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Self-Replicating Strands that Self-Assemble 
into User-Specified Meshes 

Abstract 
It has been argued that a central objective of nanotechnology is to make products 
inexpensively, and that self-replication is an effective approach to very low-cost 
manufacturing. The research presented here is intended to be a step towards this vision. 
In previous work (JohnnyVon 1.0), we simulated machines that bonded together to form 
self-replicating strands. There were two types of machines (called types 0 and 1), which 
enabled strands to encode arbitrary bit strings. However, the information encoded in the 
strands had no functional role in the simulation. The information was replicated without 
being interpreted, which was a significant limitation for potential manufacturing 
applications. In the current work (JohnnyVon 2.0), the information in a strand is 
interpreted as instructions for assembling a polygonal mesh. There are now four types of 
machines and the information encoded in a strand determines how it folds. A strand may 
be in an unfolded state, in which the bonds are straight (although they flex slightly due to 
virtual forces acting on the machines), or in a folded state, in which the bond angles 
depend on the types of machines. By choosing the sequence of machine types in a 
strand, the user can specify a variety of polygonal shapes. A simulation typically begins 
with an initial unfolded seed strand in a soup of unbonded machines. The seed strand 
replicates by bonding with free machines in the soup. The child strands fold into the 
encoded polygonal shape, and then the polygons drift together and bond to form a 
mesh. We demonstrate that a variety of polygonal meshes can be manufactured in the 
simulation, by simply changing the sequence of machine types in the seed. 

1 Introduction 
Researchers have argued that one of the main objectives of nanotechnology is to 
manufacture products inexpensively, and that this goal can be effectively achieved by 
self-replication [2], [8], [9]. We believe that it will be useful to develop computational 
simulations of self-replicating nanotechnology as engineering tools to assist in the 
design of actual self-replicating machines.  

In our earlier work with JohnnyVon 1.0 (named in honour of John von Neumann [20]), 
we developed a computational simulation of machines that join to form self-replicating 
strands (i.e., chains of machines linked by flexible bonds) [18]. These machines drifted 
about in a virtual liquid, simulated as a two-dimensional continuous space with Brownian 
motion and viscosity. There were two types of machines, which enabled a strand to 
encode an arbitrary bit string, by designating one type of machine as representing 0 and 
the other as 1. Although strand replication faithfully preserved the encoded bit strings, 
the information in the strings played no functional role in JohnnyVon 1.0. In effect, the 
simulation had genotypes (i.e., genetic code) without phenotypes (i.e., bodies). From the 
perspective of potential applications in manufacturing, the absence of phenotypes was a 
major limitation of JohnnyVon 1.0. 

This paper introduces JohnnyVon 2.0, which builds on its predecessor by adding 
phenotypes to the simulation. The design of JohnnyVon 2.0 was inspired by the work of 
Seeman on building nanometer-scale structures with DNA [14], [15]. In living organisms, 
replication is based on DNA (the genotype) and the information encoded in DNA is used 
to build proteins (the major structural material of the phenotype). Seeman has shown 
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that DNA can serve both as a device for self-replication (genotype) and (surprisingly) as 
a building material for nanoscopic structures and tools (phenotype). By choosing the 
appropriate sequence of codons, DNA can be programmed to self-assemble into a wide 
variety of structures, such as cubes, octahedra, one-dimensional strands, two-
dimensional meshes, and three-dimensional arrays. Seeman discusses a variety of 
potential nanotechnological applications for these structures. For example, a three-
dimensional DNA array could facilitate x-ray crystallography, by serving as a scaffolding 
for holding molecular samples in a regular lattice [15].  

Seeman views his work as a first step towards nanorobotics [15]. In Seeman’s work, the 
DNA strands self-assemble, but they do not self-replicate. However, recent work by 
others has produced a DNA strand that can be replicated by PCR (polymerase chain 
reaction) and can fold into an octahedron [16]. (Both the replication by PCR and the 
subsequent folding are assisted by the experimenter, who must add various chemicals 
at the appropriate stages.) 

In JohnnyVon 2.0, there are four types of machines, drifting in a two-dimensional 
continuous space with Brownian motion and viscosity (i.e., a simulated liquid). The 
machines exert spring-like attractive and repulsive forces on each other, but internally 
they are finite state machines. The input to each state machine is based on the presence 
or absence of bonds with neighbouring machines and on the internal states of bonded 
neighbours. The internal states govern when bonds are formed or broken and the angles 
at which bonded machines are joined, and thus determine whether a strand will form a 
straight line or fold into a specific polygonal shape. The machines are (very roughly) 
analogous to codons in DNA. 

Following the hint of Seeman’s work, a strand in JohnnyVon 2.0 serves as both a 
genotype and a phenotype, at different stages in its career [14], [15], [16]. Like living 
organisms (but unlike von Neumann’s strategy [20]), JohnnyVon 2.0 takes a template-
based approach to self-replication. A strand begins its career as a genotype. While 
acting as a genotype, the strand is approximately straight, so that it can provide a good 
template for replication. Brownian motion and interactions with other machines will cause 
the strand to bend slightly, because the bonds between the machines are flexible, but 
the system is designed so that forces will tend to straighten the strand. Later in its 
career, the strand may become a phenotype. When this happens, the bonding forces 
change, causing the bonding angles to alter, and the strand folds. This folding is 
(approximately) analogous to the way that proteins fold. A folded strand acts as a 
structural element and is no longer capable of replication. 

A typical run of a JohnnyVon 2.0 simulation begins with a soup of unbonded machines 
and an initial unfolded seed strand of bonded machines. Free (unbonded) machines 
connect to the seed strand, eventually forming a double strand (two parallel strands). 
When the new strand is complete, the two strands break apart, and thus we have self-
replication. A strand will continue to self-replicate until unbonded machines become 
scarce. When a strand has not encountered an unbonded machine for a relatively long 
period of time, the strand stops replicating and folds. The shape that it folds into 
depends on the types of machines in the strand and their sequential ordering. Folded 
strands drift in the virtual liquid and bond with each other, forming a mesh. The user can 
specify the shape of the holes in the final mesh by selecting the sequence of machine 
types that compose the initial seed strand. 

In Section 2, we discuss related work with von Neumann’s universal constructor, self-
replicating loops, and artificial chemistry. We compare JohnnyVon 2.0 to the related 
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work, in terms of the goal of assisting with research and development of applications in 
nanotechnological manufacturing. The details of JohnnyVon 2.0’s design are explained 
in Section 3, including the changes that have been made from JohnnyVon 1.0 [18]. We 
present our experiments in Section 4. Each experiment is a run of the simulation with an 
initial seed strand. We demonstrate that a variety of polygonal meshes can be 
manufactured by varying the initial seed. Section 5 examines limitations of JohnnyVon 
2.0 and problems and projects for future work. Potential applications are suggested in 
Section 6 and we conclude in Section 7. 

2 Related Work 
Sipper provides a good survey of research on self-replication [17]. Some of the research 
involves actual mechanical devices and some is based on organic chemistry, but we 
restrict our discussion here to computer simulations of self-replication. We compare 
JohnnyVon 2.0 to von Neumann’s universal constructor [10], [20], self-replicating loops 
[6], [11], [12], [13], [19], and artificial chemistry [4], [5]. We consider the degree to which 
each is useful as an engineering tool to assist in the design of actual (physical) self-
replicating machines. 

