| hd |

NRC Publications Archive
Archives des publications du CNRC

MUSICOMP, an experimental computer aid for the composition and
production of music
Tanner, P. P.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOl ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.4224/21276346
Report (National Research Council of Canada. Radio and Electrical Engineering

Division : ERB), 1972-08

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=776fae40-7be0-4666-9a29-adcc03a2429e
https://publications-cnrc.canada.ca/fra/voir/objet/?id=776fae40-7be0-4666-9a29-adcc03a2429¢

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research Conseil national de
Council Canada recherches Canada Canada

5 a0 / I* National Research Conseil national
5 IU 3 (Council Canada de recherches Canada

£ =1

 AELCE- 87

SaoN WU OB S13

DEC1 11974

OTIAWA dAr.
GANADA A/

MUSICOMP, AN EXPERIMENTAL COMPUTER AID FOR THE
COMPOSITION AND PRODUCTION OF MUSIC

P. P. TANNER

ERB - 869

AUGUST 1972

W

RADIO AND ELECTRICAL DIVISION DE RADOTECHNIQUE
ENGINEERING DIVISION ET DE GENIE ELECTRIQUE

MUSICOMP, AN EXPERIMENTAL COMPUTER AID FOR THE
COMPOSITION AND PRODUCTION OF MUSIC

P. P. Tanner

ERB-869

OTTAWA - AUGUST 1972

RADIO AND ELECTRICAL DIVISION DE RADIOTECHNIQUE
ENGINEERING DIVISION ET DE GENIE ELECTRIQUE

ABSTRACT

The programming for the National Research Council's
Computer Music Facility is described. Included are
programs that allow a composer to "write" and "edit"
in core memory, programs that '"play'" music from
core memory, and several support programs.

TABLE OF CONTENTS

I INTRODUCTION .ottt ittt ittt et tstetannaeeneeneeennneeneennenneas
I, HARDWARE ..ttt ittt ittt ittt e sttt i,
L P 0 2. N

1 :30) 0 o) :
DAMEL/TRAN .« .ttt it e e e e e e e e e

-3
Gl LW W N N DN DN N e

-2 -

TABLE OF CONTENTS (cont'd)

}._Ab—l;_nl\"l—‘l—‘@mmrbrhﬂii—l}—l

VI OVERLA Y S ottt e et ettt ettt aae s 8
(070 22" R R 8
KEY SIG .ottt ettt ettt e e e e 8
DUM PO .ottt ittt e e 8
AUTOSAVE AND -SAVE IT ... it 8
PAR SCID ..ottt e et 8
SLID PAR ..ttt e e e e 8
PITCHGEN ..o ittt e e ettt e 8
IX. LIMITATIONS OF THE MUSIC SYSTEMt e 9
X. CONCLUSTIONS Lo ittt et ettt ettt casaens 10.
REFERENCES .. ittt ittt e et s it 10.
APPENDIX A - LIST OF MEMORY CONTENTS.ooiiiinn,
APPENDIX B - LIST OF BUTTON COMMANDS.vtnt.tn
APPENDIX C - PERCUSSION CONTROL.ttt s C
APPENDIX D - CONTENTS OF BITS 9 - 23 OF THE WORDS
REPRESENTING NOTES OR RESTS D.
APPENDIX E - MAXIMUM LIMITS FOR STORING............. ... E.
APPENDIX F - LIST OF SEL 840A INSTRUCTIONS..................... F.
SELECTED CRT DISPLAY COMMANDS................ F.
APPENDIX G - 2ND PLAY ... i e G.
APPENDIX H - KEYBOARD VARIABLES............... it H.
APPENDIX I - DOLY VARIABLES i L
APPENDIX J - 4 WRITE VARIABLES.o i J.

Lo O = T - T S S

MUSICOMP, AN EXPERIMENTAL COMPUTER AID FOR THE
COMPOSITION AND PRODUCTION OF MUSIC

by

P. P. Tanner

I. INTRODUCTION

A musician with creative concepts or ideas has a limited choice of methods
for translating his ideas into music. He may compose on his instrument, writing
down the notes as he achieves the effects he desires, or he may write his music
first on paper and check it later by playing it. The latter possibility, the play-
ing of the music, may limit him to the instruments available to him at the time,
or with which he is thoroughly familiar. Making modifications to the music en-
tails scratching out and rewriting, a cumbersome task if much modification is
desired.

A group of engineers working on man computer communications at the
National Research Council*have implemented a computer music system (Fig. 1)
to aid composers to translate their musical ideas into written melodies and
actual sound output. This system makes use of a dedicated medium-sized computer
(SEL 840A -Fig. 2.) with a CRT display and several peripheral devices.

A composer using the system can write his music using buttons and a cursor,
or play his music using an organ keyboard, into the computer's eore memory.
When the composer is inputting music, he sees it on the CRT screen, as notes on
the standard treble and bass staves ranging in duration from 32nd notes to quad-
ruply dotted whole notes, with pitch ranging from 2 octaves below to 2% octaves
above middle C. At any time the composer may press a button which will cause a
list of program choices to appear on the CRT screen, from which he can choose
a command that will make the computer play the music written so far. Notes and
rests may be inserted into, and deleted from, the music. This makes modification
of the written score a very simple matter, and an instant playback of the music is
possible after any modification.

To test different sound effects, a composer may add commands to his music
to effect changes in the timbre, amplitude, or decay level. He may tell the
computer the order in which the segments of his music are to be played. In
this way a segment that is repeated often need only be written once. The most
important feature, however, is that the composer may listen to his music at
any time, and at any stage in the composition.

This report is a comprehensive description of the music system. Chapters
2 and 3 are reference chapters describing the hardware and the internal structure
of the data sets. Chapter 4 is very similar to a user's manual in that it explains
how the various features of the system may be used. Chapters 5 to 8 contain pro-
gram descriptions for most of the programs listings.

* Data Systems section, Radio & Electrical Engineering Division.

Figure 1. Composer Writing Music into the Computer Using an Organ Keyboard

Figure 2. Computer Music Facility at the National Research Council

II. HARDWARE

The NRC music system is implemented on an S.E.L. 840A computer
with a 24-bit word, 1.75-microsecond cycle time, 16K core memory, 4K
external memory, T7-track digital tape unit, CRT unit, typewriter, and high-
speed paper tape unit.

Extensive use is made of special devices to allow interaction between
the musician and the programs. A CRT is used for displaying lists of pro-
grams which the user may select, and for writing music and waveform or
envelope curves. A pair of horizontally and vertically mounted shaft position
encoders allows the musician to select from the lists of programs and to
position a cursor on the CRT. Six buttons and two foot pedals control the
inputting of notes and commands. An organ keyboard can also be used for
inputting notes. A high priority interrupt is caused by a specially placed
and coloured button (subsequently referred to as the red button) on the
panel. This interrupt stops the current activity and brings back a list of
choices to the CRT display for user selection.

The hardware for the output of audible music includes a bank of D/A
converters and a bandpass filter. A 4-track tape recorder with a sense tape
device allows the individual recording of four tracks, which can then be mixed
and rerecorded onto the full-track recorder.

A music synthesizer which is currently still under development will
contain voltage controlled oscillators, voltage controlled filters, and voltage
controlled amplifiers.

.

- 3,1 -

III. FORMAT

At any point in a composition, one melody (broken up into four voices),
three waveforms, one envelope, one sound generator, and all the necessary
support programs are in the computer memory. All of these except the support
programs may be replaced by data of the same type stored on disc; i.e., a
melody may be replaced by a melody, a sound generator may be replaced by a
sound generator. The only exception permitted is the replacement of waveforms
and the envelope by optional support programs. The memory map shows where
programs or data are stored in the memory (Appendix A).

MELODY FORMAT

The melody data are stored in the form of a table of amplitude values
(from PP to FF) together with a table of decay values (DK1 to DK8), the
initial tempo of the piece (120 if none stated), four arrangement tables for the
four voices (stating the order in which the bars are to be played), and up to
four voices of written music.

This format must be learned to understand the system. The music is a
series of 4 voices, each '1000 words long, or 1 voice, '4000 words long.* Each
word is one of three things, it can be a note or rest, a bar line, or a command
(see Fig. 3).

NOTE

OIXX XXX | XXX | XXX | XXX | XXX | XXX]| XXX

— A A
Y Y
/ DURATION PITCH
0 = NOTE

1 = REST

BAR LINE

00 | 000 | 000|000 000|000 000|000

COMMAND

EXX | XXX | XXX XXX XXX [XXX |[XXX] XXX

— Y A — J
IF +0, then THIS IS A >0 AND <'41-NORMAL
TEMPO COMMAND COMMAND
2'41 AND < '77-MARKER

Figure 3. Contents of Words in the Melody

* An apostrophe will be used to denote octal numbers in this paper.

-3.2 -

Notes or Rests

Bito = 0

Bit 1 0 for a note, = 1 for a rest

Bit 2 unassigned

Bits 3-8 duration in multiples of 32nd notes e. g. , 000100 would be an 8th note
001100 would be a dotted quarter.

Bits 9-23 code for the pitch (see Appendix D).

Bar Lines
Bar lines have a 1 in Bit 0, and a 0 in every other bit.
Commands

Commands have a 1 in Bit 0, and the rest of the word identifies the command.
If the number in the command (excluding Bit 0) is less than '41 it is a normal
command, (see Appendix B); if it is between '41 and '77 inclusive, it represents
. a letter marker; if it is greater than '77, it represents a tempo. The relation-
ship between tempo T (in quarter notes per minute) and the value N in bits 1-23 is
given by the formula N = 7. 5 (106)/T.

ENVELOPE FORMAT

The format of the envelope is quite simple. It is a '5000 word long table, each
word containing a number between 0 and '37777777. When the envelope is dis-
played on the screen, each of the first '2000 words is plotted across the screen
with the first 11 bits of the number determining the vertical position on the screen.
The '5000 words that represent an envelope can be stored on the disc for later
recall. Alternatively, 7 data words which represent the different parameters in an
envelope may be stored instead of the whole envelope. This shrinking of the envelope
data saves disc space.

WAVEFORM FORMAT

The waveform is '2000 words long, with each word containing a number
between - '40000000 and + '37777777. Only the most significant 10 bits are used
to determine the vertical position of the waveform plot. The '2000 words that
represent a waveform can be stored on disc.

-4.1-

IV. OPERATION OF THE MUSIC SYSTEM

This chapter describes the operation of the music system. To understand
how the music system works, and the logic behind the programs, one must
understand how a musician uses the system and what he can do with it.

The first step is to load the package of music programs from storage disc
(File 16) and choose the program "START'" from the "master list of lists'. This
starts the sound generator in core. As we have just entered the music system, the
melody is a series of rests and the output is therefore silent. Then the red button
is pressed and this presents on the screen the main list of program choices (Fig. 4),
from which all lists can be directly or indirectly accessed.

PLAY + SEE - listen to the entire melody

PLAYPART - listen from cursor to the end

QUIT - exit music system

RECORD - put melody on magnetic tape

WRITER - write notes, rests and bar lines on the staff
INSERT - insert notes, rests and bar lines between others
DELETE - delete words from the melody

MODIFY - insert modifying commands into music

GET - get items from the music library

PUT AWAY - save items in the music library

ARRANGE - arrange the order of bars in a melody
TEMPO - insert a tempo change command

MARKERS - set marking letters into the music
NEXTPAGE - more choices on another list

SWITCH? - play and see or write and check

VOICES? - monophonic or polyphonic write

Figure 4. Main List of Program Choices

Two writing modes are available to the user - monophonic (one long voice
or melody line stored in memory) or polyphonic (up to 4 short voices). In the
upper left-hand corner of the screen is a message stating which writing mode
the computer is in, and the name of the sound generator in core.

PROGRAM CHOICES
VOICES?

Choosing VOICES? changes the mode from the polyphonic mode to the mono-
phonic mode, or vice versa.

-4.2 -

WRITER or WRITE+CH (see SWITCH ? below)

Choosing this command causes the computer to display the treble and bagg
staves and the music as it is written including notes, commands, bar lines, and a
controllable cursor. The horizontal wheel (shaft position encoder) moves the cursor
line back and forth through the music, and the vertical wheel moves a dot up and
down the cursor so that it may be positioned on any line or space on the staves.

To write music, the user positions the cursor at the beginning of the melody,
if he is just starting, or after the last note he has written. He positions the dot on
the pitch that he wants, and then presses a combination of black buttons, Fig. 5.

