
https://doi.org/10.4224/8914341

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Self-replicating strands that self-assemble into user-specified meshes
Ewaschuk, R.; Turney, P.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=742a174c-f3d9-4691-9fa9-4364204b183f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=742a174c-f3d9-4691-9fa9-4364204b183f

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Self-Replicating Strands that Self-Assemble

into User-Specified Meshes *

Ewaschuk, R., and Turney, P.
February 2005

* published as NRC/ERB-1121. February 22, 2005. 27 Pages. NRC 47442.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Self-Replicat ing Strands that

Self-Assemble into User-

Specified Meshes

Ewaschuk, R,. and Turney, P.
February 22, 2005

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

ERB-1121

NRC 47442

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 2

Self-Replicating Strands that Self-Assemble
into User-Specified Meshes

Abstract...3

1 Introduction ...3

2 Related Work ..5

2.1 Universal Constructor ..5

2.2 Self-Replicating Loops...5

2.3 Artificial Chemistry...6

2.4 Suitability for Nanotechnological Manufacturing...6

3 JohnnyVon 2.0 ..8

3.1 Summary of JohnnyVon 1.0...8

3.2 Design Objectives for JohnnyVon 2.0 ..8

3.3 Overview ...8

3.4 Basic Changes ..9

3.5 Definitions..11

3.6 Machine States..13

3.7 New Rules ...14

3.8 Implementation ..20

4 Experiments and Discussion ...20

4.1 Self-Replication and Self-Assembly ...20

4.2 Simple Polygonal Meshes..22

4.3 Fancy Meshes ...23

4.4 Large Mesh ...23

5 Limitations and Future Work..24

6 Applications...25

7 Conclusion ..25

Acknowledgements...26

References ...26

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 3

Self-Replicating Strands that Self-Assemble
into User-Specified Meshes

Abstract
It has been argued that a central objective of nanotechnology is to make products
inexpensively, and that self-replication is an effective approach to very low-cost
manufacturing. The research presented here is intended to be a step towards this vision.
In previous work (JohnnyVon 1.0), we simulated machines that bonded together to form
self-replicating strands. There were two types of machines (called types 0 and 1), which
enabled strands to encode arbitrary bit strings. However, the information encoded in the
strands had no functional role in the simulation. The information was replicated without
being interpreted, which was a significant limitation for potential manufacturing
applications. In the current work (JohnnyVon 2.0), the information in a strand is
interpreted as instructions for assembling a polygonal mesh. There are now four types of
machines and the information encoded in a strand determines how it folds. A strand may
be in an unfolded state, in which the bonds are straight (although they flex slightly due to
virtual forces acting on the machines), or in a folded state, in which the bond angles
depend on the types of machines. By choosing the sequence of machine types in a
strand, the user can specify a variety of polygonal shapes. A simulation typically begins
with an initial unfolded seed strand in a soup of unbonded machines. The seed strand
replicates by bonding with free machines in the soup. The child strands fold into the
encoded polygonal shape, and then the polygons drift together and bond to form a
mesh. We demonstrate that a variety of polygonal meshes can be manufactured in the
simulation, by simply changing the sequence of machine types in the seed.

1 Introduction
Researchers have argued that one of the main objectives of nanotechnology is to
manufacture products inexpensively, and that this goal can be effectively achieved by
self-replication [2], [8], [9]. We believe that it will be useful to develop computational
simulations of self-replicating nanotechnology as engineering tools to assist in the
design of actual self-replicating machines.

In our earlier work with JohnnyVon 1.0 (named in honour of John von Neumann [20]),
we developed a computational simulation of machines that join to form self-replicating
strands (i.e., chains of machines linked by flexible bonds) [18]. These machines drifted
about in a virtual liquid, simulated as a two-dimensional continuous space with Brownian
motion and viscosity. There were two types of machines, which enabled a strand to
encode an arbitrary bit string, by designating one type of machine as representing 0 and
the other as 1. Although strand replication faithfully preserved the encoded bit strings,
the information in the strings played no functional role in JohnnyVon 1.0. In effect, the
simulation had genotypes (i.e., genetic code) without phenotypes (i.e., bodies). From the
perspective of potential applications in manufacturing, the absence of phenotypes was a
major limitation of JohnnyVon 1.0.

This paper introduces JohnnyVon 2.0, which builds on its predecessor by adding
phenotypes to the simulation. The design of JohnnyVon 2.0 was inspired by the work of
Seeman on building nanometer-scale structures with DNA [14], [15]. In living organisms,
replication is based on DNA (the genotype) and the information encoded in DNA is used
to build proteins (the major structural material of the phenotype). Seeman has shown

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 4

that DNA can serve both as a device for self-replication (genotype) and (surprisingly) as
a building material for nanoscopic structures and tools (phenotype). By choosing the
appropriate sequence of codons, DNA can be programmed to self-assemble into a wide
variety of structures, such as cubes, octahedra, one-dimensional strands, two-
dimensional meshes, and three-dimensional arrays. Seeman discusses a variety of
potential nanotechnological applications for these structures. For example, a three-
dimensional DNA array could facilitate x-ray crystallography, by serving as a scaffolding
for holding molecular samples in a regular lattice [15].

Seeman views his work as a first step towards nanorobotics [15]. In Seeman’s work, the
DNA strands self-assemble, but they do not self-replicate. However, recent work by
others has produced a DNA strand that can be replicated by PCR (polymerase chain
reaction) and can fold into an octahedron [16]. (Both the replication by PCR and the
subsequent folding are assisted by the experimenter, who must add various chemicals
at the appropriate stages.)

In JohnnyVon 2.0, there are four types of machines, drifting in a two-dimensional
continuous space with Brownian motion and viscosity (i.e., a simulated liquid). The
machines exert spring-like attractive and repulsive forces on each other, but internally
they are finite state machines. The input to each state machine is based on the presence
or absence of bonds with neighbouring machines and on the internal states of bonded
neighbours. The internal states govern when bonds are formed or broken and the angles
at which bonded machines are joined, and thus determine whether a strand will form a
straight line or fold into a specific polygonal shape. The machines are (very roughly)
analogous to codons in DNA.

Following the hint of Seeman’s work, a strand in JohnnyVon 2.0 serves as both a
genotype and a phenotype, at different stages in its career [14], [15], [16]. Like living
organisms (but unlike von Neumann’s strategy [20]), JohnnyVon 2.0 takes a template-
based approach to self-replication. A strand begins its career as a genotype. While
acting as a genotype, the strand is approximately straight, so that it can provide a good
template for replication. Brownian motion and interactions with other machines will cause
the strand to bend slightly, because the bonds between the machines are flexible, but
the system is designed so that forces will tend to straighten the strand. Later in its
career, the strand may become a phenotype. When this happens, the bonding forces
change, causing the bonding angles to alter, and the strand folds. This folding is
(approximately) analogous to the way that proteins fold. A folded strand acts as a
structural element and is no longer capable of replication.

A typical run of a JohnnyVon 2.0 simulation begins with a soup of unbonded machines
and an initial unfolded seed strand of bonded machines. Free (unbonded) machines
connect to the seed strand, eventually forming a double strand (two parallel strands).
When the new strand is complete, the two strands break apart, and thus we have self-
replication. A strand will continue to self-replicate until unbonded machines become
scarce. When a strand has not encountered an unbonded machine for a relatively long
period of time, the strand stops replicating and folds. The shape that it folds into
depends on the types of machines in the strand and their sequential ordering. Folded
strands drift in the virtual liquid and bond with each other, forming a mesh. The user can
specify the shape of the holes in the final mesh by selecting the sequence of machine
types that compose the initial seed strand.