2.1 Universal Constructor 
Von Neumann’s approach to self-replication was to design a universal constructor, which 
could build anything, and therefore could build itself as a special case [20]. He described 
five different models (i.e., five different kinds of simulations), with varying levels of 
realism and concreteness. The design of the universal constructor was only worked out 
in detail for the cellular automata model, which was the most abstract of the five models.  

The cellular automata model consisted of a two-dimensional space divided into a grid of 
discrete cells. Each cell was a finite automaton with twenty-nine possible states. A run of 
the simulation begins by setting the initial states of the cells, and then the states change 
in a sequence of discrete time steps, according to a fixed set of state transition rules. 
Transitions between states for a cell depend on the states of its neighbouring cells.  

In this model, the universal constructor was composed of a group of several thousand 
cells that begin in a specific configuration of initial states. Another line of cells acts as a 
kind of tape, which is read by the universal constructor. For any given finite configuration 
of cell states, there is a tape that can cause the universal constructor to build the given 
configuration. As a special case, there is a tape that can cause the universal constructor 
to build a copy of itself, thereby self-replicating.  

Although the computers available to von Neumann were not sufficiently powerful to run 
this model, it has since been successfully implemented [10]. However, even on a 
modern computer, it would take many weeks of continuous operation for a universal 
constructor to make a single copy of itself and its tape. 

2.2 Self-Replicating Loops 
Langton demonstrated self-replication in a cellular automata model that was much 
simpler than von Neumann’s model [6]. He achieved this simplification by designing a 
constructor that could construct only itself, instead of trying to make a universal 
constructor. His cellular automata model had eight states instead of twenty-nine and his 
constructor was composed of a group of about a hundred cells in a specific initial 
configuration, instead of a group of several thousand cells.  
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In Langton’s model, the cells of the constructor are arranged in a loop. The states of the 
cells in the loop go through a cycle, periodically creating a copy of the original loop. 
Starting from the initial loop, increasing numbers of copies spread across the grid. 

The idea of self-replicating loops in cellular automata models has since been developed 
further by many researchers [11], [12], [13], [19]. Self-replicating loops have exhibited 
many interesting behaviours, including evolution [11], [13] and self-repair [19]. 

2.3 Artificial Chemistry 
Hutton introduced self-replication in an artificial chemistry simulation, using a template-
based approach [4]. A chain of molecules forms a template against which other 
molecules bond, similar in concept to JohnnyVon 1.0 [18]. A run of the simulation begins 
with a seed chain in a soup of free molecules. By a series of chemical reactions, a 
parallel chain of molecules forms next to the seed chain. When the parallel chain is 
complete, it separates from the seed chain and process repeats. 

Hutton’s first approach was a cellular automata model [4], but the discrete space 
constrained the mobility of the simulated molecules, hence Hutton’s second approach 
used a continuous space [5], like JohnnyVon 1.0 [18]. In Hutton’s second model, 
molecules move in a continuous two-dimensional space, following linear trajectories until 
an obstacle (e.g., the container wall or another molecule) is encountered (i.e., the motion 
is a billiard ball model). When molecules make contact with each other, they undergo a 
chemical reaction that bonds them together, according to the rules of the artificial 
chemistry. 

In Hutton’s first model [4], the molecules only replicate, but in his second model [5], they 
also build a circular barrier, suggestive of a cell wall. Each time a chain replicates, the 
new chain builds a wall around itself.  

2.4 Suitability for Nanotechnological Manufacturing 
Given our objective, to contribute to nanotechnological manufacturing, there are four 
factors that are particularly relevant for discussing related work in computational 
simulations of self-replication:  

Realism: the degree of physical realism of the simulation (low, medium, or high), which 
determines the efficacy of the simulation as a tool for engineering of nanotechnology; 

Genotype/Phenotype: the presence or absence of a distinction between genotype and 
phenotype (yes or no), which determines the flexibility of the system for applications in 
manufacturing; 

Programmability: the degree of programmability by the user (low, medium, or high), 
without altering the basic rules of the simulation, which also affects the flexibility for 
manufacturing purposes; 

Tractability: the degree of computational tractability of the simulation (low, medium, or 
high), which determines the feasibility of running interesting simulations on current 
computer hardware. 

Using these four factors, we compare JohnnyVon 2.0 to related work in Table 1. This 
table is intended to informally summarize the points that we discuss in the following 
paragraphs.  
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Table 1. Comparison with related work. 

System Realism Genotype/ 
Phenotype 

Programmability Tractability 

Universal constructor low yes high low 
Self-replicating loops low no low high 
Artificial chemistry medium yes low high 
JohnnyVon 1.0 medium no low high 
JohnnyVon 2.0 medium yes medium high 

  

Von Neumann’s approach makes a strong distinction between the phenotype (the group 
of cells that compose the universal constructor) and the genotype (the line of cells that 
compose the instruction tape, read by the universal constructor). The universal 
constructor was designed to be universal; it is programmable to the highest possible 
degree (ignoring configurations with infinite numbers of cells). However, the cellular 
automata model is not realistic; its high level of abstraction makes it difficult to use in 
actual manufacturing applications. Von Neumann recognized this limitation of cellular 
automata, which is why he felt the need for four other (more concrete) models [20]. The 
complexity (low tractability) of the universal constructor is also a barrier to applications. 
Unfortunately, increasing the realism of the models is likely to also increase the 
complexity of the universal constructor. 

Self-replicating loops are much less complex than von Neumann’s universal constructor, 
but this simplicity comes with a loss of programmability. There is no meaningful 
difference between genotype and phenotype in the loops. Also, self-replicating loops are 
not usefully user-programmable. If the user makes any changes to the states of the 
group of cells that compose the initial seed loop, it is likely that the seed will no longer be 
able to self-replicate, or it will repair itself, undoing the user’s change [19]. Additionally, 
like von Neumann’s universal constructor, self-replicating loops have only been 
implemented in cellular automata models (although it is conceivable that they could be 
implemented in other models), thus their high level of abstraction limits their practical 
use in manufacturing applications. 

Hutton’s most recent work with self-replication in artificial chemistry has both genotype 
(self-replicating strands of molecules) and phenotype (the circular barrier they build, like 
a cell wall) [5]. The simulation is also considerably more concrete and realistic than 
cellular automata models. Hutton’s latest model includes virtual chemistry, continuous 
space, mobile molecules, and a simple virtual physics (idealized billiard ball physics). 
However, the degree of user-programmability is low. It seems that it is not possible for 
the user to control what structures are constructed by the system (e.g., circular barriers) 
by designing the initial seed chain. The structures appear to be hard-coded in the rules 
of the artificial chemistry.  

JohnnyVon 1.0 has moderate physical plausibility, with a virtual physics that includes 
continuous space, Brownian motion, viscosity, momentum, and attractive and repulsive 
fields [18]. It can be interpreted as a model of nanobots floating in a thin layer of liquid. 
However, it has no distinction of genotype and phenotype; the strands can only self-
replicate. The user can encode arbitrary information in a seed strand, but this does not 
constitute programmability, since the encoded information has no functional role in the 
simulation.  

JohnnyVon 2.0 augments its predecessor with a clear distinction between genotype and 
phenotype. This distinction separates the act of self-replication from the act of building 
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useful structures. The separation of these activities allows the user to program the 
construction without worrying about the impact of the programming on self-replication. 
We demonstrate (in Section 4) that the user can program JohnnyVon 2.0 to build a 
variety of polygonal meshes, by specifying the sequence of machine types in the initial 
seed strand; the user does not need to make any changes to the rules of the virtual 
physics. However, the variety of structures that can be built in JohnnyVon 2.0 is still 
considerably less than what can be done by von Neumann’s universal constructor. 