The duration of the note is determined by the combination of buttons pushed.

RED

BUTTON
QUARTER EIGHTH SIXTEENTH
HALF
WHOLE
TOGGLE SWITCH
q4— e
NOTES /,” RESTS
BAR-LINES

PRESSING MORE THAN ONE
BUTTON AT A TIME GENERATES TIED
NOTE OR REST VALUES

Figure 5. Note Values for Black Buttons

The right foot pedal adds a sharp to the note that is being written, and the
left foot pedal halves the duration value of the note. In this way any note in the pitch
range of 43 octaves and any duration from a 32nd note to a quadruply dotted whole

note may be chosen.

-4.3 -

Bar lines and rests may also.be written. A rest may be written in the same
manner as a note with the toggle switch in the alternate position. Pressing the palm
button together with other buttons has the same effect as switching the toggle switch.
Pressing the palm button alone writes a bar line.

Two modes are available for music - polyphonic and monophonic. If in the
polyphonic mode, choosing WRITER or WRITE+CH causes the computer to display
a list of the four voices. The user chooses one of these voices, say VOICE 2, and
the computer displays VOICE 2. As we are now working with VOICE 2, all writing
or modifying affects VOICE 2 only, and only VOICE 2 will be played. In the mono-
phonic mode only one voice at a time is available.

SWITCH ?

The command SWITCH ? changes WRITER TO WRITE+CH and PLAY+SEE
to PLAYER (see below). Choosing SWITCH? a second time changes both commands
back to the original. WRITE+CH displays two numerals in the lower left corner of
the screen. These numerals give the duration of the melody up to and including the
note under the cursor. The first numeral gives the number of quarter notes and the
second is the remainder in 32nd notes, so this second numeral is always less than 8.
If the cursor is placed on a bar line, the duration of the entire piece is given.

When switching from one voice to another, the cursor is automatically placed
at approximately the same number of 32nd note time intervals from the beginning of
the music as it was in the previous voice.

INSERT

This is a different entry to the WRITE program. When a note is written
into the music with INSERT, the note under the cursor and all the notes after the
cursor are moved towards the end of the music, and the new note is written into
the resulting space.

DELETE

This again is an entry to the same program. DELETE moves all the notes
after the cursor one word toward the beginning of the music, so the note under the
cursor is deleted.

MODIFY

MODIFY is similar to INSERT but commands are inserted instead of notes.
These commands can change the decay level, timbre, percussion, glissando, or the
envelope control. The command chosen is inserted by a combination of buttons and
depends, as well, on the sound generator in use. Different sound generators accept
different commands depending on their capabilities. Charts of available commands
for the different sound generators are in Appendix B.

-4.4 -

TEMPO

TEMPO is used to insert a "change tempo' command in the music. The user
must first position the cursor over the point in the melody where he wants the tempo
to change. Pushing any button activates the typewriter so that a new tempo may be
typed in. If a number, say 85, is typed in, it is interpreted as 85 quarter notes per
minute, if two numbers separated by a slash are typed, say 34/21, the new tempo
would be 34 quarter notes in 21 seconds. The tempo appears in the written melody
as a number, similar in form to the commands.

MARKERS

This command enables the composer to insert letters as markers. After
choosing MARKERS he positions the cursor, presses a black button, and types his
letter. The letter R caused the playing program to restart the melody. In the poly-
phonic sound generator an S will restart the whole piece while an R will only re-
start one voice.

PLAY+SEE or PLAYER (See SWITCH ? above)

When PLAY+SEE is chosen, the computer branches to the sound generator
which plays the "in core' melody, and displays the written music at the same time.
If PLAYER is chosen, the melody is not displayed. In both cases, the voice that is
played is the one that was last written (see WRITER). (However, in a 4-voice poly-
phonic program, 4 voices may be played.) The monophonic sound generators respond
to the last set of buttons pushedas a command, i.e., if the buttons used to select
PLAYER were the same as those used to write in DK1 (see the command chart,
Appendix B, Table 1), the computer will act as it the command DK1 was the first
word in the melody. Each time the program passes a bar line it checks the buttons
for a command input. On the polyphonic program, the buttons are used only to
determine which of the four voices to display on the screen.

Most sound generators are also capable of controlling an analog percussion
generator as the music is playing. If a "percussion on" command is encountered, a
monophonic sound generator will use each note and rest to control the percussion.

Each note has a specific set of percussion instruments that it activates (see Appendix B).
The percussion for a polyphonic sound generator must be written at the end of the 4th
line of music and separated from it by a bar line followed by a letter 'D'.

PLAYPART

Choosing PLAYPART causes the computer to play the melody starting with
the note under the cursor.

QUIT

This is used to leave the music system.

- 4.5 -

RECORD

When a piece is to be recorded on audio magnetic tape, the composer can
choose RECORD. The computer will wait until it receives an indication that the
sense marker on the tape has been detected by the tape recorder, and then it will
start playing the music.

GET

GET enables the user to retrieve melodies, waveforms, envelopes (complete
tables or parameters), sound generators or utility programs that are stored on the
disc. If the composer GETS a data set (a melody, waveform or envelope), the com-
puter transfers the data from the disc to the computer memory and branches to the
sound generator program to play the music. If the composer GETS a utility or sound
generator program, it is loaded and executed.

PUT AWAY

The opposite of GET, PUT AWAY presents the user with a list from which he
can choose what he is going to store on the disc. He may then store an envelope,
waveform, or a melody of any number of voices.

Both GET and PUT AWAY access the filing system programs for disc handling.
In this system, there is one list stored in core memory at all times. Choosing from
this list either loads a data set or another list to replace the present one. Choosing
NAME in the PUT AWAY mode activates the typewriter, and after a name is typed,
the program stores the appropriate data set on disc and puts the name in the
current list. Every list can be accessed directly or indirectly from the "master
list of lists'", and a choice enabling entry to the master list is at the bottom of every
other list (MAST****) g0 it can always be accessed. (See Data Systems Program
Library No. 1085B, D$STOR).

Bar lines in the computer music system have a different purpose than do bar
lines in normally written music. A user may use bar lines to separate phrases if
there are some phrases that are repeated. He may then tell the computer in which
order he wants his "bars' or phrases played. For example, if he chooses ARRANGE,
and then types in 1 2 1 5 3 0 the computer will play the music in the first ""bar",
then the second 'bar', the first "bar" again, the fifth ""bar', and finally the third
"bar'. The computer will then return to the list of choices as the zero at the end
indicates the end of the piece.

If the arrangement is longer than one line of the typewriter, a hyphen at the
end of the line lets the composer continue on to the next line.

NEXTPAGE

Owing to space limitations, not all the choices can fit on one ''page'" of the
CRT display. Choosing NEXTPAGE presents the user with a second list of choices
(Fig. 6).

-4.7 -

SEE ENV

If desired, the amplitudes of individual notes may be placed under an envelope.
This is useful if one wishes a note to become louder as it is played.

The standard envelope contains 3 exponential curves, one increasing '"attack"
curve and two decreasing ''decay" curves. SEE ENV displays the first '2000 words
of the envelope, and enables the user to change the rate of change of any of the
curves, or to change their beginning points. Using the "Envelope Generator Commands"
in Appendix B, the user picks the parameter he is going to change, then, depressing
the left foot pedal, he turns the horizontal wheel. This changes the desired parameter,
and generates a new envelope.

REV ENV
This command reverses the first '2000 words of the envelope.
GEN ENV

Seven parameters which define a simple envelope are always stored in core
memory. GEN ENV regenerates the envelope from these parameters. The same thing
can be done by choosing SEE ENV and pressing the left foot pedal.

TRANSFRM

TRANSFRM computes word by word the average of WAVE 1 and the first
2000 words of the envelope table and stores the result in the envelope table.

RETROGRD
This reverses the last melody that the user was writing.
SET TEMP

This enables the user to reset the initial default tempo that is stored with
the melody by typing the new tempo.

COPY and BRANCH

These commands start the execution of utility programs.

SOUND GENERATORS

After choosing GET on the main list of choices, it is possible to replace the
present sound generator with another one. The monophonic sound generators are
stored on the list *PLAYERS and the sublist *MORE. The polyphonic generators are
stored on *POLYFON. The name of the sound generator that is currently in use is always
printed in the top left corner of the screen when the main list of choices is being displayed.

Monophonic Sound Generators

Each standard monophonic sound generator uses fixed length waveform tables.
Figure 7 gives the names of these sound generators and the number of steps in the
waveforms that each produces.

-4.8 -

NAME OF STANDARD SOUND GENERATORS NO. OF STEPS
2ND PLAY, 12THPLAY, 22NDPLAY 8
3RD PLAY, 13THPLAY 12
4TH PLAY, 14THPLAY, 24THPLAY 16
5TH PLAY 5
H1 PLAY 2

Figure 7. Standard Sound Generators

22NDPLAY is similar to 2ND PLAY but provides a rapid decay during the
last 32nd interval of a note. This accentuates the articulation (see Appendix B,
Table 5).

The following special sound generators only have a choice of three timbres,
all based on the contents of the three waveform tables (WAVE 1, WAVE 2, WAVE 3)
As the waveform table contains '2000 words, only the first few are used.

1ST PLAY has a feature that enables the user to turn a phase slide off and
on. When the phase slide is on, the segment of the waveform table used for the
sound generation advances through the waveform table instead of remaining stationary.
Thus, the timbre of the note is changed as it is played.

7TH PLAY is similar to 1ST PLAY but provides a sort of portamento that
can be turned on and off (Appendix B, Table 4).

6TH PLAY, 8TH PLAY and 10THPLAY phase slide is replaced by a capability
of sampling the waveform instead of using a section of it. This sampling can be turned
off and on. 8TH PLAY and 10THPLAY produce timbres having the quality of random
noise combined with a definite pitch section. The commands to control the noise are the
same as those used to control the glissando. In 8TH PLAY, the noise is on when the
glissando is off and vice versa. In 10THPLAY both the glissando and noise are on at the
same time (Appendix B, Table 3).

Polyphonic Sound Generators

The programs found on the upper half of the POLYFON list will play up to
4 lines of music at once. An extra line may be attached to the end of the fourth
voice to control the percussion as noted above. It must be separated from the
actual music by a bar line and a letter 'D'.

To change the selection of voices played by the two voice players (PLAIN 2
and TONE 2) it is necessary to depress a foot pedal and the button corresponding
to a new voice. (See Appendix B, Table 6). The voices that will be played are the
two most recent choices. Some of these programs allow two-channel output, and
all allow "up one octave' or 'down one octave' commands. (See Appendix B, Table 1).

-4.9 -

The properties of the four programs are as follows:

DKAY 4

DKAY 4 plays 1-4 lines of music with exponential decays available on each note.
PLAIN 4

PLAIN 4 plays 1-4 lines of music with no decays. Stereo output is available.
TONE 2

TONE 2 plays 1-2 lines of music with decays, and 13 8-step timbres as in
2ND PLAY. Percussion is not available.

PLAIN 2

This program plays 1-2 lines of music with no decays but allows an 8} octave
range with repeated '"up octave" or "down octave" commands. Stereo output is available.

The button command control chart in Appendix B gives all the available commands
for each sound generator.

KEYBOARD

This program is a special polyphonic sound generator which allows music to
be played from the keyboard and stored in the computer. The sounds produced by this
generator are similar to those of PLAIN 4.

Choosing PLAY on the main list of choices (PLAY replaces PLAY+SEE or PLAYER)
causes a secondary list of choices to be displayed. This list includes the following choices:

PLAY+SEE, PLAYER, PLAYPART

These commands have their usual effect.
PLAY KEY

This command enables one to play from the keyboard at the same time the computer
is playing from memory. The thumb and palm buttons control the number of voices to be
played from the keyboard and how many are played from the written music. (See
Appendix B, Table 7).

STOR KEY

STOR KEY is the same as PLAY KEY except that all the notes played on the
keyboard are written into the melody in the computer memory.

CONTINUE

If this command is chosen, the computer starts playing all 4 lines of music
from memory until the user starts playing the keyboard. Then the computer will act
as if STOR KEY had been chosen and will start storing the music you are playing
into the computer memory. When the red button is pushed after CONTINUE has been
chosen, the cursor is moved to the last note that was sounded.

-4.10 -

On this program, as in all the polyphonic sound generators, the line of
music displayed depends on the button pushed. (See Appendix B, Table 6).