In Section 2, we discuss related work with von Neumann’s universal constructor, self-
replicating loops, and artificial chemistry. We compare JohnnyVon 2.0 to the related

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 5

work, in terms of the goal of assisting with research and development of applications in
nanotechnological manufacturing. The details of JohnnyVon 2.0’s design are explained
in Section 3, including the changes that have been made from JohnnyVon 1.0 [18]. We
present our experiments in Section 4. Each experiment is a run of the simulation with an
initial seed strand. We demonstrate that a variety of polygonal meshes can be
manufactured by varying the initial seed. Section 5 examines limitations of JohnnyVon
2.0 and problems and projects for future work. Potential applications are suggested in
Section 6 and we conclude in Section 7.

2 Related Work
Sipper provides a good survey of research on self-replication [17]. Some of the research
involves actual mechanical devices and some is based on organic chemistry, but we
restrict our discussion here to computer simulations of self-replication. We compare
JohnnyVon 2.0 to von Neumann’s universal constructor [10], [20], self-replicating loops
[6], [11], [12], [13], [19], and artificial chemistry [4], [5]. We consider the degree to which
each is useful as an engineering tool to assist in the design of actual (physical) self-
replicating machines.

2.1 Universal Constructor
Von Neumann’s approach to self-replication was to design a universal constructor, which
could build anything, and therefore could build itself as a special case [20]. He described
five different models (i.e., five different kinds of simulations), with varying levels of
realism and concreteness. The design of the universal constructor was only worked out
in detail for the cellular automata model, which was the most abstract of the five models.

The cellular automata model consisted of a two-dimensional space divided into a grid of
discrete cells. Each cell was a finite automaton with twenty-nine possible states. A run of
the simulation begins by setting the initial states of the cells, and then the states change
in a sequence of discrete time steps, according to a fixed set of state transition rules.
Transitions between states for a cell depend on the states of its neighbouring cells.

In this model, the universal constructor was composed of a group of several thousand
cells that begin in a specific configuration of initial states. Another line of cells acts as a
kind of tape, which is read by the universal constructor. For any given finite configuration
of cell states, there is a tape that can cause the universal constructor to build the given
configuration. As a special case, there is a tape that can cause the universal constructor
to build a copy of itself, thereby self-replicating.

Although the computers available to von Neumann were not sufficiently powerful to run
this model, it has since been successfully implemented [10]. However, even on a
modern computer, it would take many weeks of continuous operation for a universal
constructor to make a single copy of itself and its tape.

2.2 Self-Replicating Loops
Langton demonstrated self-replication in a cellular automata model that was much
simpler than von Neumann’s model [6]. He achieved this simplification by designing a
constructor that could construct only itself, instead of trying to make a universal
constructor. His cellular automata model had eight states instead of twenty-nine and his
constructor was composed of a group of about a hundred cells in a specific initial
configuration, instead of a group of several thousand cells.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 6

In Langton’s model, the cells of the constructor are arranged in a loop. The states of the
cells in the loop go through a cycle, periodically creating a copy of the original loop.
Starting from the initial loop, increasing numbers of copies spread across the grid.

The idea of self-replicating loops in cellular automata models has since been developed
further by many researchers [11], [12], [13], [19]. Self-replicating loops have exhibited
many interesting behaviours, including evolution [11], [13] and self-repair [19].

2.3 Artificial Chemistry
Hutton introduced self-replication in an artificial chemistry simulation, using a template-
based approach [4]. A chain of molecules forms a template against which other
molecules bond, similar in concept to JohnnyVon 1.0 [18]. A run of the simulation begins
with a seed chain in a soup of free molecules. By a series of chemical reactions, a
parallel chain of molecules forms next to the seed chain. When the parallel chain is
complete, it separates from the seed chain and process repeats.

Hutton’s first approach was a cellular automata model [4], but the discrete space
constrained the mobility of the simulated molecules, hence Hutton’s second approach
used a continuous space [5], like JohnnyVon 1.0 [18]. In Hutton’s second model,
molecules move in a continuous two-dimensional space, following linear trajectories until
an obstacle (e.g., the container wall or another molecule) is encountered (i.e., the motion
is a billiard ball model). When molecules make contact with each other, they undergo a
chemical reaction that bonds them together, according to the rules of the artificial
chemistry.

In Hutton’s first model [4], the molecules only replicate, but in his second model [5], they
also build a circular barrier, suggestive of a cell wall. Each time a chain replicates, the
new chain builds a wall around itself.

2.4 Suitability for Nanotechnological Manufacturing
Given our objective, to contribute to nanotechnological manufacturing, there are four
factors that are particularly relevant for discussing related work in computational
simulations of self-replication:

Realism: the degree of physical realism of the simulation (low, medium, or high), which
determines the efficacy of the simulation as a tool for engineering of nanotechnology;

Genotype/Phenotype: the presence or absence of a distinction between genotype and
phenotype (yes or no), which determines the flexibility of the system for applications in
manufacturing;

Programmability: the degree of programmability by the user (low, medium, or high),
without altering the basic rules of the simulation, which also affects the flexibility for
manufacturing purposes;

Tractability: the degree of computational tractability of the simulation (low, medium, or
high), which determines the feasibility of running interesting simulations on current
computer hardware.

Using these four factors, we compare JohnnyVon 2.0 to related work in Table 1. This
table is intended to informally summarize the points that we discuss in the following
paragraphs.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 7

Table 1. Comparison with related work.

System Realism Genotype/
Phenotype

Programmability Tractability

Universal constructor low yes high low
Self-replicating loops low no low high
Artificial chemistry medium yes low high
JohnnyVon 1.0 medium no low high
JohnnyVon 2.0 medium yes medium high

Von Neumann’s approach makes a strong distinction between the phenotype (the group
of cells that compose the universal constructor) and the genotype (the line of cells that
compose the instruction tape, read by the universal constructor). The universal
constructor was designed to be universal; it is programmable to the highest possible
degree (ignoring configurations with infinite numbers of cells). However, the cellular
automata model is not realistic; its high level of abstraction makes it difficult to use in
actual manufacturing applications. Von Neumann recognized this limitation of cellular
automata, which is why he felt the need for four other (more concrete) models [20]. The
complexity (low tractability) of the universal constructor is also a barrier to applications.
Unfortunately, increasing the realism of the models is likely to also increase the
complexity of the universal constructor.

Self-replicating loops are much less complex than von Neumann’s universal constructor,
but this simplicity comes with a loss of programmability. There is no meaningful
difference between genotype and phenotype in the loops. Also, self-replicating loops are
not usefully user-programmable. If the user makes any changes to the states of the
group of cells that compose the initial seed loop, it is likely that the seed will no longer be
able to self-replicate, or it will repair itself, undoing the user’s change [19]. Additionally,
like von Neumann’s universal constructor, self-replicating loops have only been
implemented in cellular automata models (although it is conceivable that they could be
implemented in other models), thus their high level of abstraction limits their practical
use in manufacturing applications.

Hutton’s most recent work with self-replication in artificial chemistry has both genotype
(self-replicating strands of molecules) and phenotype (the circular barrier they build, like
a cell wall) [5]. The simulation is also considerably more concrete and realistic than
cellular automata models. Hutton’s latest model includes virtual chemistry, continuous
space, mobile molecules, and a simple virtual physics (idealized billiard ball physics).
However, the degree of user-programmability is low. It seems that it is not possible for
the user to control what structures are constructed by the system (e.g., circular barriers)
by designing the initial seed chain. The structures appear to be hard-coded in the rules
of the artificial chemistry.

JohnnyVon 1.0 has moderate physical plausibility, with a virtual physics that includes
continuous space, Brownian motion, viscosity, momentum, and attractive and repulsive
fields [18]. It can be interpreted as a model of nanobots floating in a thin layer of liquid.
However, it has no distinction of genotype and phenotype; the strands can only self-
replicate. The user can encode arbitrary information in a seed strand, but this does not
constitute programmability, since the encoded information has no functional role in the
simulation.