3 JohnnyVon 2.0 
We first give an informal description of the design objectives for JohnnyVon 2.0 and 
briefly describe the mechanisms used to achieve them. We then cover the few 
fundamental changes to the model used in the original version of JohnnyVon. In the 
remainder of this section, we examine the new features of JohnnyVon 2.0 in detail. We 
encourage the reader who is unfamiliar with JohnnyVon to begin by viewing Figure 1 in 
Section 4.1. This figure should make it easier to understand the following discussion. 

3.1 Summary of JohnnyVon 1.0 
In the original JohnnyVon, we presented a simulation in which independent objects 
floated in a virtual two-dimensional liquid [18]. In JohnnyVon 1.0, we called these objects 
codons, but we now prefer to call them machines, since their role in JohnnyVon 2.0 has 
expanded beyond encoding bits. These machines are intended to be an abstract 
representation of nanobots (simple nanometer-scale robots). The machines can bond 
together to form strands. When a strand is placed in a soup of free (unbonded) 
machines, the free machines bond to the strand, eventually resulting in two parallel 
strands, in which the new strand is a mirror image of the original strand. When the new 
strand is complete, it splits away from the original strand. The new strand then begins 
replicating along with the original seed strand, until all free machines are bonded in 
strands. In JohnnyVon 1.0, there were two types of machines, which we called type 0 
and type 1. Given two types of machines, the strands can encode and replicate arbitrary 
binary strings. 

3.2 Design Objectives for JohnnyVon 2.0 
In our outline of future work for JohnnyVon 1.0, we noted that the absence of 
phenotypes was a significant limitation [18]. Our main design objective for JohnnyVon 
2.0 was to add phenotypes. Furthermore, we wanted the phenotypes to be user-
programmable. That is, we wanted the user to be able to specify the structure of the 
phenotypes by encoding instructions in the seed strand, rather than by modifying the 
rules of the simulation. We believed that these changes would make JohnnyVon 2.0 
more suitable for applications in nanotechnological manufacturing.  

3.3 Overview 
In living organisms, genotypes and phenotypes are composed of different materials. 
Roughly speaking, genotypes are composed of DNA and phenotypes are composed of 
protein. In JohnnyVon 2.0, following Seeman [14], [15], we decided to use the same 
material for both purposes. Machines in JohnnyVon 2.0 sometimes behave as 
genotypes (they participate in self-replication) and sometimes behave as phenotypes 
(they serve as structural elements), depending on the circumstances.  

Using one material for both purposes seemed simpler to us than using two materials. 
We believe that it also has advantages for manufacturing. If there were two types of 
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materials, the finished product of the manufacturing process would either contain a blend 
of the two materials or there would need to be a method for removing the unnecessary 
genotype material. In the first case, where there is a blend, the genotype material is 
wasted. It consumes resources, adds weight to the final product, and serves no purpose 
in the final product. In the second case, where the genotype material is removed from 
the final product, the removal step adds extra complexity to the manufacturing process 
and consumes extra energy. However, using the same material for both genotypes and 
phenotypes implies that the finished product contains unnecessary computational power. 

JohnnyVon 2.0 has four types of machines, in contrast with two types in JohnnyVon 1.0. 
When a strand of bonded machines is acting as a genotype, it forms a straight line 
(ignoring random perturbations from Brownian motion). When acting as a phenotype, it 
folds into a polygonal shape. In a typical run of the simulation, an initial seed strand is in 
a soup of free machines. We designed JohnnyVon 2.0 so that the strands tend to self-
replicate (they act as genotypes) until free machines become scarce, at which point they 
tend to fold into structural elements (they act as phenotypes). There is no central 
controller that tells the strands when to fold; all control is local and distributed. The 
machines in each strand keep track of how much time has passed since they last 
bonded to a free machine, and they share this information with their immediate 
neighbours in the strand. If a strand has failed to self-replicate and no free machines 
have recently joined the strand (presumably due to a lack of free machines), after a 
certain amount of time, the strand will release whatever machines are bonded to it (the 
partially-built mirror strand) and fold up.  

The folding angle between any two bonded machines in a strand is governed by their 
respective types. Since there are four types of machines ( n ), there are sixteen possible 

pairs of machine types ( 2n ). The order of the types in a pair does not affect the folding 
angle of the pair. Since there are ten possible unordered pairs ( 2/)1( +nn ), there could 

be ten different folding angles. Given various operational constraints, JohnnyVon 2.0 has 
five different folding angles. 

Once folded up, the polygonal shapes bond together to form a mesh. We designed 
JohnnyVon 2.0 so that one seed will only form one mesh. This gives the user more 
control over the manufacturing process. The user can regulate the number of meshes 
that will be produced in a given batch by regulating the number of seeds. To implement 
this constraint, the first child strand that is produced by the initial seed strand (the 
genotype seed strand) immediately folds and acts as a seed for the formation of the 
mesh (i.e., it becomes the phenotype seed). When other strands fold later in the 
simulation, they cannot bond with each other, they can only bond with the phenotype 
seed. Once they have bonded with the phenotype seed, they change state, so that free 
phenotype strands (freshly folded, unbonded strands) are now allowed to bond with 
them. Thus the mesh grows around the first child strand, and one genotype seed strand 
yields only one final mesh. (A consequence of this implementation is that multiple seeds 
are also likely to result in only one mesh.) 

As we show in Section 4, JohnnyVon 2.0 supports the three regular polygons that can 
tile the plane: triangles, squares, and hexagons. It also supports rectangles, octagons, 
and larger versions of each of the polygons, with three or more machines per side.  

3.4 Basic Changes 
This subsection describes the core changes in the simulation that were made from 
JohnnyVon 1.0 to JohnnyVon 2.0.  
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3.4.1 Change of Research Focus 
In our earlier work with JohnnyVon 1.0, we were attempting to build a simulation that 
would interest (at least) three research communities: biologists interested in the origins 
of life, nanotechnologists, and artificial life researchers in general. JohnnyVon 1.0 was 
deliberately designed to allow mutation, since mutation is required for evolution. With 
mutation, we were able to demonstrate both spontaneous unseeded self-replication 
(interesting for studying the origins of life) and limited evolution (interesting to artificial life 
research in general) [18].  

In our work with JohnnyVon 2.0, we became aware of a conflict in our goals. In 
particular, mutation is desirable for living organisms, but it is typically not desirable in a 
manufacturing process. We decided to focus on nanotechnological manufacturing and 
give up biological plausibility. Therefore JohnnyVon 2.0 was designed to discourage 
mutation. In a continuous-space simulation (in contrast to a cellular automata 
simulation), it is very difficult to eliminate all possible sources of error in self-replication 
and self-assembly, thus they can still occur in JohnnyVon 2.0, but we have tried to 
minimize errors. 

The decision to focus on manufacturing also made it easier for us to choose a single 
material for both genotypes and phenotypes, instead of the more biologically plausible 
two-material approach. However, it is possible that life began with a single material for 
both purposes (e.g., RNA [7]), so our research may still have some interest for those 
who study the origins of life.  