UTILITY PROGRAMS

Utility programs are usually not loaded with the music system and have to
be loaded by selecting them from the *PROGRMS list, They are stored in the
computer memory in space normally reserved for waveforms or envelopes. (See
memory map in Appendix A),

4 WRITE

As the name suggests, this program displays all four lines of music on the
screen at once. It has its own list of choices which allow writing, inserting, deleting,
modifying, and the adding of tempos and markers. The music is shown in the
arranged order; i.e., if Bar 1 is repeated three times in the arrangement, it will
be displayed 3 times in the written music. 4 WRITE has its own list of choices,
many of which are the same as those in the main list of choices. The four commands
at the top of the list (VOICE 1, VOICE 2, VOICE 3, and VOICE 4) display all 4
voices but display the chosen voice at a brighter intensity, with larger notes and in
a different colour. Commands and markers are only displayed for the chosen voice.
These commands allow the overwriting of notes as in the WRITER command, but
again, only the chosen voice will be written into. INSERT, DELETE, MODIFY,
MARKERS, and TEMPO all display four voices, but only change the last chosen voice.
LOOK displays all 4 voices or any combination of voices depending on what buttons are
pushed (see Appendix A, Table 6). LOOK also allows an automatic advance or back up
through the music. If the thumb button is pushed, the cursor automatically advances
through the music, if the palm button is pushed, the automatic backward motion is
turned on, and if both buttons are pushed all movement stops. If RESTART is chosen
the beginning of the music is displayed.

VOICE 1 - see all voices, write in VOICE 1
VOICE 2 - see all voices, write in VOICE 2
VOICE 3 - see all voices, write in VOICE 3
VOICE 4 - see all voices, write in VOICE 4
INSERT - insert notes in the chosen voice
DELETE - delete notes from the chosen voice
MODIFY - insert commands in the chosen voice
MARKERS - insert letters in the chosen voice
TEMPO - modify the tempo

LOOK - see all or any combination of voices
QUIT - all done (CALL EXIT)

GET - go to library to get something
RESTART -~ display melody at beginning

MONO - display only one voice at a time

(same as WRITER in main List)

Figure 8. List of Choice in 4 WRITE

- 4.11 -

TUNER

This allows a new set of pitches to be stored for the present sound generator.
The user can stipulate the pitch of the lowest note, the number of intervals per
octave, and whether he wants equitempered scale, or a tempered scale.

COPY

COPY performs the copying of bars to the end of the same voice or to
different voices, the copying of whole or portions of melodies to other voices
and the copying of waveforms to envelopes and vice versa. It also contains commands
that cause the augmentation or diminution of all the notes in the bar in which the
cursor was left, and a command that adds sharps to conform to a specific key
signature.

COPY ALL - copy whole voice
COPY BAR - copy bar that cursor is in
C TO END - copy from cursor to double bar line
WAVISENV - copy WAVE 1 into envelope
WAV2ZENV - copy WAVE 2 into envelope
ENVSWAV2 - copy ENVELOPE into WAVE 2
QUIT)
gﬁg AWAY ; - see main list of choices
WRITE)
AUGM BAR - double the note durations
DIMN BAR - halve the note duration
REV BAR - reverse the notes in the bar
KEY SIG - put in accidentals to conform to
key signature
SAVE IT - save items in the music library
Figure 9. COPY List of Choices
DRAMU

The program DRAMU enables the computer to print out the music on the
digital plotter.

PITCHGEN

PITCHGEN is a combined sound generator and graphical input program. It uses
the SLIDER writing program which allows the placing of notes anywhere on the staves,
not just on the semitones. (The user can return to the old writing program by choosing
CLASSICL). Melodies written with the standard writer routine must be translated before
they can be played on PITCHGEN and vice versa. This can be done by choosing PAR >SLID
or SLID>PAR on the *PARAMUS list. PITCHGEN provides for graphical input to the melody.
The user may "draw a melody" intc WAVE 1, WAVE 2, or WAVE 3, or use the smooth curves
available in the envelope. Random melodies are also available (see chart in Appendix B,
Table 9).

-4.12 -

As in KEYBOARD, there is a sublist that includes PLAY+SEE (or PLAYER)
and PLAYPART. This list also includes the following choices.

GENERATE

Choosing GENERATE will cause the melody to be created according to the
button control commands that are used, for instance, pressing the middle finger
and little finger buttons will cause a melody to be written based on WAVE 1,
(see Appendix B, Table 9).

GEN PART

Similar to PLAYPART, GEN PART starts the melody generator at the current
position of the cursor. Sheets of paper with the staff printed on them are available as
a guide to a composer 'drawing'" a melody into a waveform.

-51-~-

V. SOUND GENERATORS

The following chapters describe in more detail the individual programs with
the use of flow charts and listings of the programs. The line numbers referred to
are the line numbers in the listings (available from the Data System Section, REED,
NRC). The programs are written in the assembler language of the S. E. L. 840A computer,
and the list of the mnemonic instructions and their meanings is in Appendix F.

The first programs to be discussed are the sound generators. There are
over 20 software sound generators in current use, but they all follow one of two
basic patterns, the monophonic or the polyphonic pattern. Within each pattern
there are, of course, many variations. 2ND PLAY is used as the basis for the
monophonic sound generators.

MONOPHONIC SOUND GENERATORS

2ND PLAY

The purpose of most monophonic sound generators is to output a digital step
waveform which has a frequency, amplitude and decay rate controlled by the
computer. For example, if we want to output the A above middle C @40 Hz)
using an approximate eight-step sine wave, we would have to output a "0" for 1/8
of a cycle (1/8x1/440 of asecond), then outputa 700 for the same length of time, then 1000
then 700 again, then 0, -700, -1000, and backto 0to startthe next cycle. If signals
representing these numbers are sent through a D/A convertor the output from the convertor
could be amplified, and an approximate sine wave would be heard.

The amplitude is controlled by a number called CAMP (current amplitude).
If a decay is desired, a decay amplitude (DAMP) is used. DAMP is a number a
little smaller than one. Every cycle of the pitch, CAMP is multiplied by DAMP,
and the resultant number is stored in CAMP. This causes CAMP to decay, or be-
come smaller exponentially. The envelope also affects the amplitude if it has been
enabled. The final amplitude output then is CAMP, multiplied by the current value
of the envelope, and multiplied by the amplitude of the current step in the waveform.

If the user loads an index register with a negative number, the computer has
an instruction where the index register will be incremented continuously until the
register reaches zero and then the next instruction will be executed. Each increment
of the register takes one computer cycle or 1. 75 microseconds. This is the method
used for calculating the time intervals between successive steps in the waveforms.
There is a table of numbers that is used for loading the first index register. The
number loaded depends on the pitch of the note being played.

There are two clock interrupts that are used in the monophonic programs.
One of these is controlled by the computer and controls the tempo of the music. It
interrupts the program at time intervals equal to a 32nd note and increments a counter
($IFLG) which had been set to the negative of the number of 32nd time intervals in the
note. For example, if a dotted half note is being played, $IFLG would be set to -24
as a dotted half is equal in time to 24 32nd notes. When this counter reaches zero it is
time to get a new note.

- 52 -

INITIALIZE PLAY-
PIT POINTERS

EXECUTE BUTTON
COMMAND
=
I r
<
EXECUTE LOAD NEXT WORD
COMMAND FROM MELODY

TURN OFF
INTERRUPTS

Y

REINITIALIZE CALL PLAPIC
PLAPXIC POINTERE

NO

BAR LINE
?

NO

WFLG IS SET WFLG IS SET

NEGATIVE POSITIVE
- rSPLIT CURRENT| ¢ I
o I.PITCH IN NPCH
OUTPUT TO < STORE AMP IN
PERCUSSION CAMP
<
=
>
NEGATIVE DURATIOMN LWDF?0
STORE IN $FLG
TO PAGE 2

Figure 10. (a) Monophonic Play Subroutine

- 5.3 -

FROM 1

[CAMP=CAMP X DAMP

= <
SKIL=CAMP |

SKIL=0

SKIL=SKIL X CURRENT
ENVELOPE VALUE

1

NPC IS ALTERED

SLIGHTLY

STORE NO OF STEPS
IN INDEX 3

~

STORE NpCH IN
INDEX 1

s

OUTPUT PRODUCT OF
SKIL AND AMPLITUDE

OF CURRENT WAVEFORM
STEP

COUNT DOWN INDEX 1
UNTIL IT IS O

INCREMENT INDEX 3

INDEX 320

=

$\IFI'G?O/

Figure 10. (b) Monophonic Play Subroutine

- 5.4 -

The frequency of the other hardware clock cannot be controlled by the computer
but can be controlled by two knobs to the left of the display. It is used to advance a pointer
(index register 2)through the waveform (for glissando) and through the envelope. In the case

of the envelope, (if the envelope hasbeenturned on), we load the number thatis stored in the memory
(if the envelope has been turned on), we load the number that is stored in the memory

location, the address of which is calculated by adding the contents of index register 2 and
the starting address of the envelope (JENVT). This number that is loaded is then multiplied
by the current amplitude and is then used in place of it. Similarly, if the glissando has
been turned on, we load a number that is stored in WAVE 2 whose address is $FORMT1
(beginning address of WAVE 2) plus the contents of index 2. This number is then

used to vary the pitch according to how far the waveform value deviates from the
midpoint. Therefore every time the clock interrupts the program, we advance one
word through the envelope table and the waveform table.

With this background, it is now possible to explain, in detail, the subroutine
of the monophonic sound generator that actually plays the music. This subroutine uses
different flags to determine which commands are on or off, for example, a minus one
is stored in the memory location labelled ENVF when the envelope is turned on, and a
0 is stored there when the envelope is turned off. A complete list of the memory lo-
cation labels and their uses is in Appendix G.

When the PLAY subroutine is called, the computer first sets up the external
subroutine PLAPIC which displays the picture while the music is playing. This
setting up is achieved by storing the address of the beginning of the bar as $PLCPIC,
and a '20000037 as $PLBPIC. This number in $PLCPIC is increased as we get further
from the beginning of the bar. (See PLAPIC, Chapter 6). Next the computer loads AAA
with a -1. AAA is incremented before each note is played, and when it reaches zero
PLAPIC is called, so the music is rewritten on the screen.

The buttons are then checked and the command they contain is executed. If
PLAY+SEE as opposed to PLAYER was chosen, AAA is incremented and if it is now
0, (as it will be the first time through), a new picture is written into external
memory to be displayed on the screen. On returning from PLAPIC, the number of notes
written on the screen is added to $PLBPIC, and also negated and stored as AAA. This is
the number of notes, rests, or commands that can now be played before another call is
made to PLAPIC.

The next word in the melody is then loaded. If it is a bar line, we return from
the PLAY subroutine. If it is a command, it is executed and the program branches
back to incrementing AAA (last paragraph). If the word is a note or a rest, WFLG
is set positive in the case of a note and negativeinthe case ofa rest, the pitchis stored in
NPCH, a percussion output is made if necessary, the length of the note is stored in
$IFLG, and the amplitude and the second index register are reintialized if the slur
command is off.

Now we are ready to play the note. The amplitude (CAMP) is multiplied by
DAMP, set to zero if we are playing a rest, and stored in SKIL. If necessary, the
contents of the present position in the envelope are multipliedby SKIL, and then stored
in SKIL. If the glissando is on, the pitch is changed slightly before it is loaded into

- 5.5 -

S8 bROGRAM
CHOSEN Is
LOADED
WAIT UNTIL SFG IS
SEMSE TAPE
A
GOES BY TAPE Dgg EETED
RECORDER
PLAY
1S T2 IS SET T2 1S SET
CHOSEN TO 0 TO -1
INTERRUPTS
ARE SET UP
-1 T27? 0
<4 \/ L
T pe— FOLLOW ARRANGEMENT

UNTIL NOTE UNDER
CURSOR IS FOUND.
LOAD ADDRESS

NOTE LOADED

> CALL PLAY
SUBROUTINE

Is

THIS THE
LAST BAR

NO
ADVANCE TO
NEXT BAR

Figure 11. Monophonic Sound Generator

- 5.6 -

the first index register. Index register 3 is set to the number of steps in the waveform
(negated). The computer then outputs the product of SKIL and the first step of the
waveform. The first index register is then counted down, and when it reaches zero,
the product of SKIL and the next step of the waveform is output. When the end of
the cycle is reached, $IFLG is checked to see if the note is over, and if it is, the
next word from the melody is loaded, but if the computer is to continue with the
present note, the amplitude and pitch are reloaded, and another cycle is sounded.