JohnnyVon 2.0 augments its predecessor with a clear distinction between genotype and
phenotype. This distinction separates the act of self-replication from the act of building

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 8

useful structures. The separation of these activities allows the user to program the
construction without worrying about the impact of the programming on self-replication.
We demonstrate (in Section 4) that the user can program JohnnyVon 2.0 to build a
variety of polygonal meshes, by specifying the sequence of machine types in the initial
seed strand; the user does not need to make any changes to the rules of the virtual
physics. However, the variety of structures that can be built in JohnnyVon 2.0 is still
considerably less than what can be done by von Neumann’s universal constructor.

3 JohnnyVon 2.0
We first give an informal description of the design objectives for JohnnyVon 2.0 and
briefly describe the mechanisms used to achieve them. We then cover the few
fundamental changes to the model used in the original version of JohnnyVon. In the
remainder of this section, we examine the new features of JohnnyVon 2.0 in detail. We
encourage the reader who is unfamiliar with JohnnyVon to begin by viewing Figure 1 in
Section 4.1. This figure should make it easier to understand the following discussion.

3.1 Summary of JohnnyVon 1.0
In the original JohnnyVon, we presented a simulation in which independent objects
floated in a virtual two-dimensional liquid [18]. In JohnnyVon 1.0, we called these objects
codons, but we now prefer to call them machines, since their role in JohnnyVon 2.0 has
expanded beyond encoding bits. These machines are intended to be an abstract
representation of nanobots (simple nanometer-scale robots). The machines can bond
together to form strands. When a strand is placed in a soup of free (unbonded)
machines, the free machines bond to the strand, eventually resulting in two parallel
strands, in which the new strand is a mirror image of the original strand. When the new
strand is complete, it splits away from the original strand. The new strand then begins
replicating along with the original seed strand, until all free machines are bonded in
strands. In JohnnyVon 1.0, there were two types of machines, which we called type 0
and type 1. Given two types of machines, the strands can encode and replicate arbitrary
binary strings.

3.2 Design Objectives for JohnnyVon 2.0
In our outline of future work for JohnnyVon 1.0, we noted that the absence of
phenotypes was a significant limitation [18]. Our main design objective for JohnnyVon
2.0 was to add phenotypes. Furthermore, we wanted the phenotypes to be user-
programmable. That is, we wanted the user to be able to specify the structure of the
phenotypes by encoding instructions in the seed strand, rather than by modifying the
rules of the simulation. We believed that these changes would make JohnnyVon 2.0
more suitable for applications in nanotechnological manufacturing.

3.3 Overview
In living organisms, genotypes and phenotypes are composed of different materials.
Roughly speaking, genotypes are composed of DNA and phenotypes are composed of
protein. In JohnnyVon 2.0, following Seeman [14], [15], we decided to use the same
material for both purposes. Machines in JohnnyVon 2.0 sometimes behave as
genotypes (they participate in self-replication) and sometimes behave as phenotypes
(they serve as structural elements), depending on the circumstances.

Using one material for both purposes seemed simpler to us than using two materials.
We believe that it also has advantages for manufacturing. If there were two types of

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 9

materials, the finished product of the manufacturing process would either contain a blend
of the two materials or there would need to be a method for removing the unnecessary
genotype material. In the first case, where there is a blend, the genotype material is
wasted. It consumes resources, adds weight to the final product, and serves no purpose
in the final product. In the second case, where the genotype material is removed from
the final product, the removal step adds extra complexity to the manufacturing process
and consumes extra energy. However, using the same material for both genotypes and
phenotypes implies that the finished product contains unnecessary computational power.

JohnnyVon 2.0 has four types of machines, in contrast with two types in JohnnyVon 1.0.
When a strand of bonded machines is acting as a genotype, it forms a straight line
(ignoring random perturbations from Brownian motion). When acting as a phenotype, it
folds into a polygonal shape. In a typical run of the simulation, an initial seed strand is in
a soup of free machines. We designed JohnnyVon 2.0 so that the strands tend to self-
replicate (they act as genotypes) until free machines become scarce, at which point they
tend to fold into structural elements (they act as phenotypes). There is no central
controller that tells the strands when to fold; all control is local and distributed. The
machines in each strand keep track of how much time has passed since they last
bonded to a free machine, and they share this information with their immediate
neighbours in the strand. If a strand has failed to self-replicate and no free machines
have recently joined the strand (presumably due to a lack of free machines), after a
certain amount of time, the strand will release whatever machines are bonded to it (the
partially-built mirror strand) and fold up.

The folding angle between any two bonded machines in a strand is governed by their
respective types. Since there are four types of machines (n), there are sixteen possible

pairs of machine types (2n). The order of the types in a pair does not affect the folding
angle of the pair. Since there are ten possible unordered pairs (2/)1(+nn), there could

be ten different folding angles. Given various operational constraints, JohnnyVon 2.0 has
five different folding angles.

Once folded up, the polygonal shapes bond together to form a mesh. We designed
JohnnyVon 2.0 so that one seed will only form one mesh. This gives the user more
control over the manufacturing process. The user can regulate the number of meshes
that will be produced in a given batch by regulating the number of seeds. To implement
this constraint, the first child strand that is produced by the initial seed strand (the
genotype seed strand) immediately folds and acts as a seed for the formation of the
mesh (i.e., it becomes the phenotype seed). When other strands fold later in the
simulation, they cannot bond with each other, they can only bond with the phenotype
seed. Once they have bonded with the phenotype seed, they change state, so that free
phenotype strands (freshly folded, unbonded strands) are now allowed to bond with
them. Thus the mesh grows around the first child strand, and one genotype seed strand
yields only one final mesh. (A consequence of this implementation is that multiple seeds
are also likely to result in only one mesh.)

As we show in Section 4, JohnnyVon 2.0 supports the three regular polygons that can
tile the plane: triangles, squares, and hexagons. It also supports rectangles, octagons,
and larger versions of each of the polygons, with three or more machines per side.

3.4 Basic Changes
This subsection describes the core changes in the simulation that were made from
JohnnyVon 1.0 to JohnnyVon 2.0.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 10

3.4.1 Change of Research Focus
In our earlier work with JohnnyVon 1.0, we were attempting to build a simulation that
would interest (at least) three research communities: biologists interested in the origins
of life, nanotechnologists, and artificial life researchers in general. JohnnyVon 1.0 was
deliberately designed to allow mutation, since mutation is required for evolution. With
mutation, we were able to demonstrate both spontaneous unseeded self-replication
(interesting for studying the origins of life) and limited evolution (interesting to artificial life
research in general) [18].

In our work with JohnnyVon 2.0, we became aware of a conflict in our goals. In
particular, mutation is desirable for living organisms, but it is typically not desirable in a
manufacturing process. We decided to focus on nanotechnological manufacturing and
give up biological plausibility. Therefore JohnnyVon 2.0 was designed to discourage
mutation. In a continuous-space simulation (in contrast to a cellular automata
simulation), it is very difficult to eliminate all possible sources of error in self-replication
and self-assembly, thus they can still occur in JohnnyVon 2.0, but we have tried to
minimize errors.

The decision to focus on manufacturing also made it easier for us to choose a single
material for both genotypes and phenotypes, instead of the more biologically plausible
two-material approach. However, it is possible that life began with a single material for
both purposes (e.g., RNA [7]), so our research may still have some interest for those
who study the origins of life.

3.4.2 Variable Field Sizes
Bonds between machines are formed by spring-like attractive fields. Part of the
mechanism that was in place to support mutation in JohnnyVon 1.0 was a variable field
size. In certain circumstances, the field would be small, permitting rare accidental bonds,
while other times it would be large, to strengthen intentional bonds. The accidental
bonds were a cause of mutation (replication errors), whereas the intentional bonds were
part of faithful replication.

