 1 250 3 150 4 2000 2 5000 3 3150 4 4000 5 5000 5 5000 5	NISPL one-third octave (dB) 53 55 61 62 62 61 65 70 70 78 70 70 71 71 71 71 71 71 71 71 71 71 71 71 71			Frequency, f, in Hz	nd pressure level (NIS	•
Differences Maximum Positive Difference	8 dB at 3150 Hz	ASTM E989-06. The room during this te measured NISPL is le	dotted line is the ba st (may be below th ss than 10 dB above tl	ckground soun ne displayed ra he dotted line, t	he measured values a d level measured in th inge). For any freque the reported values we differences; where the	ne receiving ency where are adjusted
Impact Insulation Class (IIC)	25	data are greater than		ir as defined in a	ASTM E989-06. Shaded	
No. of test rep	port:	A1-012467.2	S	ignature: S	See signature page	
Name of test	institute:	National Research	n Council D	ate: 2	28 March 2018	

- 1.4 Hollowcore slabs 203 mm thick with a mass per unit area¹ of 305 kg/m² with a topping of 25.4 mm (1") of floor underlayment poured directly on the slabs and a short pile carpet with pad on the underlayment
- Client: Canadian Precast/Prestressed Concrete Institute
- **Specimen**: 203 mm (8") thick floor comprised of four precast prestressed concrete hollowcore slabs with an average mass per unit area of 301 kg/m² grouted together with a 25.4 mm (1") underlayment poured directly on the floor. A short pile carpet with pad was installed on the underlayment.

Specimen ID: A1-012467-3F

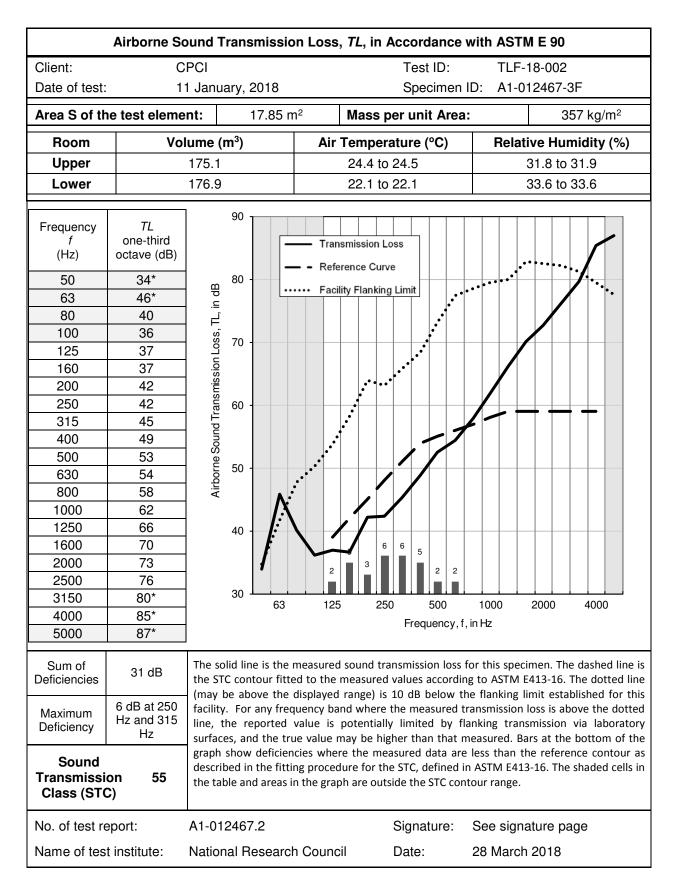
Specimen Description:

Figure 4: Floor of 203 mm thick precast concrete hollowcore slabs with a 25.4 mm underlayment poured directly on the floor. An 8 mm underpad and a 6 mm carpet were installed on the underlayment.

<u>Bare hollowcore</u>: Four 1212 mm wide x 3988 mm long x 201 mm thick (average values) concrete hollowcore slabs were grouted together to form a hollowcore floor.

Grout: The edges were grouted with 75 kg of Sakrete Mortar Mix.

Perimeter: The perimeter between the specimen and the test frame was packed with sand.


<u>Topping</u>: 25.4 mm (1") underlayment poured directly on the floor. The underlayment had a mass per unit area of 37 kg/m² and a compressive strength of 1.02 to 1.32 kg/m² (3500 psi to 4500 psi). 6 mm (1/4") carpet 0.62 kg/m (20 oz/yd) with standard 8 mm (5/16") underpad.

Specimen Properties:

Element	Actual Average Thickness (mm)	Mass (kg)	Mass per unit area (kg/m²)
203 mm thick concrete hollowcore slabs	203	5809	301
Sakrete mortar mix		75	4
25.4 mm underlayment	25	951	49
8 mm underpad	8	16	0.8
6 mm carpet	6	41	2.1
Total		6892	357

- The test specimen was mounted in the NRC Construction acoustic floor test frame opening which measures 4.71 m x 3.79 m.
- The area used for the calculations of the airborne sound transmission loss was the specimen opening area of 17.85 m². The area used for mass per area for the floor elements is 19.32 m² (4.88 m x 3.96 m).