3.4.2 Variable Field Sizes 
Bonds between machines are formed by spring-like attractive fields. Part of the 
mechanism that was in place to support mutation in JohnnyVon 1.0 was a variable field 
size. In certain circumstances, the field would be small, permitting rare accidental bonds, 
while other times it would be large, to strengthen intentional bonds. The accidental 
bonds were a cause of mutation (replication errors), whereas the intentional bonds were 
part of faithful replication.  

In JohnnyVon 2.0, field sizes do not change. Fields attract, repel, or ignore other fields, 
but they have a constant circle of influence. In situations where the original version has 
small fields, the new version has inactive fields. This modification substantially reduces 
the likelihood of mutations. 

3.4.3 Physical Constants 
The physical constants for viscosity, Brownian motion, and motion dampening were 
changed to suit the new requirements. The values of these constants were 
experimentally tuned to achieve our design objectives while maximizing the speed 
(computation efficiency) of the simulation.  

3.4.4 Arms and the Machine 
In JohnnyVon 1.0, each machine was shaped like a capital letter ‘T’. Each machine had 
four arms, but two of the arms overlapped (along the vertical bar of the T), so the figures 
in the paper seem to show three arms [18]. Each arm had an attractive or repulsive field 
with a circular shape, centered on the tips of the arms. The fields were colour coded, 
and we named the arms according to the colours of their associated fields. 

In JohnnyVon 2.0, each machine is shaped like a plus sign ‘+’ (see Figure 1 in Section 
4.1). Each machine now has five arms, but two of the arms overlap, so the figures seem 
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to show four arms. It is no longer convenient to refer to the arms by the colours of their 
fields. We now refer to the arms by their relative positions (up, left, right), when the 
machine is rotated into a canonical position. The lengths of the arms have been modified 
to facilitate building meshes. 

3.5 Definitions 
The following definitions will help to clarify the discussion. 

Machine: the basic objects in the JohnnyVon 2.0 simulation. There are four types of 
machines, numbered 1 through 4. All four types are shaped like a plus sign ‘+’.  

Arm: each machine has five arms, but two of the arms overlap, so the figures seem to 
show four arms. In the figures, the arms are represented by black lines. 

Canonical position: the machines are mobile and can rotate at any angle, but it is 
convenient to describe them when they are rotated into a standard reference position, 
which we call the canonical position. In the canonical position, the shortest arm points 
down, the two longest arms point right and left, and the medium-length arm points up. 
Another short arm points up in canonical position, but it is hidden by the medium-length 
arm that points up. 

Left and right arms: the two longest arms, pointing left and right when the machine is in 
canonical position. When machines bond to form a strand, adjacent machines in the 
strand are bonded to each other at the tips of their left and right arms. 

Up arm: the longer of the two arms that point up when the machine is in canonical 
position. When a strand replicates by forming a mirror strand, the machines in the mirror 
strand are bonded to their neighbours in the original strand at the tips of their up arms. 
Also, when the strands fold into polygons and join to form a mesh, the polygons bond to 
each other at the tips of their up arms. 

Repellor arm: the shorter of the two arms that point up when the machine is in 
canonical position. This arm overlaps the up arm in the figures, so it is not visible. When 
a strand has completely replicated, repulsive fields are briefly activated at the tips of the 
repellor arms. This splits the original strand from the mirror strand and pushes the two 
strands apart. 

Overlap detector arm: the short arm that points down in canonical position. This arm is 
used to detect when two folded strands (e.g., polygons) overlap in a mesh. 

Container: the space that contains the machines. Machines move about in a two-
dimensional continuous space, bounded by a grey box. The centers of the machines are 
confined to the interior of the grey box.  

Liquid: a virtual liquid that fills the container. The trajectory of a machine is determined 
by Brownian motion (random drift due to the liquid) and by interaction with other 
machines and the walls of the container. The liquid has a viscosity that dampens the 
momentum of the machines. 

Soup: liquid with machines in it. 

Field: an attractive or repulsive area associated with a machine. The range of a field is 
bounded by a circle. In addition to attracting or repelling, a field can also exert a bending 
force, which twists the machines to form a particular angle. A field’s interaction (attract, 
repel, or ignore) with another field is determined by many factors, including the type and 
state of each machine. The fields behave somewhat like springs. 
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Tip: the outer end of an arm, where the fields are centered. 

Middle: the inner ends of the arms, where the five arms meet. This is not the machine’s 
geometrical center, but it is treated as the center of mass in the simulation.  

Bond: machines can bond together when the field of one machine intersects the field of 
another. Not all fields can bond. This is described in detail later. 

Up (left, right) neighbour: the machine that is bonded to the up (left, right) arm of a 
given machine.  

Strand: a chain of machines joined by left arm to right arm bonds. 

Unfolded strand: during replication, the bond angles are such that the replicating strand 
tends to be straight. Brownian motion and other forces perturb the strand, so it cannot be 
perfectly straight, but twisting forces in the bonding fields tend to straighten the strand, 
so it is rarely far from being straight. 

Folded strand: under specific circumstances (described below), each bond in a strand 
will change its angle, causing the strand to fold. 

Gene: another name for an unfolded strand. A strand in its genotype state. The strand 
will form a straight line (approximately). 

Phene: another name for a folded strand. A strand in its phenotype state. The strand will 
form a closed loop. 

Seed gene: an unfolded strand that is added to a soup of free machines, to initiate the 
process of self-replication. 

Seed phene: the first child of the seed gene forms the seed phene, which acts as a 
starting point for the growth of the mesh. This ensures that one seed phene will yield 
only one mesh.  

Mesh: a group of phenes bonded together. 

Free machine: a machine with no bonds. 

Sideways bond: a left neighbour to right neighbour bond. Machines in a strand (both 
phenes and genes) are joined by sideways bonds.  

Up bond: an up neighbour to up neighbour bond. Phenes in a mesh are joined by up 
bonds. During replication, a parent gene is joined to its partially constructed child gene 
by up bonds. 

Time: the number of steps that have been executed in a run of the simulation, since the 
initialization of JohnnyVon. The initial configuration is called step 0 (or time 0).  

Tolerance: each bond has a desired angle (which changes when a strand folds). The 
two machines that participate in each bond have a tolerance for the difference between 
the current angle and the desired angle. Forces can push bonds out of tolerance. Bonds 
that are consistently out of tolerance can break.  

Counter: a special piece of information stored in each machine that normally increments 
during each time step. Each machine has several counters. 

State: the combination of internal information (counters, bonds, and other state 
variables) and external relationships (position, rotation, and velocity) that determines the 
behaviour of a machine. 
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3.6 Machine States 
The state of a machine is represented by a vector. The vector elements that represent 
internal aspects of the machine are all discrete. The vector elements that represent 
external relationships between machines are mostly continuous. The discrete, internal 
elements are governed by state transition rules that are applied in discrete timesteps. 
The continuous, external elements are governed by the laws of the virtual physics. The 
physical laws are inherently continuous, but they are necessarily approximated 
discretely in any computational simulation. 

Internal state information includes various flags, counters, and state variables, as 
summarized in Table 2. External state information includes spatial location and 
orientation, angular velocity, linear velocity, the presence or absence of bonds with other 
machines, and bonding angles, as given in Table 3. Some derived variables are shown 
in Table 4. The derived variables are calculated from state variables.  

Table 2. Variables for elements of the state vector that represent internal aspects of the machine. 