Remember that as all this is going on, both clock interrupts are repeatedly
interrupting and incrementing the second index register (advancing the envelope and
waveform) and $IFLG.

The monophonic sound generator is much more than just the previously
described PLAY subroutine. As can be seen from the listings, it contains the table
of pitch values that are used to load index 1, the control for the main list of
choices, and the program which calls the PLAY subroutine.

The sound generator has 3 entries, PLAY (i.e. PLAY+SEE or PLAYER),
RECORD, and PLAYPART. RECORD is the same as PLAY, only the computer
waits for a sense tape to be detected by the tape recorder before it starts playing.
The flag T2 is used to determine whether or not PLAYPART was chosen. The
program, after initializing T2, sets up the interrupts, and then stores the address
of the first note of the first bar of the arranged melody in PEEC, or if PLAYPART
was chosen, it scans through the melody until the note under the cursor is found,
and the arrangement table pointer (POIN) points to the proper bar. The address of
this note is then stored in PEEC. A call is then made to the PLAY subroutine.
When control is returned from this subroutine, it means a bar line has been en-
countered. In this case we advance to the next bar in the arrangement table and
recall the PLAY subroutine, or, if the last bar played was the last bar in the
melody, a branch is made to the part of the program that displays the main list of
choices.

1ST PLAY

Most of the monophonic sound generators are the same as 2ND PLAY,
differing only in the number of steps in their waveform, and the waveforms used.
A few, however, make use of the waveforms in the long ('2000 word) tablet con-
trolled waveform tables. These are 1ST PLAY, 6TH PLAY, 7TH PLAY, 8TH PLAY
and 10THPLAY. As 1ST PLAY is the basic generator of this type, most of the ex-
planation will be centered around it.

1ST PLAY differs only slightly from 2ND PLAY. In 2ND PLAY, a negative number

was loaded into index register 1, an output of the amplitude of the current waveform step
was made, and then the index register was incremented until it reached zero. Thus, the
timing of the waveform step is controlled by the number loaded into index register 1. In
1ST PLAY, however, a negative number is loaded into the first index register, an output
is made based on the first point of the waveform table (the product of SKIL and that first
point), the index register is incremented, then an output is made based on the second point,
the index register is incremented again, and so on, incrementing the index register and
outputting successive points of the waveform table. When the register reaches 0, the cycle

- 57 -

is repeated, the negative number is reloaded into the register, and the first point of
the waveform table is output again. The index register is used to time a whole

cycle instead of a fraction or a step of the cycle. The instruction which loads the
present position of the waveform is named ZO or ZO8. ZO contains the instruction
"oad from $FORMTB (start of waveform) minus NPCH (negative number that is
loaded into index and used for pitch control) plus index 1'". At the beginning of the
cycle NPCH equals index 1 so that the number loaded by ZO is the first number
in the waveform, and as index 1 is incremented, it causes the advance through the
waveform.

A feature of 1ST PLAY is its ability to slide along the waveform. This phase
slide uses a memory location called ZX. ZX is set equal to ZO at the beginning of
each note (unless the slur is on), then every time that the envelope and glissando
interrupt is activated, ZX is incremented by one. If the phase slide is on, ZX re-
places ZO at the end of every cycle. The effect of this is that the segment of the
waveform used to produce the note slowly drifts through the waveform changing the
sound of the music as it drifts.

Another feature of 1ST PLAY is a down octave command. In this case the
amplitude in every other cycle is set equal to zero, which effectively lowers the pitch
one octave. The sound produced is slightly different, but the difference is hardly
noticeable.

In 1ST PLAY, index 1 is used to time the pitch, and index 3 is used to
advance through the glissando and envelope (index 2 is used for this in 2ND PLAY).
As an index register is not used for advancing through the waveform as in 2ND PLAY,
it may be used instead of $IFLG for counting down the duration of the note. There-
fore, the second index register is loaded with the number of 32nd notes (negated),
and the clock which interrupts the program every 32nd note increments index 2. When
index 2 reaches zero, a zero is stored in $IFLG to indicate the end of the note. As
incrementing an index is quicker than incrementing a memory location, the interrupt
is slightly quicker, and a faster tempo is possible as less time is spent in the interrupt.

As mentioned before, there are other players that use the 1ST PLAY technique
for sound production. 7TH PLAY is the same as 1ST PLAY except for a primitive
sort of portamento command that is available. When the portamento is on, the
number that is loaded into NPCH (to determine the length of the cycle) is one eighth
the difference (truncated) between the written pitch and the pitch used in the last cycle,
plus that last pitch. This causes the pitch to slide to the present pitch from the pre-
vious pitch.

6TH PLAY, 8TH PLAY and 10THPLAY do not have a phase slide but they do
have a '"waveform modify" facility. When this facility is on, the waveform output is
not a segment of the waveform table, but rather a sampling of it. Before the begin-
ning of each cycle, '2000 (the number of points in the waveform) is divided by the
number from the pitch table (the one that is negated and loaded into index 1 and NPCH).
The resulting number gives the number of steps to advance through the waveform each
time index register 1 is incremented by one, so that the end of the waveform is reached
when the index register reaches zero. In this way, the whole waveform is advanced through

once per cycle no matter what the pitch is.

- 5.8 -

8TH PLAY and 10THPLAY are slight extensions of 6TH PLAY. They both have
the capability of producing a noisy sound output. This noise can be turned on and off
using the glissando on and off commands. In 8TH PLAY, the noise is on only when
the glissando is off, and in 10THPLAY both noise and glissando are on, or they are
both off. This is the only difference between the two sound generators.

The noise is created by adding a pseudorandom number to CNTR, (the counter
that points to the present position in the waveform). The pseudorandom number is
generated by multiplying a K1 (any number) by a K2 (say '1234567) and storing the
second word of the result back into K1. K1 would then be changed rather randomly
by each multiplication.

POLYPHONIC SOUND GENERATOR

Chapter 4 gives a description of how the polyphonic sound generators are used,
and a description of the logic behind the programming can be found in ERB-862,
Reference (18). The KEYBOARD listing in that report is slightly out of date, and
a more modern listing can be found in Appendix H of this report.

- 6.1 -

VL. WRITERS

The following chapter describes in detail the most complicated programs in
the computer music system. These are the programs that are responsible for writing
the music on the screen. This includes the drawing of the staff and then writing in of all
the notes, rests, commands, bar lines, and markers; and the user controlled over-
writing, inserting or deleting of new notes, rests, etc. There are five different
WRITE programs. DOLY writes one line of music on the screen, and is the program
loaded with the music system. PLAPIC writes the music into the external memory
so that it can be displayed while the music is playing, and is also loaded with the
music system. DRAMU, loaded on top of the envelope, writes the music on paper
using the digital plotter. SLIDER is a new version of DOLY which is overwritten in
the same memory area as DOLY when PITCHGENis loaded. 1t allows the writing of
music anywhere on the staff, not just on the semitones. 4 WRITE displays all four
lines of music at once and allows overwriting, inserting and deleting of notes in any
chosen voice. This program is loaded on top of the three waveform tables.

In this chapter, the names of in-core counters or storage places will often be
referred to without any explanation of their meaning, especially after they have been
mentioned and explained once. In the appendicies there are tables containing the
names of all these memory locations, their meaning, and sometimes a mnenomic
instruction or an index that the memory location contains. If the name contains a
comma followed by a number, this name refers to a small data table and a specific
element of the table is located by adding the contents of the index register to the
address of the name. The following line is an example from Appendix I

K5,1 E 1,STA address of end of arranged bar line tables

As this is from DOLY, index 1 is used to refer to the four voices, and
ranges between 0 and 3, the above statement means that there is a table starting
at address K5 +0 (or K5) and ending at K5+3. Each of the four elements of the
table contain the address of the end of the arranged bar line table for the voice
that it refers to. (K5 refers to voice one, K5+1 refers to voice two). These memory
locations also contain the mnemonic command STA, which is indexed with index 1.

Another point to note is that the flow diagrams sometimes include the name of
the entry to the section of the program that is being explained. This is useful only if the
listings are being consulted simultaneously. These flow diagrams refer to the A and B
accumulators as *A and *B. Index 1, 2 and 3 are referred to as 11,12, and I3.

DOLY

DOLY is the longest program that is loaded with the system, and it will be ex-
plained in sections. The first section is the initialization procedure which sets flags
to indicate which of the many choices was last chosen. DOLY also must change default
values when a new voice has been selected. The display loop is responsible for draw-
ing the staff and the notes on the screen. Each time it comes to the note which has
the cursor, a check is made to see if any buttons have been pushed, or shaft encoder
wheels turned. The input processing routine is responsible for this and making the
necessary changes. In addition to these main sections of the program there is a little

ADVANCE BAR
LINE POINTER

- 6.2 -

CPTR=0

MELODY

FINISHED
K

A%

BAR LINE?

4
P

LOAD NEXT NOTE

NOTE OR RES
?
YES

ADD DURATION
TO CNTR NO

PLACE CURSOR ON
PRESENT NOTE

S

Figure 12, COUN Subroutine

- 6.3 -

subroutine that is called every time buttons are pushed. This clears KFLG which
indicates that the buttons have been pushed, and stores the input word in KEYB.

INITIALIZE

The choice WRITER or WRITE+CH causes a branch to the main set of initialize
instructions. These are the instructions that are responsible for changing the mode of
the computer from voice to voice.

The first thing to be initialized is the position of the cursor. If the cursor is
past the second note, ADDX (cursor position) will be greater than 2. In this case ADDX,
INDX and IADD are all decremented and UPTR is incremented until ADDX reaches 2.

The next step is to find the duration of the melody in 32nd notes.

There is a routine called COUN which scans through the melody following the
arranged bar line table, and adding to CNTR, a counter, the duration of each note. If K4
is set positive COUN will stop at the address of the note where the cursor was last
left, and return the duration of the piece up to this point in the A accumulator. If
K4 is negative, the count is continued until it equals or exceeds the value in VAL,
It then sets UPTR (address of the first word on the screen) to equal the last note
checked minus the number of words the cursor is in from the beginning of the dis-
play. The duration now, between the beginning and the new note under the cursor,
will be about equal to VAL,

This subroutine is used by the initialization routine twice. The first time,
K4 is positive, and the duration up to the cursor is found. This is stored in VAL.
A list of the four voices is then presented, and when one is picked, a subroutine
NENT is called. This initializes the external pointers TUTAB, TUMEL, THUD,
TULUP2 and TULUP4 (see Appendix A) and the internal pointers MEEP, BEEP,
JPTR and FIRS (see Appendix I). Calls are then made to DAMEL and TRAN to set up
the arranged bar line table. The second call is then made to COUN after K4 has been
set negative. With the duration between the beginning of the old voice and the old position
of the cursor in VAL, subroutine COUN moves the cursor to a spot in the new chosen
voice where the duration between it and the beginning of the voice is the same as it was
in the last voice. This completes the special WRITER or WRITE+CH initialization.

The next step in the initialization is the setting up of flags so the program will
know what command was chosen. The final condition of these flags after this step is
shown in a chart in Appendix I

Finally, there is the final initialization of KPTR, RPTR and UPTR to the values
shown in Appendix I,

DISPLAY LOOP

The DISPLAY LOOP is really two loops, one inside the other. The outer loop
starts by drawing the staff on the screen, and resetting index 2 and CRFL. The
inner loop then takes over to plot the actual notes. Each cycle through the inner
loop causes one word of the melody to be plotted. At the end of the loop, Index 2
is incremented and a check is made to see if the words being plotted have reached
the end of the staff. If so, a branch is made back to the outer loop, if not the
inner loop is repeated.

- 6.4 -

PUT CURSOR ON
2ND NOTE

Ki=+1,
> CALL COUN

'

STORE DURATION
TO CURSOR IN UAL

< 1

" !

CHOOSE VOICE

v

SET EXTERNAL AND INTERNAL
ADDRESS POINTERS

|
> \ 4
SET MODE
FLAGS

v

SET INTERNAL

ADDRESS POINTERS
DISP-

o LOOP

VAL=0
<
K4=-1
L CALL COUN
QIIIHF’ !