Ν	lormalized Ir	mpact Sound	Pres	sure Levels in Accordance with ASTM E 492			
Client: CPCI				Test ID: IIF-18-002			
Date of test:	1	1 January, 201	18	Specimen ID: A1-004972-03F			
Area S of the test element: 17.85 m		85 n	² Mass per unit Area: 357 kg/m ²				
Room	Vo	olume (m ³)		Air Temperature (°C) Relative Humidity (%)			
Upper		175.1		24.9 to 25.0 31.7 to 33.1			
Lower		176.9		22.1 to 22.1 33.7 to 33.8			
Frequency f (Hz) 50 63	NISPL one-third octave (dB) 48 47	- 89 . <u></u>	30 70 50				
80 100	48 48 c	- dsn					
125	42 c	eLevel	50 -				
160	33 *	uns	-	$\sim $			
200	36 c	- Hei					
250	39	pung 4	40				
315	37	3 2 2					
400	35	, mpac					
500	34	ed ir	30 .	\cdot			
630	30	naliz					
800	21 c		20				
1000	17 *						
1250	14 *						
1600	12 *	1	10	8			
2000	12 *						
2500	13 *			2			
3150	14 *		0 -	63 125 250 500 1000 2000 4000			
4000	15 *			Frequency, f, in Hz			
5000	17 *						
Sum of Positive Differences	10 dB	The solid line is the measured normalized impact sound pressure level (NISPL) for this specimen. The dashed line is the IIC contour fitted to the measured values according to ASTM E989-06. The dotted line is the background sound level measured in the receiving room during this test (may be below the displayed range). For any frequency where measured NISPL is less than 10 dB above the dotted line, the reported values were adjusted as noted below. Bars at bottom of graph show positive differences; where the measured					
Maximum Positive Difference	8 dB at 100 Hz						
Impact Insulation Class (IIC)72data are greater than the reference contour as defined in ASTM E989-06. Shaded cells in t table and areas in the graph are outside the IIC contour range.							
No. of test re	eport:	A1-012467.2		Signature: See signature page			
Name of tes	National Rese	earcl	Council Date: 28 March 2018				

1.5 Footnotes

1. The mass per unit area given in this report is for the individual precast/prestressed concrete hollowcore slabs. The mass per unit area of a floor built from the slabs will have a higher mass per unit area due to the mass of the grout used to fill the keyways. It is the higher mass per unit area that is used to calculate the ASTC rating of constructions which include precast/prestressed concrete hollowcore slabs such as the research report, *RR-331 Guide to calculating airborne sound transmission in buildings* [1].

2. Discussion

The transmission loss values for the floors are compared in Figure 5. Also shown in the figure is the transmission loss for a concrete hollowcore floor with a mass per unit area of 344 kg/m² which was measured as part of an earlier study [2].

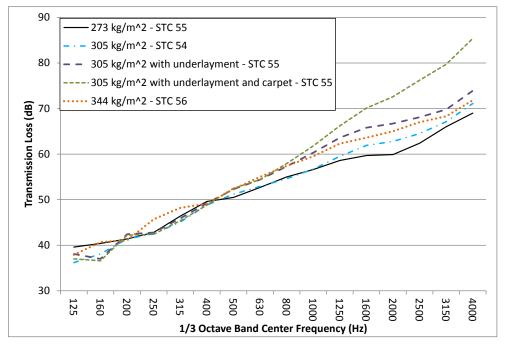


Figure 5: Comparison between the transmission loss curves for the different concrete hollowcore floors which were tested.

The 273 kg/m² concrete hollowcore floor had an STC rating of 55 whereas the heavier 305 kg/m² concrete hollowcore floor had a STC rating of 54 which was unexpected. As the curves in Figure 5 show, the 305 kg/m² concrete hollowcore floor had a dip in the 160 Hz 1/3 octave band, most likely corresponding to the critical frequency of the slabs whereas the 276 kg/m² concrete hollowcore does not. This dip resulted in a lower STC rating for the heavier floor.

At the frequencies above the 200 Hz 1/3 octave band, the heavier the concrete hollowcore floor, the better the transmission loss, but the STC rating does not capture this since the rating is driven by the dips in the transmission loss curves at the lower frequencies.

Also not captured by the STC rating is the improvement due to the addition of the linings. The addition of the 25.4 mm of underlayment or the underlayment and carpet did not improve the STC rating. However, Figure 5 shows that there was an improvement in the transmission loss above the 315 Hz 1/3 octave band, especially in the case of the underlay plus carpet where there was a significant increase in the transmission loss. It is expected that there would have been a bigger improvement if a lining was used between the underlayment and the concrete hollowcore floor rather than pouring the underlayment directly on the concrete hollowcore floor.

References

- [1] Hoeller C, Quirt, D., Mahn J, NRC Research Report *RR-331: Guide to Calculating Airborne Sound Transmission in Buildings*: 3rd Edition. Ottawa, Canada: National Research Council Canada; 2017.
- [2] Report A1-004972.1 Measurements of Airborne Sound Transmission Loss (ASTM E90) and Impact Sound Transmission (ASTM E492) on One Bare Hollow Core Floor Assembly (203 mm).

