NRC Publications Archive Archives des publications du CNRC

Biocomposites and bioblends based on engineering thermoplastics for automotive applications

Mihai, Mihaela

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23000636

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=5edc90ee-f47e-4afa-88f5-1f37b00eb349 https://publications-cnrc.canada.ca/fra/voir/objet/?id=5edc90ee-f47e-4afa-88f5-1f37b00eb349

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

NRC CNRC

BIOCOMPOSITES AND BIOBLENDS BASED ON ENGINEERING THERMOPLASTICS FOR AUTOMOTIVE APPLICATIONS

Mihaela Mihai, PhD, Research Officer

Polymer Bioproducts Team Industrial Biomaterials - Automotive & Surface Transportation National Research Council Canada

National Research Council Canada Conseil national de recherches Canada

OUTLINE

- > About National Research Council Canada
- > Engineering polymers in automotive applications
- NRC green vision
- > Materials, processes and characterization
- > Bio-based PA6 and ABS compounds:
 - Low-cost biocomposites
 - > Lighter biocomposites
 - > Greener bioblends and biocomposites
- Summary of the achievements

- 4 divisions: Emerging Technologies, Engineering, Life Sciences, Industrial Research Assistance Program (IRAP)
- · Wide variety of disciplines and broad array of services and support to industry

MC CMC

National Research Council Canada A Research & Technology Organization

- Mission-oriented providers of innovation services to firms and governments (R&D services, technical services, consortiums, Industrial Research Assistance Program);
- □ Bridges gap between early stage R&D and technology deployment;
- □ Dedicated to building economic competitiveness and improving quality of life.

NRC: Automotive and Surface Transportation

☐ Research and technology development:

- Fuel efficient vehicles
- · Efficient and sustainable manufacturing
- Vehicle fleet operation

☐ Clients spanning the entire supply chain:

- · OEMs, Tier 1, Tier 2, material suppliers, etc.
- Automotive, trucks, mass transit, rail, military
- · Vehicle fleet operation

□ NRC-AST at a glance:

- 5 sites
- 275 full time employees
- Over 200 partners and clients

NRC CNRC

Automotive and Surface Transportation Market Driven Programs

Engineering polymers in automotive applications

Industry Trends: to alleviate the weight, to reduce the cost and to use more sustainable materials. Proposed solutions: to replace the metal and glass fiber composite parts with PA and ABS biocompounds with similar performances.

PA-based parts represent around 36 pounds/car

Gear shifts

Oil Pan Modul

Airbag Containers Bumper brackets Door handles

Air ducting Fuel caps and lids Exterior mirrors Front-end grilles Wheel covers and trim and others

ABS-based parts represent around 30 pounds/car

Overhead

Instrument panels Fascia panels Bumpers Interior door assemblies Seating assemblies Dashboard Interior/exterior trims ..and others

NRC CNRC

NRC green vision

- Substitution of mineral-filled and glass fiber-reinforced engineering thermoplastics with biocomposite counterparts;
- This substitution of petroleum-based compounds and composites by biocomposites containing cellulosic fibers can allow weight and cost reductions:
- The use of injection foaming process allows to further reduce the weight and the cost of the eco-parts.
- The substitution of a part of the PA6 or ABS by a bioplastic is a way to increase renewable content.

NRC offers solutions for cost competitive, greener and lighter : PA6 and ABS biocomposites with equivalent thermal & mechanical performance as conventional PA6- and ABS-based parts.

Battery Trays, Tube in floo

NRC-CNRC

Materials

Polymers:

- · PA6: injection molding / extrusion grade, Ultramid B27 from BASF.
- · ABS: Lustran Elite HH 1827, is an injection molding grade for high-heat automotive applications.
- PLA: 8302D, an amorphous grade from Nature Works, was selected as the bio-sourced minor phase for the production of petro/bio hybrids.
- · Coupling agents were used.
- · Properties of PA6 and ABS automotive grades were used in graphs for comparison purposes.

Bio-reinforcements and reinforcements:

- · Cellulosic fibers contents: up to 40%wt.
- · Short flax: was supplied by Schweitzer Mauduit Canada.
- · Thermo-mechanical pulp (TMP): was supplied by SEC Papier Masson WB.
- · Wood fibers (WF) in the form of dices (WoodForce): were supplied by Sonae Industria.

NAC-CINAC

Processing & Characterization

Compounding line:

Testing:

- · Morphology: Scanning Electron Microscopy (SEM)
- Tensile properties (TS, TM, e%) ASTM D638
- Impact strength (IS_{Izod}) ASTM D256
- Heat Deflection Temperature (HDT) ASTM D648

Bio-based PA6 compounds

Low-cost biocomposites
Lighter biocomposites
Greener bioblends and biocomposites

National Research Council Canada

Conseil national de recherches Canada

Low-cost PA6-based biocomposites PA6 partial replacement with cellulosics

Excellent interfacial adhesion

x500

Morphology of PA6/20% flax biocomposites

Low-cost PA6-based biocomposites PA6 partial replacement with cellulosics

Approximate prices (\$/kg) on the market:

PA6	PA6 / 30% minerals	Flax	TMP	WF
4.9	5.3	0.7	0.5	1.5

Cost reduction

Cellulosic contents:	20%	40%
Cost (\$/kg) - PA6/Flax	4.1	3.3
Cost (\$/kg) - PA6/TMP	4.1	3.2
Cost (\$/kg) - PA6/WF	4.3	3.6

Replacing up to 40% of PA6 by cellulosic fibers results is a 18-35% cost reduction.

NRC-CNRC

Lighter PA6-based biocomposites Glass fiber replacement by cellulosic fibers

PA6 hybrids with excellent mechanical properties

When 50% of glass fibers content is replaced by cellulosic fibers results in:

- Around 10% weight reduction;
- Preservation of mechanical properties.