Figure 13. Initialize Routine

- 6.5 -

The word UPTR contains the address of the first word to be displayed on
the screen plus '40. It also contains an Index 2 command, so that if a load is made
using UPTR, the address of the word loaded is the sum of the address of the first
displayed word, '40, and Index 2. After the staff is drawn, Index 2 is set to -'40.
This means that UPTR will point. to the address of the first displayed word. Every
time the inner loop is cycled through, Index 2 is incremented which will cause UPTR
to point to the next note.

At the beginning of the inner loop, the word that UPTR points to is checked.
If UPTR points to a note as opposed to a rest, command, or bar line, it is checked
to see if it has a sharp sign, and if it does, a sharp sign is plotted with an X position
equal to POS, and a Y position depending on the pitch which is found in the least significant
15 bits of the note. Each bit of the duration bits (3-9) are checked and when one is set,
the corresponding note is drawn; for example, if bit 3 is set, a whole note is drawn, or
if bit 5 is set, a quarter note is drawn. The bit after the one that was set is then checked
and if it is on, a dot is placed after the note. If this bit is not on, we go back to look at
the next bit that is on and if one is found, a corresponding note tied to the first one is
drawn. For example, if bits 3 to 8 of the note word are set to 100 110, a whole note
is drawn as bit 3 is set, bit 4 is not set so no dot is drawn, the next bit that is
set is bit 6 which causes an eighth note to be drawn close to the whole note, and
bit 7 is on so a dot is drawn after the eighth note.

After the complete note is drawn, the X position is incremented depending
on the size of the note just written and is then checked to see if the end of the
.staff has been reached. If it has not,a return is made to the beginning of the inner
loop to check the next note.

If UPTR (the address of the note that is loaded) points to a rest, it is dealt
with in the same way as the notes were but with rest symbols being drawn instead
of note symbols. Again a check is made to see if the end of the staff has been reached
and if not, a branch is made to the beginning of the inner loop.

If a bar line is found, it is simply drawn, the-end-of staff check is made, and
followed by a return to the beginning of the inner loop.

Tempos, messages, and markers if found, are written on the staves. A small compu-
tation and a call to SPDTA and DELE ZE have to precede the writing of a TEMPO to change
the value to the number of quarter notes per minute and then to change it to 4 ASCII
characters representing a decimal number.

When enough notes have been displayed so that the staff has been filled up,
the program leaves the inner loop, to re-enter the outer loop. A check is then made
to see if the WRITE mode is set to WRITE+CH as opposed to WRITER. If it is, SHOO
is incremented. If SHOO is now equal to 0, it is reset to -11, and K4 set to a positive
number, COUN is called to count up the duration to the cursor and store it in CNTR.
This number (in 32nd notes) is divided by 8 with the result displayed on the lower
left side of the screen after a call to SPDTA and DELEZE. The remainder is then
printed as a second number. The duration up to the cursor is now given by these

numbers, the first number being the number of quarter note line durations, and the
second being the remainder in 32nd note time durations.

v

- 6.6 -

PLOT STAFF

]
Y

LOAD NEXT
WORD IN MELODY

CALL INPUT PRO
CESSING ROUTINE

T

l

INCREMENT
POINTERS

BITS

LOOK AT DURATIO

YES

PLOT
NOTE

MAKE A DOT

LOT NOTE WITH
DECREASED
SPACING

Figure 14. Display Loop

-6.7 -

As the duration is only checked each time SHOO reaches 0, and SHOO is
then set to -11, the duration is checked every eleven times through the outer loop.
If SHOO was incremented but did not reach 0, the present duration value is still
displayed on the lower left side of the screen before the return to the beginning of
the outer display loop.

INPUT PROCESSING

Something that was not mentioned before was that just before a note is loaded
to be displayed, a check is made to determine whether or not it is on the cursor line.
To do this, index register 2 (which was loaded with a -'40 before the first word was
drawn, and is incremented after each word is finished with) is stored in CPTR. A
'40 is subtracted from ADDX which represents the number of notes that are drawn
before the cursor is drawn and this is compared to CPTR. If they are the same then
the next note to be drawn is the cursor note.

When the cursor is found in this way, a word is input from the shaft position
encoders. The horizontal position from this word is stored in ENC and the vertical
position is MWRD. The cursor is then drawn, with a dot placed at the vertical position
MWRD.

The cursor motion depends on three variables, ENC (present horizontal wheel position)
ENCO (old horizontal wheel position) and IADD (counter). ENCO is compared to ENC. If it
is less than ENC, then the wheel position has been increased by one, and IADD is incremented:;
if ENCO is the same as ENC then no change is made, and if ENCO is greater than ENC,
IADD is decremented by one. IADD is then checked to see if it is less than 2 or greater
than 7. In the former case IADD is decremented and UPTR is incremented, while in the
latter case IADD is incremented and UPTR is decremented. A check is then made to see
if the boundaries of the voice have been reached, and if so a correction to UPTR is
made. IADD is then stored in ADDX, and as IADD is kept between 2 and 7, the note
which the cursor is on is kept between the third and eighth notes (inclusive). Tt is
only when one of these boundaries have been reached that the actual music starts to
move along the screen.

The foot pedals are then checked, and if the right pedal is down, FFLG is set
to a negative number and if the left pedal is down, LFFL is set negative.

KFLG is now checked to see if the button interrupt has been set since the last
check. If it has not, a return is made to the display loop.

If the buttons have been pushed, the action necessary will depend on the flags
MAFL, TFLG, MFLG, DFLG, and NFLG. All these flags are set to a -1 or a 0
depending on the entry that was chosen to the WRITE program. (see chart in Appendix I).
In the case that WRITER has been chosen, the buttons give the duration of the new note,
and MWRD the pitch, and the combination of these make the note word which is stored
at the address given by UPTR (presently the note under the cursor). INSERT calls a
subroutine SPRD which moves all the words from the cursor to the end of the voice
forward one word in memory and then stores the input note under the cursor (UPTR).

- 6.8 -

LOOK AT CURSOR
POSITION

v

STORE Y POSITION

IADD=IADD-1

IN MWRD AND
X POSITION IN
ENC
< ENC?ENCO
| TADD=IADD+1
! R <. }
ENCO=ENC
x UPTR=UPTR-1
Rl IADD=IADD+1
<
— < UPTR=UPTR+1
IADD=TADD-1
Z e l
’
SET FOOT
FLAGS

Figure 15.

e

KFLG=-1

3

(a) Input Processing Routine

> FORM NOTE

-1

OVE ALL WORDS
FTER CURSOR AHEAD

ONE POSITION

INPUT MARKER [

Y

INPUT TEMPO

STORE WORD
IN MUSIC

-1
NFLG ?
y

MOVE ALL WORDS
AFTER CURSOR BACK 0
ONE POSITION

¥

IADD=IADD-1 F—®—— IADD=IADD+1

Figure 15. (b) Input Processing Routine

- 6.10 -

MODIFY, MARKERS, and TEMPO all calculate what they have to store, call
SPRD, and then store their input word under the cursor. Delete also calls SPRD,
but as it has NFLG set, SPRD moves every word after the cursor back one. IADD
is also decremented.

After this has all been done, IADD is incremented so the cursor will end up
on the next word. In the case of DELETE, IADD has already been decremented so the
cursor ends up on the same word.

OTHER ENTRIES

There are two entries to DOLY which do not display any music but use
routines in the program. SET TEMP uses the same routine for translating the typed
TEMPO command as MOD TEMP, but stores the result in SPED instead of in the actual
melody. SPED is the initial default tempo.

PATCH? is a subroutine which uses the WRITER initialization routine to call
DAMEL and TRAN to set up arranged bar line tables for all four voices when it is loaded
by the system. GETTER calls PATCH2 whenever a melody is loaded.

PLAPIC

PLAPIC is a shortened version of DOLY leaving out most of the initialization
and all of the input processing. All of the output is loaded into the external memory to
control the display while the computer is playing music.

When PLAPIC is called, both index 1 and 3 are saved in LIX1and LIX3 respectively.
The initial address is loaded from PLCPIC (pointer to the current bar of the arranged bar
line table) and added to PLBPIC (distance of the first note to be displayed from the beginning
of the bar).

The display loop is then used to write the notes into the external memory. When
the end of the staff is reached, the external memory is reset and activated, and the
number of notes that have been displayed minus 37 is returned in index 2. Index land 3
are reloaded with their original contents from LIX1and LIX3.

DRAMU

Another simplification of DOLY, DRAMU outputs the music to a digital plotter.
When called, it moves the plotter pen to the top of the paper, draws the double staff
and proceeds as in the DOLY display loop. When the end of the staff is reached, a
second double staff is drawn below the first one. After the third double staff has been
completed, the pen is sent to the top of the paper, past the first staff, to start a
new page.

A major difference between DRAMU and DOLY is the absence of character
plotting in the plotter. To compensate for this, DRAMU has to call the program CALCAR
Reference (3) each time a character is plotted.

SLIDER

SLIDER is very close to DOLY. By changing the tables of the cursor lines,
eliminating the sharp signs, enabling the dot to be placed anywhere on the screen

- 6.11 -

and storing the actual position of the dot in each written note you have the SLIDER
program. Everything else in the program is the same as in DOLY.

4 WRITE

This is the most complicated program in the music system, and one that will
be of extreme use when fully debugged and streamlined. An extension of DOLY, this
program displays all four voices on the screen at once. WRITING, INSERTING, etc,
is allowed in any previously chosen, single voice. This chosen voice is displayed in
a different colour; with brighter and larger notes, and with all bar lines and com-
mands. The other voices do not have their bar lines or commands displayed. If LOOK
is chosen the voices that are displayed can be chosen by using the buttons. (Appendix B,
Table 6).

To keep all four voices matched up, and representative of a true picture of
the music, it was necessary to have 4 WRITE write the melodies in their arranged
order. If, for example, the arrangement for a particular voice is 12 1 2 0, the first
two bars will be displayed twice followed by a double bar line.

This program is divided into even more segments for the purpose of documentation
than DOLY was. The additional segments are MESSAGES, the part of the display loop that
is responsible for displaying messages; GOING FORWARD, for advancing through the
music, and GOING BACKWARD, for retreating through the music.

Most data tables in this program are referenced by index 3, which contains a
number between -4 and -1, with -4 referring to VOICE 1, -3 referring to VOICE 2, -2
referring to VOICE 3, and -1 referring to VOICE 4, For example, COLR, 3. containg
the colour information of the four voices. This means that the four memory locations
immediately preceding COLR contain this colour information. The actual memory
location COLR is different and not connected to the contents of COLR, 3. (In this case,
COLR contains the information that is put into COLR, 3 in the case of red notes).

ot 2R

e il — - s e oo~ o rmeent. ot ch- s o 12 = o sa ot er e rmreon 1 ts

TR AT

Figure 16. Music Written Using the 4 WRITE Program

- 6,12 -

INITIALIZATION

When 4 WRITE is loaded, the present red button command is stored in INTZ
and a new command causing a branch to the 4 WRITE list of choices is stored as the
new red button command. When the red button is pressed, the 4 WRITE list of choices
will appear, and the old red button command from INTZ will be reactivated, so that if
the red button is pressed again, the main list of choices will appear. When the program
is loaded, it branches to the LOOK initialization.

As in DOLY when WRITER is chosen, when VOICE 1, VOICE 2, VOICE 3, or
VOICE 4 is chosen, the external addresses TUTAB, TUMEL, THUD, TULUPZ and
TULUP4 have to be reset for the new default voice, and calls are made to DAMEL
and TRAN. The number of the default voice, minus five, is stored in index 2. The
resulting number is a number between -4 and -1. If LOOK is chosen, index 2 is
set to 0.

For all the entries into the program, T is set to a number representing the
entry that was used. Next the colours, size, intensity and spacing of the notes is set
to blue, small, dark, and small respectively, for all the voices. Then the chosen voice
is reset to red notes, large notes, bright intensity, and large spacing. An example of
what is set if VOICE 1 is chosen is shown below.

COLR, 3 BRIT, 3 BRI, 3 XNCR, 3

Colour Scale & Scale & Sharp &
Intensity Intensity Tied Note
of Notes of Sharps Spacing

VOICE 1 COLR(red) BRIT BRI XNCR
VOICE 2 BLUE DARK DAR XNCS
VOICE 3 BLUE DARK DAR XNCS
VOICE 4 BLUE DARK DAR XNCS

If LOOK had been chosen, all the voices would be reset for large bright notes
with large spacing.