In JohnnyVon 2.0, field sizes do not change. Fields attract, repel, or ignore other fields,
but they have a constant circle of influence. In situations where the original version has
small fields, the new version has inactive fields. This modification substantially reduces
the likelihood of mutations.

3.4.3 Physical Constants
The physical constants for viscosity, Brownian motion, and motion dampening were
changed to suit the new requirements. The values of these constants were
experimentally tuned to achieve our design objectives while maximizing the speed
(computation efficiency) of the simulation.

3.4.4 Arms and the Machine
In JohnnyVon 1.0, each machine was shaped like a capital letter ‘T’. Each machine had
four arms, but two of the arms overlapped (along the vertical bar of the T), so the figures
in the paper seem to show three arms [18]. Each arm had an attractive or repulsive field
with a circular shape, centered on the tips of the arms. The fields were colour coded,
and we named the arms according to the colours of their associated fields.

In JohnnyVon 2.0, each machine is shaped like a plus sign ‘+’ (see Figure 1 in Section
4.1). Each machine now has five arms, but two of the arms overlap, so the figures seem

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 11

to show four arms. It is no longer convenient to refer to the arms by the colours of their
fields. We now refer to the arms by their relative positions (up, left, right), when the
machine is rotated into a canonical position. The lengths of the arms have been modified
to facilitate building meshes.

3.5 Definitions
The following definitions will help to clarify the discussion.

Machine: the basic objects in the JohnnyVon 2.0 simulation. There are four types of
machines, numbered 1 through 4. All four types are shaped like a plus sign ‘+’.

Arm: each machine has five arms, but two of the arms overlap, so the figures seem to
show four arms. In the figures, the arms are represented by black lines.

Canonical position: the machines are mobile and can rotate at any angle, but it is
convenient to describe them when they are rotated into a standard reference position,
which we call the canonical position. In the canonical position, the shortest arm points
down, the two longest arms point right and left, and the medium-length arm points up.
Another short arm points up in canonical position, but it is hidden by the medium-length
arm that points up.

Left and right arms: the two longest arms, pointing left and right when the machine is in
canonical position. When machines bond to form a strand, adjacent machines in the
strand are bonded to each other at the tips of their left and right arms.

Up arm: the longer of the two arms that point up when the machine is in canonical
position. When a strand replicates by forming a mirror strand, the machines in the mirror
strand are bonded to their neighbours in the original strand at the tips of their up arms.
Also, when the strands fold into polygons and join to form a mesh, the polygons bond to
each other at the tips of their up arms.

Repellor arm: the shorter of the two arms that point up when the machine is in
canonical position. This arm overlaps the up arm in the figures, so it is not visible. When
a strand has completely replicated, repulsive fields are briefly activated at the tips of the
repellor arms. This splits the original strand from the mirror strand and pushes the two
strands apart.

Overlap detector arm: the short arm that points down in canonical position. This arm is
used to detect when two folded strands (e.g., polygons) overlap in a mesh.

Container: the space that contains the machines. Machines move about in a two-
dimensional continuous space, bounded by a grey box. The centers of the machines are
confined to the interior of the grey box.

Liquid: a virtual liquid that fills the container. The trajectory of a machine is determined
by Brownian motion (random drift due to the liquid) and by interaction with other
machines and the walls of the container. The liquid has a viscosity that dampens the
momentum of the machines.

Soup: liquid with machines in it.

Field: an attractive or repulsive area associated with a machine. The range of a field is
bounded by a circle. In addition to attracting or repelling, a field can also exert a bending
force, which twists the machines to form a particular angle. A field’s interaction (attract,
repel, or ignore) with another field is determined by many factors, including the type and
state of each machine. The fields behave somewhat like springs.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 12

Tip: the outer end of an arm, where the fields are centered.

Middle: the inner ends of the arms, where the five arms meet. This is not the machine’s
geometrical center, but it is treated as the center of mass in the simulation.

Bond: machines can bond together when the field of one machine intersects the field of
another. Not all fields can bond. This is described in detail later.

Up (left, right) neighbour: the machine that is bonded to the up (left, right) arm of a
given machine.

Strand: a chain of machines joined by left arm to right arm bonds.

Unfolded strand: during replication, the bond angles are such that the replicating strand
tends to be straight. Brownian motion and other forces perturb the strand, so it cannot be
perfectly straight, but twisting forces in the bonding fields tend to straighten the strand,
so it is rarely far from being straight.

Folded strand: under specific circumstances (described below), each bond in a strand
will change its angle, causing the strand to fold.

Gene: another name for an unfolded strand. A strand in its genotype state. The strand
will form a straight line (approximately).

Phene: another name for a folded strand. A strand in its phenotype state. The strand will
form a closed loop.

Seed gene: an unfolded strand that is added to a soup of free machines, to initiate the
process of self-replication.

Seed phene: the first child of the seed gene forms the seed phene, which acts as a
starting point for the growth of the mesh. This ensures that one seed phene will yield
only one mesh.

Mesh: a group of phenes bonded together.

Free machine: a machine with no bonds.

Sideways bond: a left neighbour to right neighbour bond. Machines in a strand (both
phenes and genes) are joined by sideways bonds.

Up bond: an up neighbour to up neighbour bond. Phenes in a mesh are joined by up
bonds. During replication, a parent gene is joined to its partially constructed child gene
by up bonds.

Time: the number of steps that have been executed in a run of the simulation, since the
initialization of JohnnyVon. The initial configuration is called step 0 (or time 0).

Tolerance: each bond has a desired angle (which changes when a strand folds). The
two machines that participate in each bond have a tolerance for the difference between
the current angle and the desired angle. Forces can push bonds out of tolerance. Bonds
that are consistently out of tolerance can break.

Counter: a special piece of information stored in each machine that normally increments
during each time step. Each machine has several counters.

State: the combination of internal information (counters, bonds, and other state
variables) and external relationships (position, rotation, and velocity) that determines the
behaviour of a machine.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 13

3.6 Machine States
The state of a machine is represented by a vector. The vector elements that represent
internal aspects of the machine are all discrete. The vector elements that represent
external relationships between machines are mostly continuous. The discrete, internal
elements are governed by state transition rules that are applied in discrete timesteps.
The continuous, external elements are governed by the laws of the virtual physics. The
physical laws are inherently continuous, but they are necessarily approximated
discretely in any computational simulation.

Internal state information includes various flags, counters, and state variables, as
summarized in Table 2. External state information includes spatial location and
orientation, angular velocity, linear velocity, the presence or absence of bonds with other
machines, and bonding angles, as given in Table 3. Some derived variables are shown
in Table 4. The derived variables are calculated from state variables.

Table 2. Variables for elements of the state vector that represent internal aspects of the machine.

Variable name Range Description
type {1, 2, 3, 4} • type of machine

• static for a given machine
id {0, 1, 2, …} • unique identifier for machine

• static for a given machine
fold-counter {0, 1, 2, …} • used to decide when the strand should fold
repel-counter {0, 1, 2, …} • during splitting, controls how long the repellor arms of a

strand are active
stress-counter {0, 1, 2, …} • counts the time since a machine was last in-tolerance

strand- position {1, 2, 3} • used to decide where a machine is in a replicating strand

• described in detail elsewhere [18]
split-state {1, 2, 3, 4} • used to determine when to split

• described in detail elsewhere [18], except that split-state
now has a fourth value, indicating that shatter should be
set to 1 (true)

reset-counter {0, 1} • indicates that the fold-counter should be reset
fold-now {0, 1} • indicates that each machine in the strand should set its

folded flag

unfold {0, 1} • indicates that a phene should unfold

• this occurs when one phene overlaps another in a mesh
seed-gene {0, 1} • flag for identifying the seed gene

• the seed gene never folds, in case more free machines
become available for replication

seed-phene {0, 1} • flag for making the seed phene
in-mesh {0, 1} • indicates whether this machine is connected to the mesh
replicated {0, 1} • 1 (true) if and only if the machine has been through a

successful replication.