Variable name Range Description 
type {1, 2, 3, 4} •  type of machine 

•  static for a given machine 
id {0, 1, 2, …} •  unique identifier for machine  

•  static for a given machine 
fold-counter {0, 1, 2, …} •  used to decide when the strand should fold 
repel-counter {0, 1, 2, …} •  during splitting, controls how long the repellor arms of a 

strand are active 
stress-counter {0, 1, 2, …} •  counts the time since a machine was last in-tolerance 

strand- position {1, 2, 3} •  used to decide where a machine is in a replicating strand 

•  described in detail elsewhere [18] 
split-state {1, 2, 3, 4} •  used to determine when to split 

•  described in detail elsewhere [18], except that split-state 
now has a fourth value, indicating that shatter should be 
set to 1 (true) 

reset-counter {0, 1} •  indicates that the fold-counter should be reset 
fold-now {0, 1} •  indicates that each machine in the strand should set its 

folded flag 

unfold {0, 1} •  indicates that a phene should unfold 

•  this occurs when one phene overlaps another in a mesh 
seed-gene {0, 1} •  flag for identifying the seed gene 

•  the seed gene never folds, in case more free machines 
become available for replication 

seed-phene {0, 1} •  flag for making the seed phene 
in-mesh {0, 1} •  indicates whether this machine is connected to the mesh 
replicated {0, 1} •  1 (true) if and only if the machine has been through a 

successful replication. 

•  in particular, machines in the seed gene have not 
replicated at the start of a simulation 

shatter {0, 1} •  indicates that the machine should break all bonds and 
return to being a free machine.  

folded {0, 1} •  if 1, the machine tries to form angular bonds with its left 
and right neighbours 

•  if 0, the machine tries to form straight bonds with its left 
and right neighbours 
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Table 3. Variables for elements of the state vector that represent external relations. 

Variable name Range Description 

x-position ℜ  
y-position ℜ  
angle [0, 2π] 
x-velocity ℜ  
y-velocity ℜ  
angular-velocity [0, 2π] 

•  state of the machine with respect to the container 

•  vary due to Brownian motion, viscosity, and forces from 
interactions between fields 

left-neighbour {0, 1, 2, …} 
right-neighbour {0, 1, 2, …} 
up-neighbour {0, 1, 2, …} 

•  identifier of the machine (if any) bonded to the named 
arm 

 

Table 4. Derived variables that are calculated from state variables. 

Variable name Range Description 

in-tolerance {0, 1} •  indicates whether each existing bond is within a certain 
(fixed) tolerance of the desired angle 

•  used to help avoid making bonds when the machine is in 
a potentially unstable situation. 

bend-location {1, 2, 3, 4} •  indicates where a machine is located in a phene 

 

Machines that are directly bonded together can sense each other’s states. This is 
analogous to cells in cellular automata, which can sense the states of their immediate 
neighbours in the grid. The state transition rules and the virtual physics are local, in the 
sense that there is no global control structure. No machine can directly sense the state 
of another machine unless they are directly connected, although state information can 
be passed neighbour-to-neighbour along a strand. No machine can directly exert a force 
on another machine unless the circular boundaries of their fields overlap, although 
forces can be passed neighbour-to-neighbour along a strand.  

Most of the state transition rules and physical laws in JohnnyVon 2.0 are carried over 
from JohnnyVon 1.0 without change. The details of JohnnyVon 1.0 are fully described 
elsewhere [18]. The changes we made in JohnnyVon 2.0 were outlined above, in 
Section 3.4.  

3.7 New Rules 
The following subsections describe the rules that are new in JohnnyVon 2.0.  

3.7.1 Folding 
The leftmost machine in an unfolded strand determines when the strand will fold. A 
machine knows it is leftmost when it has a right-neighbour but no left-neighbour. As part 
of its internal state, each machine maintains a fold-counter. After a strand has replicated 
and split, the fold-counter in each machine in the newly formed strand starts counting. 
When a machine gains an up-neighbour, it triggers a reset-counter signal. This signal is 
passed to the left-neighbour, down the strand, until it reaches the leftmost machine. 
When the leftmost machine receives the signal, it resets its fold-counter to 0. In this way, 
as long as a replicating strand continues to receive new up-neighbours, it will not fold up. 
If the strand successfully replicates, the leftmost fold-counter in each of the two new 
strands is set to 0. 
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Once the fold-counter in the leftmost machine hits a fixed upper limit, that machine 
triggers a fold-now signal. This signal is passed down the strand, setting the folded flag 
as it goes. This causes the strand to fold up according to the types of each of the two 
machines involved in a sideways bond.  

When a strand folds, there are typically some up-neighbours attached to the folding 
strand, as the folding strand has usually partially replicated itself. Machines with an up-
neighbour, but having a false (0) replicated flag, monitor their up-neighbour’s folded flag. 
If this flag becomes true (1), then such a machine will set its own shatter flag to true, and 
thus release all its bonds. (Shattering is described in detail in 3.7.7.) 

Machines with the seed-gene flag set to 1 never fold, thus the initial seed strand is 
always available, to continue replicating as soon as there is a supply of free machines of 
the right types. This is a safeguard against situations in which a temporary scarcity of 
free machines persists for longer than the fixed upper limit on fold-counter. 

3.7.2 Angles and Bonds 
In contrast to JohnnyVon 1.0, we now have four types of machines instead of two types, 
and the type of a machine affects its behaviour in both genes and phenes. In genes, the 
types govern bonding during replication, where the rule is simply, “Likes attract, others 
are ignored.” More formally, the bonding rule for up bonds in genes is given in Table 5. 

Table 5. Pairs of machine types that will permit an up bond when in genes. 

Bond 1 2 3 4 

1 +    

2  +   

3   +  

4    + 

 

This rule implies that each replicated strand is a mirror of its parent, rather than an exact 
copy. For example, a strand of types 1-2-3, reading left to right, in canonical position, will 
replicate as 3-2-1. The phenes that we demonstrate here (in Section 4) have this simple 
symmetry (i.e., the strands and their mirror images both fold into the same polygonal 
shapes), so this is not a problem. 

The rules for up bonds in genes are different from the rules for up bonds in phenes. In 
phenes, only certain combinations of types will bond on their respective up arms, as 
given in Table 6.  

Table 6. Pairs of machine types that will permit an up bond when in phenes. 

Bond 1 2 3 4 

1     

2  +   

3    + 

4   + + 

 

Any type of machine can form a sideways bond with any other type, in both genes and 
phenes, but a left arm must bond with a right arm (i.e., no left-left nor right-right bonding 
is allowed). In phenes, the types on each side of a sideways bond govern the angle the 
bond will take when the strands have folded, as specified in Table 7. This means that the 
types involved in each bond control the shape that the folded strand will take.  
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Table 7. Folding angles for sideways bonds between two machine types when in phenes. 

Angle 1 2 3 4 

1 0° 0° 0° 0° 

2 0° 120° 45° 90° 

3 0° 45°   

4 0° 90°  60° 

 

Table 7 shows the sideways bond angle formed by each pair of machine types, when a 
strand is in its phenotype state; that is, when folded is set to 1 (true). When a strand is in 
its genotype state (folded is 0 for all machines in the strand), the sideways bond angles 
are all 0° (straight). Up bond angles are always 0° ( ignoring random perturbations, from 
Brownian motion, for example).  