DISPLAY LOOP

The most complicated difference between DOLY and 4 WRITE is the display
loop. The notes in different voices have to be matched up vertically depending upon
the total duration between these notes and the beginning of the piece. For example,
in one section of the piece, a note in each voice may start on the 513th 32nd note
into the piece. These four notes will have to be on the same vertical line even
though one might be the 20th note into the piece, another, the 35th note in, etc.

To this end, running totals of "elapsed" 32nd time intervals are stored.

The display loop begins with the drawing of the staff and the branching to the
Interrupt Processing routine (described later in this chapter). On return from this

(PRESS RED BUTTON)

SAVE RED BUTTON IN "INT2®". SET RED
BUTTON TO PINT (ENTRY TO LISTER)

¥
LISTER
V1l |VOICES w2 LOOK RE-
SET MODE #IN "T" START
RES| _ v
: _ v
SET N,NFL,X=0 12=4 12= -1
SET VOICE POINTERS ps
FOR USE OF SUBROU- i—‘ < <
TINES DAMEL, TRAN
NFL=0
N=0Q
i ANT X=0
T=0
DO FOR ALL VOICES
1 N, 3= -1
13= -4
12= N
12=12 +1 !
NO YES
INT +1
13= -4
;_4_1 BEG1
P,3=Bl,3 +1
D1,3=p,3
Cl,3=0
DBL1, 3=0
v
13=13 +1
YES NO
L=0
Y
12=N
13= -4 T 2
v BEG2 + _

Tigure 17,

(a) Initialization

- 6.14 -

l BEG2

COLR, 3=BLUE
BRIT, 3=DARK
BRI, 3 =DAR
XNCR. 3 =XNCS

v

13=13+1

YES NO
NO YES

<l

13= -4

—

BRIT, 3=BRIT
BRI, 3 =BRI
XNCR, 3 =XNCR

YES

-~

Y

COLR, 2=COLR

BRIT, 2=BRIT

BRI, 2 =BRI
XNCR, 2 =XNCR

]

Y

13=13 +1

13=0

Figure 17.

[

TURN ON BUTTON INTERRUPT

¥

DRAWSTAFF

¥

SCAN

BUTTON INTERRUPT PROCESSOR

(b) Initialization

- 6.15 -

POS=INTN

v

Cl,3=D1.3
El,3=Gl,3
Q,3=P,3
DBL2, 3=DBL1 3

H,3=1

v

R=0
H=L

>— NOTA

K=LARGE NUMBER
13=4

,_ino'r

*B=El1,3 -H

J=13
11B ' L.q
118
13=13+1
NO 13=0 YES
?

13=J
_} DRAW

OBTAIN SPACING FOR
NOTE TO BE DRAWN
AND SET COLOR REG.

!

Figure 18. (a) Display Loop

>CHOOSE NEXT

NOTE TO PLOT

TO2

- 6.16 -

POS=

NO
¥ 134014000
LOAD WORD DEFINED BY Cl,3 SCAN
.} -VE
MES1
NO
DRAW A SHARP PLOT DURATION SYMBOL
| le Yy
v LUP
H=El,3
V=0

DRAW CURSOR

Y

El,3=El,3+#OF 32ND NOTES IN NOTE JUST DRAWN

H,3=H,3+1
YES NO
F1,3=El,3
* A_

Figure 18. (b) Display Loop

4

- 6.17 -

routine, the X position is initialized and one of the above mentioned counters, three
pointers, and a flag (C1,3, E1,3, Q,3, DBL2,3, H) are set to their initial parameters
(1,3, G1,3, P,3, DBL1,3, L). The cursor indicator R is then reset to U, and all
H,3's are set to -1. Each time through the display loop, we will have a pointer to

the next note to be displayed in each voice (C1,3), a pointer to the current position

in the arranged bar line (Q,3), the number of elapsed 32nd time intervals up to but
not including the last note that was displayed (H).

The abovementioned data are enough to find the next word to be displayed.
This next word will be the one with the smallest E1,3. If there are two or more
voices that have the same E1,3 and one is the chosen voice, then the note in the
chosen voice is drawn first.

The next thing to be done before the actual note is drawn, is to update the
X position (POS). The difference between H and E1,3 which is the number of 32nd
notes between the last note and the one about to be displayed is found, and a number
proportional to it is loaded and added to POS. In the case of notes with the same
E1,3 as the last one, E1,3 will equal H, and a 0 will be added to POS.

A check is made to see if the end of the staff has been reached; if it has,
the duration up to the cursor is written in the lower left corner, if LOOK was not chosen,
and a return is made to repeat the scan.

If the end of the staff has not been reached, the program is finally ready to draw
the word. When the smallest E1, 3 was found, the voice that contained it was stored in
J, and after J is loaded into index 3, C1,3 will point to the word that is to be
drawn. If the word is not a note or a rest, a branch is made to the Message Pro-
cessing routine described in the next section. If the word is anote or rest, it is
plotted as in DOLY.

After the note has been drawn, the E1,3 of the note is stored in H. R is
incremented if a note was drawn in the chosen voice, and if R reaches 0, a branch
is made to draw the cursor and to store a -1 in Z. This indicates that the cursor
has just been drawn.

C1,3 is incremented and E1,3 must then be updated so that it includes the
number of 32nd notes up to and including the note just drawn. This is done by adding
the number of 32nd notes in the note just drawn to the old E1,3. During the
initialization of the Display Loop a -1 was stored in the H,3's. H,3 is incremented
for the voice that the note which was drawn is in. If it reaches 0, this means that
the note just drawn was the first one drawn in that voice, and the new E1,3 is stored
in F1,3. This F1,3 is used in the GOING FORWARD routine. Z is incremented and
if it reaches 0, the cursor was the last note drawn, and the new E1,3 is stored in Y.
This represents the number of 32nd notes up to and including the one under the cursor.
With everything updated, a branch is made to the beginning of the Display Loop to
search for the next word to be displayed.

Fig.19 shows the plotting of the first eight notes in a melody. E1,3(1) represents
E1,3 for the first voice.

VOICE 1

VOICE 2

VOICE 3

VOICE 4

STEPS

Plot
Plot
Plot
Plot
Plot

S U W =

Plot

- 6.18 -

Edge of
DISPLAY NN1
L~ 1 (@)
G FI
G, 5
NN 5
~ 3 F3 <
G3
N4 NRq
N -
(e Ny T3
N - first displayed note of voice
NN - second displayed note of voice
Gl,3 - No of 32nd time intervals up to but not
including lst note on display
L - smallest G1,3
F1,3 - no of 32 time intervals up to and
including 1lst note on display
Figure 19. Plot of 1st 8 Notes of a Melody
N1 H=E1,3 (1) F1,3 (1)= E1,3 (1)=E1,3 (1)+duration of N1
N2 H=E1,3 (2) F1,3 (2)= E1,3 (2)=E1,3 (2)+duration of N2
N3 H=E1,3 (3) F1,3 (3)= E1,3 (3)=E1, 3 (3)+duration of N3
NN2 H=E1,3 (2) E1,3 (2)=E1, 3 (2)+duration of NN2
N4 H=E1,3 (4) F1,3 4)= E1,3 4)=E1,3 (4)+duration of N4
NN1 H=E1,3 (1) E1,3 (1)=E1,3 (1)+duration of NN1

- 6.19 -

MESSAGES

The message routine deals with bar lines, double bar lines, commands, tempo
and markers. To avoid confusion, these are drawn on the screen only if they are in
the chosen voice. In the case of a message which is not a bar line and not in the
chosen voice, C1,3 is incremented and a branch is made back to the display loop
to load the next word in the same voice. This return point in the display loop is
the only return point that the message routine uses.

The processing for a bar line is relatively the same whether or not it is in
the chosen voice. If it is in the chosen voice, it is drawn on the screen, and POS
is raised slightly. A check is then made, whether or not the bar line is in the chosen
voice, to see if the double bar line flag DBL2,3 is set. If it is, C1,3 is incremented
and a return is made to the display loop. If DBL2,3 is not set, the arranged bar line
pointer, Q,3 is incremented. Q,3 will now either point to a spot where the address of
the first note of the next bar is contained, and in this case, this address is loaded
into C1,3 and a return is made, or Q,3 will indicate that a double bar line or the end
of the melody has been found. In this case C1,3 is simply incremented by one before
the return is made.

To reduce the gaps in the music caused by several messages in a row, the
message routine deals with the actual commands very differently than DOLY. The
2nd to 6th TEMPO and MODIFY commands in a row are written directly beneath the
first one so it is possible to have a stack of 6 commands written in a vertical row.

When a MODIFY command in a chosen voice is encountered, the program
obtains the necessary alphanumeric data from the external message table, MEST.
Similarly, if a TEMPO command is found, the alphanumeric value is computed using
SPBTA and DELEZE. In both cases a check is made on V (the stacking up pointer). If
V is 0, the MODIFY or TEMPO command is plotted right under the staff with no change
in X position. After the command is plotted, the X position is incremented by the value in
NCR, Vis set to -1, C1,3 is incremented by one, and a return is made to the Display
Loop. If V was not 0, the command will have to be plotted under the last command. The
Y position is decremented by YNME once for every command already in the stack. For
example, if V = -3, 3 commands are already in the stack, and the Y position must be
decremented by YNME 3 times, and the X position is decremented by NCR, before the
message is plotted. If V has reached -6, it is reset to 0, otherwise it is decremented
by one. NCR is again added to POS (X position) so POS is the same after this last
plot as it was after the last message was plotted.

V is also set to 0 whenever a note, rest, bar line, marker or cursor note
is found. Even in the messages, R is incremented before the plot of a chosen
voice message, and if it reaches 0, V is set to 0 and the cursor is drawn. In this
case the present E1,3 is stored in Y and Z is not set to -1.

- 6.20 -

MELS NO N—J=0 YES
R=R+1
NO ON YES YES NO
A BAR -
LINE
DRAW CURSOR !
MES7 -
4
Cl,3=Cl,3+1 SOME COMMANDS TO DISPLAY
e YES R gin NO MES4
MEl?7 ¢ LINE
YESAz,a- NO
?
4 Q,3=Q, 3+1
Cl,3=Cl,3+1
NO
v
YE UPDATE Cl,3 WITH Q,3

J=I3

NO N-J=0 YES
?
XFLG=0r X=0
Y

<

DBL2,3=0; Cl,3=Cl,3+1

2

. -
£

i

V=0
MES2
YES NO
’ :
PLOT BAR LINE DPRA2
L > >

Figure 20. (a) Messages

- 6.21 -

—

OBTAIN DATA
FROM MESSAGE
TABLE § MEST

3

OBTAIN DATA
RELATING TO TEMPOS
STORE IN "SAVE"

&

XFLG=0
X=0

CHARACTER DATA
STORED IN SAVE
¥w=0; SET X,Y

COORDINATES
v
Y MEss
Yes =0 NO
?
v
A='15736
MES3 12=U
4
#p= *A-YNME
I2=12+1
a
NO YES
v 4
POSA='15736 POSA=*A
v

Figure

20. (b) Messages

NO

- 6,22 -

*A=POS

*A=POS-NCR

L

t

>y
-

*B = #3

V=v-1

—

=*:

POS=*B+NCR

Y

X POSITION=*B
Y POSITION=POSA

ME56

-

[

PLOT 4 CHARACTERS
WITH DATA IN SIZE

1

Cl,3=CL,3+1

Y

DRA2

Figure 20.

(c) Messages

- 6.23 -

(a) (b)

~—~-CUuXsox

A

/)

edge of
display

M1 M3 M9 M2 4 M10

M2 M4 M10 M3

-
~N O
2=
Q0 3

I e e P NS
=
6,1
2R
o O

=
w
=
O

(3)

. M3
M4

22 =
q o0 w!m

2=
o ®

M10O

Figure 21, The cursor position lies on the 1st message directly below it.
Each successive picture shows the result of the cursor moved
one step forward.

- 6.24 -

The effect, though, of setting V to 0 for the cursor is that the cursor
"points'" to the top message in the stack. See Fig.

For marker messages, the letter is plotted, and Vis set to D. If we are
in LOOK and the X position of the marker is zero then all movement flags are
deactivated and the marker is plotted.