• in particular, machines in the seed gene have not
replicated at the start of a simulation

shatter {0, 1} • indicates that the machine should break all bonds and
return to being a free machine.

folded {0, 1} • if 1, the machine tries to form angular bonds with its left
and right neighbours

• if 0, the machine tries to form straight bonds with its left
and right neighbours

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 14

Table 3. Variables for elements of the state vector that represent external relations.

Variable name Range Description

x-position ℜ
y-position ℜ
angle [0, 2π]
x-velocity ℜ
y-velocity ℜ
angular-velocity [0, 2π]

• state of the machine with respect to the container

• vary due to Brownian motion, viscosity, and forces from
interactions between fields

left-neighbour {0, 1, 2, …}
right-neighbour {0, 1, 2, …}
up-neighbour {0, 1, 2, …}

• identifier of the machine (if any) bonded to the named
arm

Table 4. Derived variables that are calculated from state variables.

Variable name Range Description

in-tolerance {0, 1} • indicates whether each existing bond is within a certain
(fixed) tolerance of the desired angle

• used to help avoid making bonds when the machine is in
a potentially unstable situation.

bend-location {1, 2, 3, 4} • indicates where a machine is located in a phene

Machines that are directly bonded together can sense each other’s states. This is
analogous to cells in cellular automata, which can sense the states of their immediate
neighbours in the grid. The state transition rules and the virtual physics are local, in the
sense that there is no global control structure. No machine can directly sense the state
of another machine unless they are directly connected, although state information can
be passed neighbour-to-neighbour along a strand. No machine can directly exert a force
on another machine unless the circular boundaries of their fields overlap, although
forces can be passed neighbour-to-neighbour along a strand.

Most of the state transition rules and physical laws in JohnnyVon 2.0 are carried over
from JohnnyVon 1.0 without change. The details of JohnnyVon 1.0 are fully described
elsewhere [18]. The changes we made in JohnnyVon 2.0 were outlined above, in
Section 3.4.

3.7 New Rules
The following subsections describe the rules that are new in JohnnyVon 2.0.

3.7.1 Folding
The leftmost machine in an unfolded strand determines when the strand will fold. A
machine knows it is leftmost when it has a right-neighbour but no left-neighbour. As part
of its internal state, each machine maintains a fold-counter. After a strand has replicated
and split, the fold-counter in each machine in the newly formed strand starts counting.
When a machine gains an up-neighbour, it triggers a reset-counter signal. This signal is
passed to the left-neighbour, down the strand, until it reaches the leftmost machine.
When the leftmost machine receives the signal, it resets its fold-counter to 0. In this way,
as long as a replicating strand continues to receive new up-neighbours, it will not fold up.
If the strand successfully replicates, the leftmost fold-counter in each of the two new
strands is set to 0.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 15

Once the fold-counter in the leftmost machine hits a fixed upper limit, that machine
triggers a fold-now signal. This signal is passed down the strand, setting the folded flag
as it goes. This causes the strand to fold up according to the types of each of the two
machines involved in a sideways bond.

When a strand folds, there are typically some up-neighbours attached to the folding
strand, as the folding strand has usually partially replicated itself. Machines with an up-
neighbour, but having a false (0) replicated flag, monitor their up-neighbour’s folded flag.
If this flag becomes true (1), then such a machine will set its own shatter flag to true, and
thus release all its bonds. (Shattering is described in detail in 3.7.7.)

Machines with the seed-gene flag set to 1 never fold, thus the initial seed strand is
always available, to continue replicating as soon as there is a supply of free machines of
the right types. This is a safeguard against situations in which a temporary scarcity of
free machines persists for longer than the fixed upper limit on fold-counter.

3.7.2 Angles and Bonds
In contrast to JohnnyVon 1.0, we now have four types of machines instead of two types,
and the type of a machine affects its behaviour in both genes and phenes. In genes, the
types govern bonding during replication, where the rule is simply, “Likes attract, others
are ignored.” More formally, the bonding rule for up bonds in genes is given in Table 5.

Table 5. Pairs of machine types that will permit an up bond when in genes.

Bond 1 2 3 4

1 +

2 +

3 +

4 +

This rule implies that each replicated strand is a mirror of its parent, rather than an exact
copy. For example, a strand of types 1-2-3, reading left to right, in canonical position, will
replicate as 3-2-1. The phenes that we demonstrate here (in Section 4) have this simple
symmetry (i.e., the strands and their mirror images both fold into the same polygonal
shapes), so this is not a problem.

The rules for up bonds in genes are different from the rules for up bonds in phenes. In
phenes, only certain combinations of types will bond on their respective up arms, as
given in Table 6.

Table 6. Pairs of machine types that will permit an up bond when in phenes.

Bond 1 2 3 4

1

2 +

3 +

4 + +

Any type of machine can form a sideways bond with any other type, in both genes and
phenes, but a left arm must bond with a right arm (i.e., no left-left nor right-right bonding
is allowed). In phenes, the types on each side of a sideways bond govern the angle the
bond will take when the strands have folded, as specified in Table 7. This means that the
types involved in each bond control the shape that the folded strand will take.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 16

Table 7. Folding angles for sideways bonds between two machine types when in phenes.

Angle 1 2 3 4

1 0° 0° 0° 0°

2 0° 120° 45° 90°

3 0° 45°

4 0° 90° 60°

Table 7 shows the sideways bond angle formed by each pair of machine types, when a
strand is in its phenotype state; that is, when folded is set to 1 (true). When a strand is in
its genotype state (folded is 0 for all machines in the strand), the sideways bond angles
are all 0° (straight). Up bond angles are always 0° (ignoring random perturbations, from
Brownian motion, for example).

The blank cells in Table 7 represent combinations of types for which we have not yet
found a use. From Table 6, it can be seen that a type-3 machine cannot form an up bond
with another type-3 machine when they are in phenes. Therefore we could control the
shape of a 3-3-…-3 phene by specifying any desired value for the angle of 3-3 bonds in
Table 7, but the resulting phenes would not be able to form a mesh. Similarly, we could
control the shape of a 3-4-3-4-…-3-4 phene by giving any desired value for the angles of
3-4 and 4-3 bonds in Table 7, but the resulting phenes can form up bonds in multiple
ways (3-4, 4-3, and 4-4; see Table 6). Thus we have limited control over the shape of
the mesh that the phenes will form.

In Table 7, it can be seen that all sideways bonds involving type-1 machines are straight.
This allows us to expand the size of a phene, without changing its shape, by inserting a
sequence of type-1 machines along each edge. However, it does not allow polygons
with exactly two machines on each side, since expansion requires at least one type-1
machine inserted between two other machines.

Given the angles that are available to us in Table 7, some polygons (e.g., octagons and
squares) require two types of machines, while others (e.g., triangles and hexagons)
involve only one type. We chose to restrict the JohnnyVon 2.0 to four types of machines,
in order to demonstrate that a small number of components can be combined to build a
variety of structures (like Lego blocks). The angles that we chose make it easy to build
triangular meshes. It may seem inconvenient to require two types of machines to build
octagonal meshes, but in fact, having two types of machines is helpful with octagons. An
octagonal mesh has both octagonal holes and square holes (see Image 4 in Figure 2 in
Section 4.2). With two types of machines, we can prevent octagonal phenes from filling
in the square holes in the mesh.

A single type of machine would be sufficient to create squares, but using two types
permits rectangles that will mesh correctly. With two types of machines, the long and
short sides of the rectangle can be distinguished by type, so that two sides will bond
together only if they have the same machine type, and thus the same length.

Though they could use two types, hexagons will form a mesh faster with only one type.
Furthermore, in order to get the desired behaviour with four machine types, exactly one
of the squares or hexagons had to use only one machine type, and the other had to use
two. While it would be possible to have an irregular hexagon, this seems much less
natural than a rectangle. (In a regular polygon, all sides have the same length.
Rectangles are irregular.)