The blank cells in Table 7 represent combinations of types for which we have not yet 
found a use. From Table 6, it can be seen that a type-3 machine cannot form an up bond 
with another type-3 machine when they are in phenes. Therefore we could control the 
shape of a 3-3-…-3 phene by specifying any desired value for the angle of 3-3 bonds in 
Table 7, but the resulting phenes would not be able to form a mesh. Similarly, we could 
control the shape of a 3-4-3-4-…-3-4 phene by giving any desired value for the angles of 
3-4 and 4-3 bonds in Table 7, but the resulting phenes can form up bonds in multiple 
ways (3-4, 4-3, and 4-4; see Table 6). Thus we have limited control over the shape of 
the mesh that the phenes will form. 

In Table 7, it can be seen that all sideways bonds involving type-1 machines are straight. 
This allows us to expand the size of a phene, without changing its shape, by inserting a 
sequence of type-1 machines along each edge. However, it does not allow polygons 
with exactly two machines on each side, since expansion requires at least one type-1 
machine inserted between two other machines. 

Given the angles that are available to us in Table 7, some polygons (e.g., octagons and 
squares) require two types of machines, while others (e.g., triangles and hexagons) 
involve only one type. We chose to restrict the JohnnyVon 2.0 to four types of machines, 
in order to demonstrate that a small number of components can be combined to build a 
variety of structures (like Lego blocks). The angles that we chose make it easy to build 
triangular meshes. It may seem inconvenient to require two types of machines to build 
octagonal meshes, but in fact, having two types of machines is helpful with octagons. An 
octagonal mesh has both octagonal holes and square holes (see Image 4 in Figure 2 in 
Section 4.2). With two types of machines, we can prevent octagonal phenes from filling 
in the square holes in the mesh.  

A single type of machine would be sufficient to create squares, but using two types 
permits rectangles that will mesh correctly. With two types of machines, the long and 
short sides of the rectangle can be distinguished by type, so that two sides will bond 
together only if they have the same machine type, and thus the same length. 

Though they could use two types, hexagons will form a mesh faster with only one type. 
Furthermore, in order to get the desired behaviour with four machine types, exactly one 
of the squares or hexagons had to use only one machine type, and the other had to use 
two. While it would be possible to have an irregular hexagon, this seems much less 
natural than a rectangle. (In a regular polygon, all sides have the same length. 
Rectangles are irregular.) 
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Table 6 shows how machine types control phene bonding in meshes. The bonding rules 
in Table 6 were designed so that octagonal meshes will form correctly. They prevent 
octagonal phenes from filling square holes in the mesh.  

Additional rules were created to support expansion of the size of a phene, without 
changing its shape, by inserting a sequence of type-1 machines along each edge. These 
rules are based on the derived variable bend-location. In a phene, a given machine can 
have either a straight (type 1) or bending (types 2, 3 or 4) machine bonded to its left or 
right arm. By looking at its neighbours, it can determine where it is in the context of the 
phene, and hence it can calculate the value of bend-location. Certain values of bend-
location can override the rules in Table 6 and disallow a bond that would otherwise be 
permitted. Table 8 explains the meaning of the different values of bend-location. Table 9 
shows how bend-location affects bonding. 

Table 8. The meaning of the different values of bend-location. 

Value  Meaning of value 

1 right of bend: right neighbour is straight (1) and left neighbour is bending (2, 3, 4) 
2 left of bend: left neighbour is straight (1) and right neighbour is bending (2, 3, 4) 
3 in bend: both left and right neighbours are bending types (2, 3, 4) 
4 extender: both left and right neighbours are straight types (1) 

 

Table 9. Pairs of bend-location values that will permit an up bond when in phenes. 

bend-location 1 2 3 4 
1  +   

2 +    

3   +  

4     

 

When the up field of a machine in one phene overlaps with the up field of a machine in 
another phene, the rules in both Table 6 and Table 9 must be satisfied before the up 
fields can bond. If there are no type 1 machines in the phene (i.e., all sideways bonds 
are bent; the shape is not expanded), then bend-location must have the value 3 for all 
machines, and thus (by Table 9) up bonds depend only on the machine types (Table 6).  

In Table 8, we are assuming that the phene forms a closed loop. The error correction 
system will destroy open loops (Section 3.7.4). When a machine has no left or right 
neighbour (because it is at the end of an open strand), we treat the missing neighbour as 
if it were a bending type. 

3.7.3 Overlap Detection 
Because of flexibility in the mesh, and in individual phenes, two phenes can sometimes 
join a mesh in such a way that their desired positions overlap. This can be most easily 
seen by imagining a mesh of hexagons that is complete except for a single gap. 
Suppose that two hexagons jostle (by Brownian motion) into the gap, with slightly 
different alignments. At roughly the same time, one forms a bond with the phene above 
the gap, and one with the phene below the gap. As they straighten towards their ideal 
position (due to twisting forces on their up bonds), each phene may pick up new bonds 
around the edge of the former gap. 

If ignored, this problem spreads, since there are now unbonded up arms on each of the 
two overlapping hexagons, which permit new hexagons to join the mesh, overlapping 
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those around the former gap, and each of these hexagons in turn can bring in more 
overlapping hexagons.  

To address this problem, an arm was added to the machines (new since JohnnyVon 
1.0), called the overlap detector arm. In a folded strand, it points towards the center, and 
will only bond with other overlap detector arms. Both machines must be oriented in the 
same direction (up to a fixed degree of tolerance), and both machines must have their 
in-mesh flag set to true.  

When an overlap detector bond is formed between two machines (necessarily in two 
different phenes), one machine (chosen arbitrarily) sets its unfold signal to true. This 
signal propagates to its left and right neighbours, setting folded to false as it goes. It also 
breaks the overlap bond that triggered it. The resulting unfolded strand behaves exactly 
like a newly replicated strand. It tries to replicate until fold-counter exceeds its limit, and 
then it folds up again.  

In summary, when two phenes compete for the same gap in a mesh, one of them is 
forced to become a gene. Converting one of the phenes to a gene, instead of leaving it 
as a detached phene, allows time for it to drift away from the problematic area, or for the 
remaining phene to fill up the open bonds in the mesh. 

3.7.4 Stress Detection 
Another type of error can occur in a mesh, again due to the flexibility of the mesh. In this 
case, we can imagine five triangles bonding to form a pie shape, missing only one more 
triangle to form a hexagon. However, instead of a new triangle coming in to fill the gap, 
the two triangles on either side of the gap jostle together, forming a stressed pentagon 
rather than a hexagon. This pentagonal mesh may be part of a larger mesh, and thus 
some of the stress may be distributed through the larger mesh. This problem can be 
partially addressed by increasing the strength of some of the fields and decreasing the 
tolerance of some of the bonding angles, but it becomes increasingly hard to prevent as 
the mesh grows.  

To detect this kind of problem, each machine maintains a stress-counter, which 
increments each time interval when the machine is not in-tolerance, and is reset 
whenever the machine is in-tolerance. This counter can be used to detect cases in which 
the mesh is stressed because phenes have bonded incorrectly. When the counter 
exceeds a fixed maximum, it causes the stressed phene to unfold, by setting its unfold 
signal to true. The signal propagates to left and right neighbours, setting folded to false 
and dropping up bonds as it spreads through the neighbours. 

3.7.5 Seeding the Mesh 
In the initial seed gene, seed-gene is set to true, but it will be set to false for all of the 
child genes. If a machine has a true seed-gene, it will never trigger the fold-now signal. 
Since the initial seed gene will never fold, there will always be a strand that can continue 
replicating whenever free machines become available. 