INTERRUPT PROCESSING

When a button is pressed, an interrupt is enacted as in DOLY, which
stores the contents of the keyboard register in BUTA and sets the keyboard
flag, KFLG, to 0 and then returns. At the beginning of the Display Loop, just
after the staff is drawn, a branch is made to the Input Processing routine. If
KFLG has not been set to 0 since the last time the Input Processing routine
was used, a branch is made to INPT, the second half of the routine.

If the keyboard flag has been set, there are two possible courses of
action depending on whether or not LOOK was last chosen. If something other
than LOOK was last chosen, then the buttons will be interpreted as a WRITE,
INSERT, DELETE, MODIFY, TEMPO or MARKERS input command and the
data in the voice is changed as it would be in DOLY. A branch is then made to
INPT.

If LOOK had been the entry to the program, a check is made to see if
any of the voice selection buttons are set. (Appendix B, Table 6). If they are,
a negative integer would be stored in N, 3 for the chosen voice. If only one voice
was chosen, N would be set to that voice, otherwise it is set to 0.

If none of the voice selector buttons had been chosen the palm and thumb
buttons are checked. If the thumb button alone is pressed, forward motion is in-
dicated, if the palm button alone is down, backward motion is indicated and if
both buttons have been pressed, all motion is cancelled. X and XFLG are set to
correspond with the choice selected. N is then checked, and if it is 0, more
than one voice is being displayed, and the motion is cancelled so X and XFLG
are set to 0. All cases are followed by a branch to INPT.

INPT, the second part of the Input Processing routine, first checks the
value of X. If X is -1, a branch is made to the Going Forward routine and if
X=+1, a branch is made to the Going Backward routine. If X = 0, the shaft encoder
word is checked. The Y position is stored in POSB for use by the cursor drawing
routine as the Y position of the dot and a translated version of the Y position is
stored in MWRD to be used as the pitch of the dot. The horizontal wheel position is loaded
into ENC and if it differs from the old position, (ENCO), a branch is made to the Going
Forward routine or the Going Backward routine, depending on which way the wheel was
turned. If ENC = ENCO, a branch is made to start the display loop.

GOING FORWARD

The purpose of the block of instructions labelled Going Forward is to find the
first word that is displayed on the screen and, by advancing the voice pointers, move
the displayed segment of music forward so that this note is no longer in this segment.

SELECT MODE
FROM T AND
VOICE FROM N

Y

WRITE, INSERT,
DELETE, ETC. INTO

THE MELODY
(SEE DOLY)

PEPS.]

USING BUTA, PLACE A
NEGATIVE VALUE IN
N,3 IEF A VOICE HAS
BEEN SELECTED
OTHERWISE POSITIVE

Y Y

IF MORE THAN OAE
VOICE IS SELECTED
THEN N=0, OTHERWISE
N REFLECTS A

CHOSEN VOICE

~i -
Ll L

- 6,25 -

SET INDEX
REGISTERS

X=XFLG=1 IF PALM BUT. SET
X=XFLG=-1 IF THUMB BUT. SET

XFLG=0
X=0

NO YES

X=0
XFLG=0

D—;—d

INPT

Figure 22. Interrupt Processing

LOAD WORD DEFINED
BY D1,3=*A

- 6.26 -

H='37777777

D1,3=D1,3+1

¢

NOTE

P,3=P,3+1 #B=WORD
DEFINED BY P,3

D1,3=*B

NO DOUBLE YES
BAR LINE LEF6
DBL1, 3=0
D1,3=Dl, 3+1
|

NOTE

Figure 23. (a) GOING FORWARD

3

- 6,27 -

Figure 23,

h J
3= -4
LEF1
LEF2
L?2Gl,3 >
NO LEF3
*A= WORD DEFINED BY DI, 3
YES
| o13-p1,3+41 | | ob1,3=p1,34+41 |
LE35+1
2
LOAD WORD DEFINED BY DI,3
?
v Y
et e 4
<
P,3=P,3 +1
v
’B=WOgD3DEFINED BY
LEF5
| psLl,3=0 | | b= |
<] T :
v
v
T03

(b) GOING FORWARD

- 6,28 -

EFROM 2
Gl,3=F1,3
LEF2
< >
H=GL, 3
13=13 +1
YES 13=0 NO
?

NO

0]

X=1

NOTE

Figure 23, (c) GOING FORWARD

- 6.29 -

Following through the actual programming, the first thing the routine does
is to check which note the cursor is on. If it is not on the third note yet, it is
moved forward and a return is made to the display loop.

Next a check is made to see if the chosen voice contains a message or a
bar line at the beginning of the display. If there is a message, D1,3 is incremented
and a return is made. If there is a bar line, DBL1,3 must be checked to see if a
double bar line has been passed. If it has,D1,3 is incremented and a return is made.
If the double bar line is yet to come, P,3 is incremented, and if this does not in-
dicate a double bar line, the contents of the address in P, 3are stored in D1, 3 before
the return. If a double bar line has just been reached, DBL1,3 is set to 0, D1,3
is incremented and a return is made.

If neither of the aforementioned possibilities were the case, a search has
to be made for the words at the beginning of the display. These are the words
with the lowest G1,3's and these G1,3's = L. Each voice is checked in turn, and
if it is found that G1,3 # L that voice is not touched, and the next voice is checked.
When a voice is found that has a G1,3 equal to L, the voice is checked to see if it
was the chosen voice. If it is not, D1,3 is checked to see if it points to a note or
rest. If it does, D1,3 is incremented, F1,3 is stored in G1,3 and the next voice is
checked. If D1,3 points to a bar line, Q,3 is incremented and D1,3 is set to the
contents of Q,3 if the double bar line flag is not set, or if a double bar line is en-
countered, D1,3 is simply incremented and the double bar line flag is set. If the
double bar line flag was set to begin with, D1,3 is simply incremented. If D1,3
points to a command or marker, it is incremented. In both cases, D1,3 pointing
to a bar line, or D1, 3 pointing to a command or marker, a branch back is made
so the new D1,3 will be checked. In this way, D1,3 will be incremented until it
has been incremented past a note or rest. F1,3 is then stored in G1,3 and the next
voice is checked.

If G1,3 = L for the chosen voice, D1,3 is simply incremented by one, F1,3
is stored in G1,3 and on to the next voice.

When all the voices have been checked the smallest G1,3 is found and stored
in L. If the drift mode is on, XFLG#0, a return is made to the Display Loop.
Otherwise, a check is made to see if the G1,3 of the chosen voice is equal to L. If
so, a return is made to the Display Loop, and if not X is set to -1 before the return.
This -1 in X will cause a branch to the Going Forward routine after the next time the
staff is drawn. This will cause the music to keep going forward until a note from the
chosen voice is at the left edge of screen.

GOING BACKWARDS

When the computer is moving back through the music, the notes before the one on
the screen have to be checked. The first such check is in the chosen voice by decrementing
D1, 3 and seeing if it points to a message. If it does, a return is made to the display loop,
and if it does not, D1, 3 is incremented back to its original value.

AsE1,3 and C1,3 are not being used at the moment, and will be reset at the he-
ginning of the next Display Loop, the present values of D1, 3 and P, 3 are stored in them

so they may be altered without losing the original values of D1,3 and P, 3.

- 6,30 -

NO N=0

D1,3=D1,3 -1

13=N

v

YES RTO5

LOAD WORD DEFINED BY D1,3

INE ¢ »|A NOTE lCOMMAND

D1,3=D1,3 +1

NOTE

et v

K=0
13=-4

I B RIT1

EL,3=D1.3
cL,3=p,3
RT11
<
s > 2
El,3=E1,3 -1
¥
LOAD WORD DEFINED BY EL,3
NGTE OR REST
El,3=El,3 -1
DOUBLE
BAR LINE
? .
T13-2
I EL,3=#Cl1,3 DBL1, 3=-1
RES RT13 | —
y
| Er3=e1,3+41 | | e13=m1.3+1 |
I .
LOAD WORD E1,3
<l y *———1?.
A BAR LINE OTHE
T02
Figure 24. (a) GOING BACKWARD

- 6,31 -

FROM 1 t
<NOTE OR REST | §

\

MASK OFF # OF 32ND NOTES
SUBTRACT IT FROM Gl,3 STORE IN H,3

> s RT15
H,3?2K &= ‘
K=H,3 I3=I3+1
v .
NO
RIT4
v
I3=T3+1
YES

NO YES

X=1 X=0

NOTE

Figure 23. (b) GOING BACKWARD

- 6.32 -

The next segment of the routine is a loop which is repeated for each voice. This
loop finds the note or rest previous to that displayed on the screen. E1,3, which was
set to equal D1, 3, is decremented and the word it points to is loaded. If this word is
a command, a branch back is made to decrement E1, 3 again and load the previous word.
If the word is a bar line and the double bar line flag is not set, C1,3 is decremented to
give the address of the first note of the last bar. If the 1st bar was already being dis-
played, the cursor position is decremented and a branch is made to reset all the
pointers. If the first bar is not yet being displayed, the bar before the first one on
the screen is scanned through to find its end and the address of the bar line at the
end of the bar is stored in E1,3 and again a branch is made to decrement E1,3 to
check the word before the bar line. If the double bar line has been set, and an E1,3
pointed to a bar line, the word previous to the bar line is checked. If it is not a bar
line, a branch back is taken so the word will be checked as the other words were,
but, if there are two bar lines in a row, the double bar line flag is put back to -1,
and a branch back is made so that the first bar line will be treated as a normal
bar line. E1,3 will be continually decremented in the above manner until a note or
rest is found. When one is found, H,3 is set to G1,3 minus the duration of this
note or rest. The largest H,3 is stored in K.

When all four voices have been checked, K contains the largest H,3, and any
voice where H,3 equals K will be one that is changed. This change will store the E1, 3
that was used in the routine in P1,3 and C1,3 will be stored in P,3. K will contain
the number of 32nd notes up to but not including the first note displayed and therefore
will be stored in both L and the G1,3's of the changed voices.

As in Going Forward this routine finishes off by setting the flag X if a note
from the chosen voice, if there is a chosen voice, is not the first note to be displayed.
This flag will cause a call to Going Backwards each time the Input Processing routine
is called.

- 7.1 -

VII. SYSTEMS PROGRAMS

The programs in this chapter are those that are loaded with the music system.
They are, on the whole, very short simple programs and can be described in a few
sentences each. The descriptions of the programs are in the order that the programs
are stored in the computer. The actual memory locations of the programs are given
in Appendix A.

KLOK

This subroutine increments index register 2, and sets IFLG to D when register
2 becomes 0. It is used for 1ST PLAY, 6TH PLAY, 7TH PLAY, 8TH PLAY, and
10THPLAY,

LOOK

LOOK contains the NEXTPAGE list of choices (see Chapter 4) and either an
external branch, or the actual programming for each choice. The four choices that
deal with inverses and transposes are in LOOK. If one of these is chosen, two flags
are set up. CFLG is set to -1 if a diatonic invert or transpose is chosen, and is
set positive if a chromatic invert or transpose is chosen. FLG is set negative in the
case of an invert, and positive in the case of a transpose.

The number of semitones of the requested transpose is then loaded into KOW,
or in the case of an invert, the number of semitones that the chosen note is above
low C is stored in KOW. Then if CFLG is positive, the pitch is loaded for each
note and this pitch is used to load the number of semitones that the present pitch
is above low C. This value, the number of semitones, is stored in a table. A cal-
culation is then performed to obtain the number of semitones that the transposed or
inverted note is above low C, and this value is used to obtain the new pitch value
from a second table. The idea behind the diatonic operation is the same, only different
tables are used so that the notes end up on members of the diatonic scale. This pro-
cess is repeated for every note in the melody.

LOOK also contains a couple of reverse routines, one reverses the first '2000
words of the envelope REV ENV)and the other reverses the melody (RETROGRD). Both
of these load the beginning and ending addresses of the data table to be reversed, (the
address of the double bar line in the case of RETROGRD) and then branch to a subroutine
that does the actual interchanging.

SPDTA, DELEZE

These are two general systems programs (as opposed to music system programs).
SPDTA changes numbers from binary to decimal and DELEZE [Reference 9) deletes lead-

ing zeroes. For example, if a tempo command of '00000113 was to be displayed on the music
SPDTA would change the number to the decimal characters 0075, and DELEZE would

delete the zeroes to make it 75.