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 17

Table 6 shows how machine types control phene bonding in meshes. The bonding rules
in Table 6 were designed so that octagonal meshes will form correctly. They prevent
octagonal phenes from filling square holes in the mesh.

Additional rules were created to support expansion of the size of a phene, without
changing its shape, by inserting a sequence of type-1 machines along each edge. These
rules are based on the derived variable bend-location. In a phene, a given machine can
have either a straight (type 1) or bending (types 2, 3 or 4) machine bonded to its left or
right arm. By looking at its neighbours, it can determine where it is in the context of the
phene, and hence it can calculate the value of bend-location. Certain values of bend-
location can override the rules in Table 6 and disallow a bond that would otherwise be
permitted. Table 8 explains the meaning of the different values of bend-location. Table 9
shows how bend-location affects bonding.

Table 8. The meaning of the different values of bend-location.

Value Meaning of value

1 right of bend: right neighbour is straight (1) and left neighbour is bending (2, 3, 4)
2 left of bend: left neighbour is straight (1) and right neighbour is bending (2, 3, 4)
3 in bend: both left and right neighbours are bending types (2, 3, 4)
4 extender: both left and right neighbours are straight types (1)

Table 9. Pairs of bend-location values that will permit an up bond when in phenes.

bend-location 1 2 3 4
1 +

2 +

3 +

4

When the up field of a machine in one phene overlaps with the up field of a machine in
another phene, the rules in both Table 6 and Table 9 must be satisfied before the up
fields can bond. If there are no type 1 machines in the phene (i.e., all sideways bonds
are bent; the shape is not expanded), then bend-location must have the value 3 for all
machines, and thus (by Table 9) up bonds depend only on the machine types (Table 6).

In Table 8, we are assuming that the phene forms a closed loop. The error correction
system will destroy open loops (Section 3.7.4). When a machine has no left or right
neighbour (because it is at the end of an open strand), we treat the missing neighbour as
if it were a bending type.

3.7.3 Overlap Detection
Because of flexibility in the mesh, and in individual phenes, two phenes can sometimes
join a mesh in such a way that their desired positions overlap. This can be most easily
seen by imagining a mesh of hexagons that is complete except for a single gap.
Suppose that two hexagons jostle (by Brownian motion) into the gap, with slightly
different alignments. At roughly the same time, one forms a bond with the phene above
the gap, and one with the phene below the gap. As they straighten towards their ideal
position (due to twisting forces on their up bonds), each phene may pick up new bonds
around the edge of the former gap.

If ignored, this problem spreads, since there are now unbonded up arms on each of the
two overlapping hexagons, which permit new hexagons to join the mesh, overlapping

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 18

those around the former gap, and each of these hexagons in turn can bring in more
overlapping hexagons.

To address this problem, an arm was added to the machines (new since JohnnyVon
1.0), called the overlap detector arm. In a folded strand, it points towards the center, and
will only bond with other overlap detector arms. Both machines must be oriented in the
same direction (up to a fixed degree of tolerance), and both machines must have their
in-mesh flag set to true.

When an overlap detector bond is formed between two machines (necessarily in two
different phenes), one machine (chosen arbitrarily) sets its unfold signal to true. This
signal propagates to its left and right neighbours, setting folded to false as it goes. It also
breaks the overlap bond that triggered it. The resulting unfolded strand behaves exactly
like a newly replicated strand. It tries to replicate until fold-counter exceeds its limit, and
then it folds up again.

In summary, when two phenes compete for the same gap in a mesh, one of them is
forced to become a gene. Converting one of the phenes to a gene, instead of leaving it
as a detached phene, allows time for it to drift away from the problematic area, or for the
remaining phene to fill up the open bonds in the mesh.

3.7.4 Stress Detection
Another type of error can occur in a mesh, again due to the flexibility of the mesh. In this
case, we can imagine five triangles bonding to form a pie shape, missing only one more
triangle to form a hexagon. However, instead of a new triangle coming in to fill the gap,
the two triangles on either side of the gap jostle together, forming a stressed pentagon
rather than a hexagon. This pentagonal mesh may be part of a larger mesh, and thus
some of the stress may be distributed through the larger mesh. This problem can be
partially addressed by increasing the strength of some of the fields and decreasing the
tolerance of some of the bonding angles, but it becomes increasingly hard to prevent as
the mesh grows.

To detect this kind of problem, each machine maintains a stress-counter, which
increments each time interval when the machine is not in-tolerance, and is reset
whenever the machine is in-tolerance. This counter can be used to detect cases in which
the mesh is stressed because phenes have bonded incorrectly. When the counter
exceeds a fixed maximum, it causes the stressed phene to unfold, by setting its unfold
signal to true. The signal propagates to left and right neighbours, setting folded to false
and dropping up bonds as it spreads through the neighbours.

3.7.5 Seeding the Mesh
In the initial seed gene, seed-gene is set to true, but it will be set to false for all of the
child genes. If a machine has a true seed-gene, it will never trigger the fold-now signal.
Since the initial seed gene will never fold, there will always be a strand that can continue
replicating whenever free machines become available.

The first child of the seed gene, and only the first child of the seed gene, becomes the
seed phene. When the seed-phene flag is set to true in a strand, it does not mean that
the given strand is the seed phene; it means that the next child of the given strand will
become the seed phene. In the initial seed gene, seed-phene is set to true. When the
seed gene first replicates, its child examines its parent’s seed-phene flag and observes
that it is set to true. The child then sets it in-mesh flag and its folded flag to true and it
immediately folds to become the seed phene. The parent (the initial seed gene) then

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 19

sets its seed-phene flag to false, so that its future children cannot become seed phenes.
(When we say that a strand sets a flag to a value, it is a shorthand way of saying that
every machine in the strand sets the flag to the value. Strands do not have flags of their
own, other than the flags of their component machines.)

Every other gene, created after the first child, will begin its career with its in-mesh flag
set to false. If two phenes meet with their in-mesh flags set to false, they cannot bond
together. A phene can only bond to another phene if the other phene has its in-mesh flag
set to true. When a machine (in a phene) with a false in-mesh flag meets a machine (in a
second phene) with a true in-mesh flag, they bond (assuming they meet all the
conditions in Section 3.7.2), and a signal propagates through the first phene, setting all
of the in-mesh flags to true (but the signal only propagates from one machine to its
sideways neighbour when their bond is in-tolerance; see Section 3.7.4). This ensures
that the mesh can only grow from the seed phene.

3.7.6 Tolerances
Each machine will only form up bonds if all existing bond angles are within a certain
tolerance. That is, if a machine’s sideways bonds are at angles significantly different
from the desired angles (i.e., the angles given by the rules in Section 3.7.2), then no up
bonds will form during the current timestep. This prevents unintended up bonds during
vulnerable times, such as during splitting or folding.

3.7.7 Shattering
There are a number of ways that a gene or phene can break. For example, during
splitting, the phase of self-replication when two genes are pushed apart by their repellor
arms, if one of them hits the wall of the container at an angle, it puts significant strain on
the whole strand. As another example, an error in a mesh can eventually lead to enough
strain to pull a phene apart (see Section 3.7.4).

If a machine loses a bond unexpectedly (which is any time other than when splitting or
unfolding), or if it notices that its neighbour has folded, then the shatter flag is set to true.
When a machine observes that its neighbour’s shatter flag is true, the machine may
respond by setting its own shatter flag to true. We say that the first machine is the
source of a shatter signal that was received by the second machine.

The shatter signal always propagates through sideways bonds, setting the shatter flag to
true in left-neighbours and right-neighbours. The shatter signal may also propagate to an
up-neighbour, but only if the source machine has replicated but not folded. If the
neighbouring machine has replicated, something went wrong with the split (two
replicated machines should not be bonded before they’re both folded); on the other
hand, if the neighbour’s replicated flag is false, then it may be part of an incomplete
copy, and thus should be abandoned.