Appendix A - Explanation of the transmission loss measurements

Explanation of the Data Presented in the Tables

The results in this report apply only to the specific sample submitted for measurement. No responsibility is assumed for performance of any other specimen. Airborne sound transmission loss measurements were conducted in accordance with the requirements of ASTM E90, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements."

ASTM E90 requires that at each measurement position in the receiving room, corrections shall be made unless the background level is more than 10 dB below the combination of signal and background. Values in the table which are followed by a "c" indicate that the measurements in the receiving room were 5 dB and 10 dB higher than the combined receiving room level and background level. The reported values have been corrected according to the procedure outlined in ASTM E90. Values marked "*" indicate that the measured background level was less than 5 dB below the combined receiving room level and background level, in which case, the corrected values provide an estimate of the lower limit of airborne sound transmission loss.

Facility and Equipment

The acoustics wall test facility comprises two reverberation rooms (referred to in this report as the upper and lower rooms) with a moveable test frame between the two rooms. In each room, a calibrated Bruel & Kjaer condenser microphone (type 4166 or 4165) with preamp is moved under computer control to nine positions, and measurements are made in both rooms using an 8-channel National Instrument NI-4472 system installed in a desktop PC-type computer. Each room has four bi-amped loudspeakers driven by separate amplifiers and noise sources. To increase the diffusivity of the sound field, there are fixed diffusing panels in each room.

Test Procedure - Transmission Loss

Airborne sound transmission measurements were conducted in accordance with the requirements of ASTM E90, "Standard Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions". Airborne sound transmission loss tests were performed in the forward (receiving room is the large room) and reverse (receiving room is the small room) directions. Results presented in this report are the average of the tests in these two directions. In each case, sound transmission loss values were calculated from the average sound pressure levels of both the source and receiving rooms and the average reverberation times of the receiving room. One-third octave band sound pressure levels were measured for 32 seconds at nine microphone positions in each room and then averaged to get the average sound pressure level in each room. Five sound decays were averaged to get the reverberation times for each room. Information on the flanking limit of the facility and reference specimen test results are available on request.

Significance of Test Results - Transmission Loss

ASTM E90 requires measurements in 1/3-octave bands in the frequency range 100 Hz to 5000 Hz. Within those ranges, reproducibility has been assessed by inter-laboratory round robin studies. The standards recommend making measurements and reporting results over a larger frequency range, and this report presents such results, which may be useful for expert evaluation of the specimen performance. The precision of results outside the 100 to 5000 Hz range has not been established, but is expected to depend on laboratory-specific factors.

Sound Transmission Class (STC)

The STC rating was determined in accordance with ASTM E413-16, "Classification for Rating Sound Insulation". The Sound Transmission Class (STC) is a single-figure rating scheme intended to rate the acoustical performance of a partition element separating offices or dwellings. The higher the value of the rating, the better the performance. The rating is intended to correlate with subjective impressions of the sound insulation provided against the sounds of speech, radio, television, music, and similar sources of noise characteristic of offices and dwellings. The STC is of limited use in applications involving noise spectra that differ markedly from those referred to above (for example, heavy machinery, power transformers, aircraft noise, motor vehicle noise). Generally, in such applications it is preferable to consider the source levels and insulation requirements for each frequency band.

Appendix B - Explanation of the impact sound transmission measurements

Test Procedure - Impact Sound Transmission

Impact sound transmission measurements were conducted in accordance with ASTM E492, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission Through Floor-Ceiling Assemblies Using the Tapping Machine". This test uses a standard tapping machine placed at four prescribed positions on the floor. One-third octave band sound pressure levels were measured for 32 seconds at each microphone position in the receiving room and then averaged to get the average sound pressure level in the room. Five sound decays were averaged to get the reverberation time at each microphone position in the room; these nine reverberation times were averaged to get the spatial average reverberation times for the room. The spatial-average sound pressure levels and reverberation times of the receiving room were used to calculate Normalized Impact Sound Pressure Levels.

Significance of Test Results - Impact Sound Transmission

ASTM E492 requires measurements in 1/3-octave bands in the frequency range 100 Hz to 3150 Hz. Within this range, reproducibility has been assessed by inter-laboratory round robin studies. The standard recommends making measurements and reporting results over a larger frequency range, and this report presents such results, which may be useful for expert evaluation of the specimen performance. The precision of results outside the standard ranges has not been established, and is expected to depend on laboratory-specific factors such as room size and specimen dimensions.

Impact Insulation Class (IIC)

The Impact Insulation Class (IIC) was determined in accordance with ASTM E989, "Standard Classification for Determination of Impact Insulation Class (IIC)". The IIC is a single-figure rating scheme intended to rate the effectiveness of floor-ceiling assemblies at preventing the transmission of impact sound from the standard tapping machine. A higher IIC value indicates a better floor performance.

In Situ Performance

Ratings obtained by this standard method tend to represent an upper limit to what might be measured in a field test, due to structure-borne transmission ("flanking") and construction deficiencies in actual buildings.