MC CMC

Lighter PA6-based biocomposites Processing means: Injection foaming

Properties of PA6 biocomposites with 40% WF and hybrids: unfoamed and foamed

Lighter PA6-based biocomposites Processing means: Injection foaming

Morphology of PA6/20% cellulosic biocomposites:

Replacing from 20 up to 40% of PA6 by cellulosics results in a 18-35% cost reduction.

Furthermore, the PA6 biocomposites <u>foaming allows a supplementary 10% weight</u> reduction which translates in additional 10% material cost reduction.

Lighter PA6-based biocomposites Hollow spheres as additives

Initial aspect of the hollow spheres:

iM30K: density of 0.60 g/cm3

iM16K: density of 0.46 g/cm3

Formulation of extruded composites:

PA6 B27	HS %	Sawdust %	
90	10% iM30K	0	
80	10% iM30K	10%	
80	20% iM16K	0%	

NAC-CNAC

Lighter PA6-based biocomposites Hollow spheres as additives

Aspect of the hollow spheres after compounding:

Aspect of the hollow spheres after injection molding:

Low-weight PA6-based biocomposites Hollow spheres as additives

- Excellent mechanical properties;
- HDT increased from 160°C up to 190°C;
- 5% to 12% weight reduction comparing with virgin PA6;
- 20% to 30% weight reduction comparing with PA6 filled minerals

NRC CNRC

Greener PA6/PLA blends and biocomposites

Properties of PA6/PLA biocomposites with 20% cellulosic fibers

- ◆- PA6+30% mineral filled high impact

- HDT increased from 160°C to 189°C for PA6/PLA/20%WF
- ε% decreased as expected for biocomposites
- All other mechanical properties are higher than for PA6 alone and similar with the reference PA6/30% mineral filled

Bio-based ABS compounds

Low-cost biocomposites
Lighter biocomposites
Greener bioblends and biocomposites

National Research Council Canada

Conseil national de recherches Canada

Low-cost ABS-based biocomposites Partial ABS replacement with cellulosics

Good interfacial adhesion when using CA

X500, no CA

X500, with CA

X1000, with CA

- Very good fiber distribution/dispersion.
- There is no adhesion between the ABS, hydrophobic polymer, and the hydrophilic cellulosic fibers in the absence of the coupling agent.
- The fracture was produced throughout the cellulosic fiber in the presence of the coupling agent.
- Therefore, the use of an adequate coupling agent will allow to increase this adhesion and the mechanical properties of the biocomposites.

Low-cost ABS-based biocomposites Partial ABS replacement with cellulosics

Approximate prices (\$/kg) on the market:

ABS	Flax	TMP	WF
3.6	0.7	0.5	1.5

Cost reduction

Cellulosic contents:	20%	40%
Cost (\$/kg) - ABS/Flax	2.7	2.5
Cost (\$/kg) - ABS/TMP	3.0	2.4
Cost (\$/kg) - ABS/WF	3.2	2.8

Replacing up to 40% of ABS by cellulosic fibers results in a 10-33% cost reduction.

--- ABS - reference

- ----ABS / 20 wt.%WF

20 to 40% green content

- ⊖- ABS talc filled commercial grade
- -> -ABS / 30 wt. % GF commercial grade

NRC CNRC

Lighter biocomposites based on ABS Replacement of glass fibers with cellulosic fibers

→ ABS / 20 wt.% WF / 20 wt.%GF → ABS / 30 wt.% GF commercial grade Advantages in using cellulosic fiber that replace partially or totally the glass fibers:

- Equivalent tensile properties;
- Lower material density;
- Around 15% cost reduction comparing with ABS/30% glass fibers reference.

20 to 40% cellulosic content

Lighter biocomposites based on ABS Processing means: Injection foaming

Excellent mechanical properties and cost for foamed ABS based biocomposites

Approximate prices (arky) o	n ule maik	er or polymer	s and centro
	ADC	ME	

Cost and weight reduction

Cellulosic contents:	20%	40%
Price (\$/kg) - ABS/WF	3.2	2.8

Replacing up to 40% of ABS by cellulosics results is a <u>12-25% cost</u> reduction.

ABS biocomposites <u>foaming allows a</u> <u>further 8% weight reduction which</u> <u>translates in a supplementary 8% reduction of material cost</u>.

NAC-CNAC

Bioblends and biocomposites based on ABS/PLA blends

Properties of ABS/PLA based biocomposites with 20% cellulosic fibers:

- HDT increased from 85 up to 92°C for ABS/PLA/20%WF
- ε% and IS decreased as expected for biocomposites

Summary of the achievements

- > NRC bio-based biocomposites are:
 - Equivalent in terms of mechanical and thermal properties than those of conventional materials used currently in automotive;
 - Low-cost due to a content up to 40 wt.% of renewable resources;
 - Low-weight due to:
 - Partial or complete replacement of glass fibers by cellulosics fibers;
 - Foaming in injection molding;
 - Greener when a bioplastic replaces a part of the PA6 or ABS matrix.
- NRC also developed for automotive part applications:
 - PP and PP/PLA based biocomposites with cost and weight reductions;
 - PA6, ABS and PP based biocomposites with continuous cellulosic fibers using D-LFT process
- > NRC can help you formulate and process low-cost, lighter and greener biocomposites and bioblends according to the specifications of your products.

NC CNC

27

Thank you!

Scientific & Technical contact:
Mihaela Mihai, Ph.D.
Research Officer
Polymer Bioproducts, ATS-NRC
Tei: 450-641-5368
Mihaela Mihai@nrc-cnrc.gc.ca

Automotive & Surface Transportation (AST) – Polymer Bioproducts Team (Boucherville, QC)

MC CMC