When a machine’s shatter flag is true, it drops all of its bonds (the discrete timesteps
ensure that the state is propagated, even if the bonds are broken during that time step,
since machines consult their neighbours' state as it was at the beginning of the step).
When the bonds have been dropped, it then sets folded, seed-gene, and replicated flags
to false and becomes a free machine.

The shatter mechanism is not a subtle way to handle errors, but we have found it to be
effective. In our simulations, shattering is relatively rare. This error correction mechanism
is similar to Sayama’s method for handling errors in self-replicating loops [12], [13].

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 20

3.8 Implementation
JohnnyVon 2.0 builds directly on the original JohnnyVon 1.0. Both systems are written in
Java and their source code is available under the GNU General Public License (GPL) at
http://purl.org/net/johnnyvon/.

4 Experiments and Discussion
In our first experiment, we demonstrate the construction of a small mesh of triangles,
highlighting several important points in the replication and assembly. In the next set of
experiments, we demonstrate replication and assembly of meshes built from each of the
supported polygons, with one machine per side. We then show a mesh of polygons with
more than one machine per side, a 3×1 rectangle and a triangle with three machines per
side. Finally, to demonstrate scalability, we show a large mesh of triangles.

In the following figures, the inner grey square represents the container. The middle of a
machine must stay inside the grey square. (It takes less computation to check whether
the middles are within bounds than to check all of the arms.)

4.1 Self-Replication and Self-Assembly
In Figure 1, the images show a typical run of JohnnyVon 2.0. The run starts with a soup
of 54 free type-2 machines and a seed gene of the form 2-2-2, and it ends with a
triangular mesh.

Image 1: This shows the initial configuration. Each of the free machines is in a random
position and the seed gene is in the center (it is the strand of three machines, forming a
straight line).

Image 2: After 2,385 steps, the first replication is complete. We see two genes,
immediately after they have split and their repellor arms have pushed them apart.

Image 3: The first child of the seed gene is folding up, to become the seed phene. The
seed gene has already begun a second copy.

Image 4: By time 44,235, nearly all of the free machines are now attached to genes.
Since there are so few free machines left, most of these genes cannot complete self-
replication. As some of the incomplete strands’ fold-counters hit their upper limit, they
will fold and release free machines, allowing other genes to complete self-replication.

Image 5: We can see the second phene forming. In this image, it has not completely
folded; the triangle has a small gap at the top.

Image 6: Slightly more than 3,000 timesteps later, the new phene has bonded with the
seed phene.

Image 7: Now many more triangles have folded and joined the mesh. Two triangles
have not yet joined (one is in the lower left corner and the other is near the center).

Image 8: The mesh is almost complete. In the bottom on the right, there is a pentagonal
arrangement of five triangles. This would eventually be corrected (by one of the triangles
releasing and unfolding; see Section 3.7.4), although the container is just barely large
enough to hold a mesh that includes all of the machines, and thus errors may continue
to form even as they are corrected. In a situation where the container constrains the
mesh, it is possible for a machine to get attached to a mesh in such a way that it can
never reach an equilibrium where all of its bonds are in tolerance, since the conditions
for accepting new bonds are much looser than the conditions for detecting stress.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 21

Image:
1

Time:
0

Image:
2

Time:
2,385

Image:
3

Time:
3,295

Image:
4

Time:
44,235

Image:
5

Time:
46,340

Image:
6

Time:
49,780

Image:
7

Time:
85,810

Image:
8

Time:
294,075

Figure 1. These images illustrate the experiment described in Section 4.1.

In this simulation, the container is relatively small, and therefore Brownian motion is
relatively strong. With strong Brownian motion, free machines are quickly distributed

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 22

throughout the container, thus a replicating strand has a steady supply of free machines.
The small container also means that the phenes never have far to go to join the mesh,
and will quickly be bumped into the right position. In a larger container, replicating
strands will consume the machines in their local area, and then replication slows until
diffusion replenishes the supply. It also takes longer for phenes to find a place where
they can join the mesh. We could speed up the action in a larger container by increasing
the Brownian motion (i.e., turning up the heat), but that could damage the mesh.

4.2 Simple Polygonal Meshes
In Figure 2, we show assembled mesh structures. Four different regular polygonal
meshes are shown, all with sides that are one machine in length. Each of these four
simulations was started with a single seed strand and was executed until the mesh was
well developed. The scale of the images in Figure 2 is different from the scale of the
images in Figure 1. These simulations use a container about nine times larger in area
than the simulations in Figure 1. Table 10 summarizes the four simulations in Figure 2.

1

2

3

4

Figure 2. The resulting mesh for each of the four supported regular polygons

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 23

Table 10. Some basic observations about each image in Figure 2.

Image Phenes Seed gene Timestep Initial free
machines

Phenes in
mesh

Genes
remaining

1 Triangles 2-2-2 246,000 201 50 5
2 Squares 4-2-4-2 498,600 200 24 1
3 Hexagons 4-4-4-4-4-4 448,600 160 20 1
4 Octagons 2-3-2-3-2-3-2-3 1,107,400 120 9 2

4.3 Fancy Meshes
In Figure 3, Image 1 (timestep 691,900) shows a mesh built of rectangles, rather than
regular polygons. Because squares and rectangles use two types of machines (see
Section 3.7.2), the rectangles only join the mesh if they are correctly oriented. The seed
for Image 1 was 2-4-2-1-2-4-2-1.

Image 2 (timestep 78,800) shows large triangles. The seed was 2-1-2-2-1-2-2-1-2. The
bonds between type-2 machines fold to form the corners, while the type-1 machines
provide the extension to make these triangles larger. In principle, each phene can be
made arbitrarily large using this approach.

1

2

Figure 3. A rectangular mesh and a mesh of expanded triangles.

4.4 Large Mesh
The image in Figure 4 demonstrates that meshes can grow correctly beyond a small
number of triangles. The seed was 2-2-2. The mesh contains 234 triangles.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 24

Figure 4. A mesh of 234 triangles.

5 Limitations and Future Work
JohnnyVon 2.0 has several minor limitations. For example, phenes must be closed for
the system to work correctly. Although a hexagon composed of five machines and a gap
in the sixth side can form a mesh, the error correction system would destroy the resulting
mesh. Because closure of the phenes increases their rigidity, a mesh built of open
phenes would be more flexible, and there may be other interesting effects.

The variety of phenes in JohnnyVon 2.0 is also somewhat limited. Our original goal, to
support all regular polygons that tile the plane (triangles, squares and hexagons), is
satisfied. JohnnyVon 2.0 also supports partial tiling with octagons (square gaps are left
in the mesh), and full tiling with rectangles. However, we would now like to support
concave shapes (e.g., stars), as well as more general polygons. It would be interesting
to enable Penrose tilings and Kepler tilings [3].

The replication phase takes much longer with two (or more) types of machines than it
does with one, since each free machine has fewer places to bond correctly (equivalently,
each machine in the strand has fewer free machines available with which it can bond).
Supplying two (or more) times as many machines increases the computation per
timestep (roughly quadratically). However, JohnnyVon 2.0 should be parallelizable. This
is another area for future work.

Like JohnnyVon 1.0, version 2.0 still runs on a standard desktop computer, thanks in
part to improvements in hardware since the development of version 1.0. However, there
were many experiments we wanted to try (e.g., polygons with 4 or 5 machines per side)
that were not practical, given our available hardware and our patience. This problem can
be addressed by improving the efficiency of our implementation, converting the code to a
more efficient language than Java (which is likely to make it much less portable),
parallelizing the code, or obtaining better hardware.