The first child of the seed gene, and only the first child of the seed gene, becomes the 
seed phene. When the seed-phene flag is set to true in a strand, it does not mean that 
the given strand is the seed phene; it means that the next child of the given strand will 
become the seed phene. In the initial seed gene, seed-phene is set to true. When the 
seed gene first replicates, its child examines its parent’s seed-phene flag and observes 
that it is set to true. The child then sets it in-mesh flag and its folded flag to true and it 
immediately folds to become the seed phene. The parent (the initial seed gene) then 
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sets its seed-phene flag to false, so that its future children cannot become seed phenes. 
(When we say that a strand sets a flag to a value, it is a shorthand way of saying that 
every machine in the strand sets the flag to the value. Strands do not have flags of their 
own, other than the flags of their component machines.) 

Every other gene, created after the first child, will begin its career with its in-mesh flag 
set to false. If two phenes meet with their in-mesh flags set to false, they cannot bond 
together. A phene can only bond to another phene if the other phene has its in-mesh flag 
set to true. When a machine (in a phene) with a false in-mesh flag meets a machine (in a 
second phene) with a true in-mesh flag, they bond (assuming they meet all the 
conditions in Section 3.7.2), and a signal propagates through the first phene, setting all 
of the in-mesh flags to true (but the signal only propagates from one machine to its 
sideways neighbour when their bond is in-tolerance; see Section 3.7.4). This ensures 
that the mesh can only grow from the seed phene. 

3.7.6 Tolerances 
Each machine will only form up bonds if all existing bond angles are within a certain 
tolerance. That is, if a machine’s sideways bonds are at angles significantly different 
from the desired angles (i.e., the angles given by the rules in Section 3.7.2), then no up 
bonds will form during the current timestep. This prevents unintended up bonds during 
vulnerable times, such as during splitting or folding. 

3.7.7 Shattering 
There are a number of ways that a gene or phene can break. For example, during 
splitting, the phase of self-replication when two genes are pushed apart by their repellor 
arms, if one of them hits the wall of the container at an angle, it puts significant strain on 
the whole strand. As another example, an error in a mesh can eventually lead to enough 
strain to pull a phene apart (see Section 3.7.4). 

If a machine loses a bond unexpectedly (which is any time other than when splitting or 
unfolding), or if it notices that its neighbour has folded, then the shatter flag is set to true. 
When a machine observes that its neighbour’s shatter flag is true, the machine may 
respond by setting its own shatter flag to true. We say that the first machine is the 
source of a shatter signal that was received by the second machine.  

The shatter signal always propagates through sideways bonds, setting the shatter flag to 
true in left-neighbours and right-neighbours. The shatter signal may also propagate to an 
up-neighbour, but only if the source machine has replicated but not folded. If the 
neighbouring machine has replicated, something went wrong with the split (two 
replicated machines should not be bonded before they’re both folded); on the other 
hand, if the neighbour’s replicated flag is false, then it may be part of an incomplete 
copy, and thus should be abandoned. 

When a machine’s shatter flag is true, it drops all of its bonds (the discrete timesteps 
ensure that the state is propagated, even if the bonds are broken during that time step, 
since machines consult their neighbours' state as it was at the beginning of the step). 
When the bonds have been dropped, it then sets folded, seed-gene, and replicated flags 
to false and becomes a free machine.  

The shatter mechanism is not a subtle way to handle errors, but we have found it to be 
effective. In our simulations, shattering is relatively rare. This error correction mechanism 
is similar to Sayama’s method for handling errors in self-replicating loops [12], [13]. 
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3.8 Implementation 
JohnnyVon 2.0 builds directly on the original JohnnyVon 1.0. Both systems are written in 
Java and their source code is available under the GNU General Public License (GPL) at 
http://purl.org/net/johnnyvon/. 

4 Experiments and Discussion 
In our first experiment, we demonstrate the construction of a small mesh of triangles, 
highlighting several important points in the replication and assembly. In the next set of 
experiments, we demonstrate replication and assembly of meshes built from each of the 
supported polygons, with one machine per side. We then show a mesh of polygons with 
more than one machine per side, a 3×1 rectangle and a triangle with three machines per 
side. Finally, to demonstrate scalability, we show a large mesh of triangles.  

In the following figures, the inner grey square represents the container. The middle of a 
machine must stay inside the grey square. (It takes less computation to check whether 
the middles are within bounds than to check all of the arms.) 

4.1 Self-Replication and Self-Assembly 
In Figure 1, the images show a typical run of JohnnyVon 2.0. The run starts with a soup 
of 54 free type-2 machines and a seed gene of the form 2-2-2, and it ends with a 
triangular mesh. 

Image 1: This shows the initial configuration. Each of the free machines is in a random 
position and the seed gene is in the center (it is the strand of three machines, forming a 
straight line). 

Image 2: After 2,385 steps, the first replication is complete. We see two genes, 
immediately after they have split and their repellor arms have pushed them apart. 

Image 3: The first child of the seed gene is folding up, to become the seed phene. The 
seed gene has already begun a second copy. 

Image 4: By time 44,235, nearly all of the free machines are now attached to genes. 
Since there are so few free machines left, most of these genes cannot complete self-
replication. As some of the incomplete strands’ fold-counters hit their upper limit, they 
will fold and release free machines, allowing other genes to complete self-replication.  

Image 5: We can see the second phene forming. In this image, it has not completely 
folded; the triangle has a small gap at the top. 

Image 6: Slightly more than 3,000 timesteps later, the new phene has bonded with the 
seed phene. 

Image 7: Now many more triangles have folded and joined the mesh. Two triangles 
have not yet joined (one is in the lower left corner and the other is near the center). 

Image 8: The mesh is almost complete. In the bottom on the right, there is a pentagonal 
arrangement of five triangles. This would eventually be corrected (by one of the triangles 
releasing and unfolding; see Section 3.7.4), although the container is just barely large 
enough to hold a mesh that includes all of the machines, and thus errors may continue 
to form even as they are corrected. In a situation where the container constrains the 
mesh, it is possible for a machine to get attached to a mesh in such a way that it can 
never reach an equilibrium where all of its bonds are in tolerance, since the conditions 
for accepting new bonds are much looser than the conditions for detecting stress. 
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Figure 1. These images illustrate the experiment described in Section 4.1. 

 

In this simulation, the container is relatively small, and therefore Brownian motion is 
relatively strong. With strong Brownian motion, free machines are quickly distributed 
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throughout the container, thus a replicating strand has a steady supply of free machines. 
The small container also means that the phenes never have far to go to join the mesh, 
and will quickly be bumped into the right position. In a larger container, replicating 
strands will consume the machines in their local area, and then replication slows until 
diffusion replenishes the supply. It also takes longer for phenes to find a place where 
they can join the mesh. We could speed up the action in a larger container by increasing 
the Brownian motion (i.e., turning up the heat), but that could damage the mesh. 

4.2 Simple Polygonal Meshes 
In Figure 2, we show assembled mesh structures. Four different regular polygonal 
meshes are shown, all with sides that are one machine in length. Each of these four 
simulations was started with a single seed strand and was executed until the mesh was 
well developed. The scale of the images in Figure 2 is different from the scale of the 
images in Figure 1. These simulations use a container about nine times larger in area 
than the simulations in Figure 1. Table 10 summarizes the four simulations in Figure 2. 
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Figure 2. The resulting mesh for each of the four supported regular polygons 
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Table 10. Some basic observations about each image in Figure 2. 