The computational complexity of the simulation increases with the size of the phenes,
since each phene must be jostled to a place near where it belongs, and larger phenes
move more slowly. Meshes of large phenes require many timesteps to be constructed.
The problem may be alleviated by increasing the Brownian motion or decreasing the
viscosity of the simulated liquid, but each of these solutions presents new problems. We
have tuned the physical parameters, in an effort to balance these conflicting concerns.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 25

The current settings of the physical parameters appear to strike a good balance, but
there is likely room for further improvements.

Referring to Table 1 in Section 2.4, JohnnyVon would benefit from increased realism and
increased programmability. Although JohnnyVon 2.0 provides a moderate level of
programmability, it is not as programmable as we would like. One problem is that the
mesh grows without control. Sometimes the mesh is relatively dense (as in Image 2 of
Figure 2) while at other times it has many gaps (as in Figure 4). We would like to add a
programmable mechanism for controlling the final size and shape of the mesh, and for
avoiding meshes with large gaps (or for deliberately creating gaps, which may be useful
for some applications).

In the context of JohnnyVon’s virtual physics, it may be meaningful to define a universal
constructor. For example, we might say that a universal constructor would be capable of
building any two-dimensional structure that can be constructed from a finite number of
machines, such that up arms are bonded to up arms and left arms are bonded to right
arms. The design for the structure should be encoded in a seed gene. Ideally, the seed
would contain many fewer machines than the final structure, although this may not be
possible when the final structure lacks a regular pattern. Much further work is required to
make a universal constructor in the JohnnyVon model.

JohnnyVon 2.0 also provides a moderate level of realism, but again it is not as realistic
as we would like. Our attractive and repulsive forces are somewhat unlike electrical or
magnetic attraction and repulsion. The JohnnyVon simulation also does not attempt to
model conservation of energy. Arbesman has recently done some interesting work on
computational simulation of artificial life with conservation of energy [1].

Other steps towards increased realism would be to extend the simulation to three
dimensions and to model the physics of the internal operations of the machines.
Currently the external relations between machines are governed by a simple virtual
physics, but the internal operations are described by abstract finite automata. However,
both of these steps to realism would involve a significant increase in computational
complexity.

6 Applications
With JohnnyVon 2.0, we have focused more clearly on nanotechnology, at the expense
of application to theoretical biology. In our previous work, we suggested that JohnnyVon
1.0 provided a plausible mechanism for nanoscale manufacturing [18]. A vat of liquid
containing free machines would be seeded with a single strand, soon resulting in a vat
full of copies of the seed strand. JohnnyVon 2.0 takes this application one step further,
beyond self-replication to programmable construction of meshes. Since the user has
some control over the size and shape of the holes in the mesh, we can imagine these
meshes being produced for filtration, insulation, or simply as kind of cloth.

If we can create a mechanism for controlling the size and shape of the mesh, more
applications become possible. Since the system is accurate and self-correcting, pieces
of cloth could be created exactly to specification, down to the size of a single machine.

7 Conclusion
JohnnyVon 1.0 demonstrated self-replication in a continuous two-dimensional space
with virtual physics. JohnnyVon 2.0 goes beyond its predecessor by introducing a user-
programmable phenotype, consisting of a variety of meshes. JohnnyVon 2.0 is more

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 26

realistic than cellular automata models [6], [11], [12], [13], [19], more programmable than
artificial chemistry models [4], [5], and more computationally tractable than von
Neumann’s universal constructor [10], [20]. However, there is still much room for
improvement in the degree of physical realism of the simulation and in the degree of
programmability of the phenotype.

Like its predecessor, JohnnyVon 2.0 is a local model. There is no global data structure
that represents strands or meshes; these are emergent entities that arise from the
interactions of the basic elements (the machines). Each machine is autonomous and can
only sense its immediate neighbours. Control is local, distributed, and parallel.

From four different types of machines, JohnnyVon can produce four different polygonal
meshes, with an infinite number of possible sizes (as per Section 4.3). The user can
specify the mesh that will be produced by encoding the desired size and shape in the
initial seed, without making any changes to the physics of the simulation. Errors in
replication and in mesh formation are automatically detected and corrected, using purely
local mechanisms.

JohnnyVon 2.0 also avoids the “grey goo” scenario of self-replicating nanobots run
amok. Replication and assembly are inherently limited by the supply of machines; when
the free machines have all bonded, the process stops.

Acknowledgements
Thanks to Arnold Smith for starting us down this path, with JohnnyVon 1.0.

References
[1] Arbesman, S. (2004). Erg: A Computational Energetics as an Approach to the Study

of the Origins of Life. Senior Thesis, Computer Science Department, Brandeis
University.

[2] Drexler, K.E. (1992). Nanosystems: Molecular Machinery, Manufacturing, and
Computation. New York: Wiley.

[3] Grunbaum, B., and Shephard, G.C. (1986). Tilings and Patterns. W.H. Freeman.

[4] Hutton, T.J. (2002). Evolvable self-replicating molecules in an artificial chemistry.
Artificial Life, 8, 341-356.

[5] Hutton, T.J. (2004). A functional self-reproducing cell in a two-dimensional artificial
chemistry. In J. Pollack et al., eds., Proceedings of the Ninth International
Conference on the Simulation and Synthesis of Living Systems (ALIFE9), 444-449.

[6] Langton, C.G. (1984). Self-reproduction in cellular automata. Physica D, 10, 134-
144.

[7] Maynard Smith, J., and Szathmary, E. (1995). The Major Transitions in Evolution.
Oxford University Press.

[8] Merkle, R.C. (1992). Self replicating systems and molecular manufacturing. Journal
of the British Interplanetary Society, 45, 407-413.

[9] Merkle, R.C. (1994). Self replicating systems and low cost manufacturing. In The
Ultimate Limits of Fabrication and Measurement, M.E. Welland, J.K. Gimzewski,
eds., Dordrecht: Kluwer, pp. 25-32.

NRC/ERB-1121 Self-Replicating Strands that Self-Assemble into User-Specified Meshes

Ewaschuk and Turney 27

[10] Pesavento, U. (1995). An implementation of von Neumann’s self-reproducing
machine. Artificial Life, 2, 337-354.

[11] Reggia, J.A., Lohn, J.D., and Chou, H.-H. (1998). Self-replicating structures:
Evolution, emergence and computation. Artificial Life, 4, 283-302.

[12] Sayama, H. (1998). Introduction of structural dissolution into Langton's self-
reproducing loop. In C. Adami, R.K. Belew, H. Kitano, and C.E. Taylor, eds.,
Artificial Life VI: Proceedings of the Sixth International Conference on Artificial Life,
114-122. Los Angeles, California: MIT Press.

[13] Sayama, H. (1999). A new structurally dissolvable self-reproducing loop evolving in
a simple cellular automata space. Artificial Life, 5, 343-365.

[14] Seeman, N.C. (2003). DNA in a material world. Nature, 421 (January 23), 427-431.

[15] Seeman, N.C. (2004). Nanotechnology and the double helix. Scientific American,
290 (6) (June), 65-75.

[16] Shih, W.M., Quispe, J.D., and Joyce, G.F. (2004). A 1.7-kilobase single-stranded
DNA that folds into a nanoscale octahedron. Nature, 427 (February 12), 618-621.

[17] Sipper, M. (1998). Fifty years of research on self-replication: An overview. Artificial
Life, 4 (3), 237-257.

[18] Smith, A., Turney, P., and Ewaschuk, R. (2003). Self-replicating machines in
continuous space with virtual physics. Artificial Life, 9, 21-40.

[19] Tempesti, G., Mange, D., and Stauffer, A. (1998). Self-replicating and self-repairing
multicellular automata. Artificial Life, 4, 259-282.

[20] von Neumann, J. (1966). Theory of Self-Reproducing Automata. Edited and
completed by A.W. Burks. Urbana, IL: University of Illinois Press.