Image Phenes Seed gene Timestep Initial free 
machines 

Phenes in 
mesh 

Genes 
remaining 

1 Triangles 2-2-2 246,000 201 50 5 
2 Squares 4-2-4-2 498,600 200 24 1 
3 Hexagons 4-4-4-4-4-4 448,600 160 20 1 
4 Octagons 2-3-2-3-2-3-2-3 1,107,400 120 9 2 

 

4.3 Fancy Meshes 
In Figure 3, Image 1 (timestep 691,900) shows a mesh built of rectangles, rather than 
regular polygons. Because squares and rectangles use two types of machines (see 
Section 3.7.2), the rectangles only join the mesh if they are correctly oriented. The seed 
for Image 1 was 2-4-2-1-2-4-2-1. 

Image 2 (timestep 78,800) shows large triangles. The seed was 2-1-2-2-1-2-2-1-2. The 
bonds between type-2 machines fold to form the corners, while the type-1 machines 
provide the extension to make these triangles larger. In principle, each phene can be 
made arbitrarily large using this approach. 
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Figure 3. A rectangular mesh and a mesh of expanded triangles. 

4.4 Large Mesh 
The image in Figure 4 demonstrates that meshes can grow correctly beyond a small 
number of triangles. The seed was 2-2-2. The mesh contains 234 triangles. 
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Figure 4. A mesh of 234 triangles. 

5 Limitations and Future Work 
JohnnyVon 2.0 has several minor limitations. For example, phenes must be closed for 
the system to work correctly. Although a hexagon composed of five machines and a gap 
in the sixth side can form a mesh, the error correction system would destroy the resulting 
mesh. Because closure of the phenes increases their rigidity, a mesh built of open 
phenes would be more flexible, and there may be other interesting effects.  

The variety of phenes in JohnnyVon 2.0 is also somewhat limited. Our original goal, to 
support all regular polygons that tile the plane (triangles, squares and hexagons), is 
satisfied. JohnnyVon 2.0 also supports partial tiling with octagons (square gaps are left 
in the mesh), and full tiling with rectangles. However, we would now like to support 
concave shapes (e.g., stars), as well as more general polygons. It would be interesting 
to enable Penrose tilings and Kepler tilings [3]. 

The replication phase takes much longer with two (or more) types of machines than it 
does with one, since each free machine has fewer places to bond correctly (equivalently, 
each machine in the strand has fewer free machines available with which it can bond). 
Supplying two (or more) times as many machines increases the computation per 
timestep (roughly quadratically). However, JohnnyVon 2.0 should be parallelizable. This 
is another area for future work. 

Like JohnnyVon 1.0, version 2.0 still runs on a standard desktop computer, thanks in 
part to improvements in hardware since the development of version 1.0. However, there 
were many experiments we wanted to try (e.g., polygons with 4 or 5 machines per side) 
that were not practical, given our available hardware and our patience. This problem can 
be addressed by improving the efficiency of our implementation, converting the code to a 
more efficient language than Java (which is likely to make it much less portable), 
parallelizing the code, or obtaining better hardware. 

The computational complexity of the simulation increases with the size of the phenes, 
since each phene must be jostled to a place near where it belongs, and larger phenes 
move more slowly. Meshes of large phenes require many timesteps to be constructed. 
The problem may be alleviated by increasing the Brownian motion or decreasing the 
viscosity of the simulated liquid, but each of these solutions presents new problems. We 
have tuned the physical parameters, in an effort to balance these conflicting concerns. 
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The current settings of the physical parameters appear to strike a good balance, but 
there is likely room for further improvements. 

Referring to Table 1 in Section 2.4, JohnnyVon would benefit from increased realism and 
increased programmability. Although JohnnyVon 2.0 provides a moderate level of 
programmability, it is not as programmable as we would like. One problem is that the 
mesh grows without control. Sometimes the mesh is relatively dense (as in Image 2 of 
Figure 2) while at other times it has many gaps (as in Figure 4). We would like to add a 
programmable mechanism for controlling the final size and shape of the mesh, and for 
avoiding meshes with large gaps (or for deliberately creating gaps, which may be useful 
for some applications). 

In the context of JohnnyVon’s virtual physics, it may be meaningful to define a universal 
constructor. For example, we might say that a universal constructor would be capable of 
building any two-dimensional structure that can be constructed from a finite number of 
machines, such that up arms are bonded to up arms and left arms are bonded to right 
arms. The design for the structure should be encoded in a seed gene. Ideally, the seed 
would contain many fewer machines than the final structure, although this may not be 
possible when the final structure lacks a regular pattern. Much further work is required to 
make a universal constructor in the JohnnyVon model. 

JohnnyVon 2.0 also provides a moderate level of realism, but again it is not as realistic 
as we would like. Our attractive and repulsive forces are somewhat unlike electrical or 
magnetic attraction and repulsion. The JohnnyVon simulation also does not attempt to 
model conservation of energy. Arbesman has recently done some interesting work on 
computational simulation of artificial life with conservation of energy [1]. 

Other steps towards increased realism would be to extend the simulation to three 
dimensions and to model the physics of the internal operations of the machines. 
Currently the external relations between machines are governed by a simple virtual 
physics, but the internal operations are described by abstract finite automata. However, 
both of these steps to realism would involve a significant increase in computational 
complexity. 

6 Applications 
With JohnnyVon 2.0, we have focused more clearly on nanotechnology, at the expense 
of application to theoretical biology. In our previous work, we suggested that JohnnyVon 
1.0 provided a plausible mechanism for nanoscale manufacturing [18]. A vat of liquid 
containing free machines would be seeded with a single strand, soon resulting in a vat 
full of copies of the seed strand. JohnnyVon 2.0 takes this application one step further, 
beyond self-replication to programmable construction of meshes. Since the user has 
some control over the size and shape of the holes in the mesh, we can imagine these 
meshes being produced for filtration, insulation, or simply as kind of cloth. 

If we can create a mechanism for controlling the size and shape of the mesh, more 
applications become possible. Since the system is accurate and self-correcting, pieces 
of cloth could be created exactly to specification, down to the size of a single machine.  

7 Conclusion 
JohnnyVon 1.0 demonstrated self-replication in a continuous two-dimensional space 
with virtual physics. JohnnyVon 2.0 goes beyond its predecessor by introducing a user-
programmable phenotype, consisting of a variety of meshes. JohnnyVon 2.0 is more 
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realistic than cellular automata models [6], [11], [12], [13], [19], more programmable than 
artificial chemistry models [4], [5], and more computationally tractable than von 
Neumann’s universal constructor [10], [20]. However, there is still much room for 
improvement in the degree of physical realism of the simulation and in the degree of 
programmability of the phenotype. 

Like its predecessor, JohnnyVon 2.0 is a local model. There is no global data structure 
that represents strands or meshes; these are emergent entities that arise from the 
interactions of the basic elements (the machines). Each machine is autonomous and can 
only sense its immediate neighbours. Control is local, distributed, and parallel.  

From four different types of machines, JohnnyVon can produce four different polygonal 
meshes, with an infinite number of possible sizes (as per Section 4.3). The user can 
specify the mesh that will be produced by encoding the desired size and shape in the 
initial seed, without making any changes to the physics of the simulation. Errors in 
replication and in mesh formation are automatically detected and corrected, using purely 
local mechanisms. 

JohnnyVon 2.0 also avoids the “grey goo” scenario of self-replicating nanobots run 
amok. Replication and assembly are inherently limited by the supply of machines; when 
the free machines have all bonded, the process stops.  
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