-7.2 -

GETTER

As mentioned before, data sets of different types are stored on disc.
GETTER is the little program that is called when GET is chosen from the
main list of choices. It enables the user to choose a data set and will then
check the code of the chosen data set, and load it into the memory location
that corresponds with the code (see Appendix E). If a melody has been loaded,
a call is made to PATCH2 in DOLY to sort out the bar line tables for each
voice. If envelope parameters were loaded GENTAB the subroutine which
generates the actual envelope from the parameters is called. After all the
necessary calls are made the data set is executed if it is a program, otherwise
a branch is made to the sound generator. To fully understand GETTER and
the next program, DUMPER, it is necessary to read and understand the program
description of D$STOR Reference (2)

DUMPER

Choosing PUT AWAY from the main list of choices enacts the program
DUMPER. This program then presents the user with a list of choices, each
choice being a different type of data set that can be stored on the disc. After
a choice is made, the data set is stored with an appropriate code (see Appendix E).

In the case of the melodies, the data set that is stored ends at the first
double bar line. For example, if the user chose to store 2 VOICES, the data set
that is stored would extend from '14457 (the beginning of the melody) up to and
including the first double bar line in VOICE 2, or if there were no double bar
lines, the melody would be stored up to the end of VOICE 2 ('17204).

RHYTHM

The percussion is controlled by the contents of the first eight bits of a
word output. Each bit represents a percussion instrument, and if the bit is one,
the instrument is sounded. There is a table which has a percussion control word
for every natural pitch value, i.e., if the percussion is on, and middle C is
played, the word corresponding to middle C (which happens to sound the bass and
tambourine) is loaded, and a call is loaded to RHYTHM. RHYTHM outputs the
word to the percussion generator, waits about 700 microseconds, clears the per-
cussion generator, and returns control to the sound generator.

ARRAN

ARRAN is given control when ARRANGE is chosen from the main list of
choices. It takes the address in THUD (the address of the top of the arrangement
table), subtracts 79 (the length of the table), and then calls I$SDECR Reference (9),which
allows the typing of numbers into the arrangement table. A call is then made to
DAMEL and TRAN (see below) and the control is returned to the sound generator,

I$DECR(7)

This is a general systems program. It translates ASCII decimal character input
from the typewriter into binary numbers and stores it in the arrangement table. All
non-numeric characters are eliminated but serve as numerical delimiters.

- 7.3 -

DAMEL/TRAN

The arrangement table consists of the numbers typed in after ARRANGE has been
chosen. DAMEL is called to make another temporary table (PTBL) which contains the
addresses of the first note of each bar in sequential order.

To do this, DAMEL first enters the address of the first note in PTBL, then it
scans through the music looking for bar lines. When the first bar line is found, the
address of the note after it is stored in PTBL+1, the address of the note after the second
bar line is stored in PTBL+2 and so on. When a double bar line or the end of the music is
found, the word '40000000 is stored in the table to indicate the end of the table. A call
to TRAN always follows the call to DAMEL. TRAN uses the arrangement table and
DAMEL's sequential order bar line table to rewrite the bar line table that is used by
the sound generators. This table contains the addresses of the first note of the bars
in arranged order, that is, the order that was typed in under the ARRANGE choice.
TRAN takes each element of the arrangement table, uses it to find the corresponding
element of the temporary table, and stores it in the final bar line table. For example,
if the arrangement table contained the numbers 1 3 4 2 7 0, TRAN would load the
address in PTBL (the first note of the first bar) and store it in the first member of
the bar line table, the address from PTBL+2 which is the address of the first note of
the third bar would be stored in the second member of the bar line table, PTBL+3 in
the third member, then PTBL+1, PTBL+6 and finally PTBL-1 which is the number
40000000 and indicates the end of the melody. If the melody had had a double bar line
after the third bar, PTBL+3 would have had a '40000000 which would have been stored
in the third member of the bar line table to indicate the end of the piece. ARRAN,
DAMEL, and TRAN only work on the current voice. They all have memory locations
which store outside addresses, like the addresses of the bar line table and the starting
address of the music, and these memory locations are externally referenced so that
they may be changed when a different voice is chosen.

FORM

FORM, FORM1 and FORM2 are the entries to the program that display the
3 waveforms and accept modifications to them from the tablet. The three entries are
for the three waveforms. The program is in three segments, one segment displays
the waveform, the second changes the data in the waveform if the tablet is being used,
and the third clears the waveform by storing - '40000000, in every point of the

waveform.

The first segment uses an index register to load successive points of the wave-
form to display them. Until it is interrupted, it is a continuous loop. When the tablet
pen is placed on the tablet, an interrupt activates the second segment of the program. An
input word from the tablet is read, and if the clear button has been pushed, this word will
be negative, and a branch will be made to the 3rd segment of the program.

If the input word is positive the Y position of the tablet pen is stored in a word in
the waveform table, the X position of the tablet deciding which word is the table. The
last or '2000th word of the waveform table has the greatest X which is '2000. A
branch is then made back to the first segment of the program.

AMEL

INITIALIZE

794

SCAN
MUSIC

LOOK AT
NEXT
ELEMENT
BUT
Y ADDRESS IN
PTBL TABLE
v
PUT
m FULL ?
MEL LIST

Figure 25, DAMEL

- 7.5 -

DYNA

DYNA is the program that generates, modifies and controls the envelope. It
has three entries, all from the NEXTPAGE list of choices, SEE ENV which displays
the envelope and allows modification, GENTAB which generates the envelopes from
the parameters and then branches to SEE ENV and TRANSFRM which combines WAV1
with the envelope, and then branches to SEE ENV. DYNA also contains 2 tables, NENVT
which is the table of the seven envelope parameters, and ENVT which is the '5000 word
long envelope table.

The principle behind DYNA is to allow the user to create a smooth curve to control
the amplitude of the individual notes. Elaborate envelopes could be drawn into WAV2 and
copied into the envelope table using COPY, but these curves are normally too rough. DYNA,
though, allows 3 smooth curves, an exponential attack, and two exponential decays to be
entered into the envelope. The rate of these attacks and decays are parameters, and as
such, can be changed by the user. The other parameters that are user-controlled are the
initial amplitude of the envelope (starting level), and the beginning addresses of the
attack and the decays.

On entry to DYNA, the red button command is changed so that pushing the red
button will cause a branch to INTP in DYNA. The user is then presented with a list
of choices including the word GET, and the six envelopes. There is a table of envelope
parameters associated with each envelope, Choosing one of the envelopes, moves these
parameters into the main section of the program so that they may be modified. A
branch is then made to the display routine. If GET was chosen, no change takes place
in the parameters in the program, so GET is a direct branch to the display routine.

Later, when the red button is pushed, the parameters in the main section of
the program are restored in the parameter table of the last chosen envelope. The
original red button command is then executed.

As in FORM, a segment of the program displays the first '2000 words of the table
on the CRT. After each of the '2000 points has been plotted, a check is made to see if
the left foot pedal is depressed. If it is not, a return is made to display the envelope
again.

If the foot pedal is down, a subroutine is called. This subroutine checks the
shaft position encoder (the horizontal wheel) and if it has been changed significantly, a
small addition or subtraction is made to the parameter that was last chosen. (The
buttons are used to choose which parameter is to be modified).

As one of the parameters may have been changed, a subroutine GEN has to be
called before a return can be made to the display segment of the program. GEN takes
the starting amplitude (S) and stores it in successive points of the envelope until it
reaches the beginning point of the attack curve (D1) or one of the decay curves (D2)
or (D3). If D1 was reached first, the amplitude that is stored in the next set of points
is calculated by multiplying the difference between the present amplitude, CAMP, and
the maximum possible amplitude, by the attack rate K1 which is a number just short of 1.
The result is subtracted from the maximum amplitude and stored in CAMP. This is re-
peated until the beginning address of the first or second decay is reached (D2 or D3).
If D2 is reached first, the amplitude is multiplied by the first decay rate, K2, another
number just short of 1. This exponential reduction of the curve continues until the

706

INITIALIZE
PLOT

ANO

HAFT ENCO

DEREgggELS -
G

YES

———

CHANGE THE PARAMETER
LAST CHOSEN ON BUTTONS

PLOT A POINT

— —a

Y

CREMENT
POSITION

INITIALIZE POSITION,
CAMP=S

Y— <

STORE CAMP IN ENVELOPE

v 4

INCREMENT POSITION

CAMP=MAX - (MAX~-CAMP) K1

Y

STORE CAMP IN
ENVELOPE

Y

INCREMENT POSITION

Figure 26, (a) DYNA Envelope Control

ng

=77 -

FROM 1
8 - STARTING AMPLITUDE
< CAMP - CURRENT AMPLITUDE
Kl - ATTACK RATE
K2 - PIRST DECAY RATE
K3 -~ SECOND DECAY RATE
Dl - BEGINNING ADDRESS OF
ATTACK
D2 - BEGINNING ADDRESS OF FIRST
DECAY
D3 -~ BEGINNING ADDRESS OF SECOND
INCREMENT POSITION ' DECAY
KLIM - ADDRESS OF °2000th WORD
* OF THE ENVELOPE.
NB - D1 AND NOT KLIM REACHED?
MEANS THAT IF Dl HAS BEEN
! REACHED, BUT KLIM HAS NOT
BEEN REACHED, THEN TAKE
THE YES ARROW
CAMP=K3 (CAMP)
Y
STORE CAMP IN
ENVELOPE
Y
74
1_
£

Figure 26,

(b) DYNA Envelope Control

- 7.8 -

beginning address of the second decay, D3, is found and then the second decay rate
K3 is used. This causes the envelope table to be filled with the appropriate values.
The flow diagram is for the specific case where the starting points for attack and
decay curves are in the order D1, D2, D3.

When GEN reaches the '2000th word of the envelope, it deactivates any
starting addresses that are left so that the last '3000 words do not have a change
in attack or decay rate in them.

TRANSFRM takes every point of the envelope, and it with the corresponding
point from WAVI.

GENTAB branches to the GEN subroutine before it starts displaying the en-
velope so it would overwrite any change made using TRNSFRM.

In the monophonic sound generators, the rate of progress through the envelope
is controlled by a real time clock. A knob beside the CRT controls the frequency of this
clock interrupt. If the clock interrupts, say '500 times during a quarter note, only the
first '500 words of the envelope will be used when quarter notes are being played. If set
switch 1 is up, the number of interrupts per 16th note is counted every time the
envelope is displayed. This number is multiplied by 4 to give the number of interrupts
per quarter note. An arrow is placed on the screen when the number of points plotted
equals the number of interrupts per quarter note. This arrow points to the end of the
envelope segment used when a quarter note is played. As calculating the position of
the arrow takes time, and slows down the display rate, it can be turned on or off. It
is on only when set switch 1 is up.

- 8.1 -

VIII. OVERLAYS

It was found that musicians desired more capabilities in the system than it
was possible to store in the computer at one time. For this reason, a series of
overlay programs were written. These are programs that are loaded on top of and
replaces something else. For example, sound generators are all overlay programs;
when a sound generator is loaded, it replaces the sound generator presently in the
system.

Most overlay programs are loaded on top of the waveform tables. After these
programs have been loaded, they can be used again without reloading by choosing BRANCH
on the NEXTPAGE list of choices for a program beginning in WAVE1, or choosing copy
for a program inWAVE 3. Appendix A contains a chart of all the overlay programs and
where in memory they are loaded.

COPY

COPY was designed primarily to move data from one area to another area in
core. COPY has its own list of choices, the first four of which are responsible for
copying parts of the melody to the end of one of the voices. For example, if the
cursor was left in the first bar of VOICE 1, and COPY ALL was chosen, the com-
puter would search for a double bar line in VOICE 1, and when it is found, the
address of the second bar would be stored in FROT. If a double bar line did not
exist, the address of the first note of the voice would be stored in FROT. In any
case, the address of the first note in the voice is also stored in FROM. Af ter this
initialization has been done, a list of the four VOICES is presented on the screen.
If, say, VOICE 2 was chosen, VOICE 2 would be scanned for a double bar line., If
there was one before the end of VOICE 2, the address of the second bar line is stored
in DEND, if not, the address of the beginning of VOICE 2 is stored DEND. Now the
computer has the beginning and ending address of VOICE 1, (FROM and FROT) and
the address of the end of the present melody in VOICE 2 (DEND). The transfer
subroutine is called, and a word of the melody is copied from FROM to DEND,
FROM and DEND are incremented, FROM is checked to see if it is equal to or greater
than FROT, DEND is checked to see if it is equal to or greater than the address of
the end of VOICE 2, and if neither of these is the case, the next word is copied
from address FROM to address DEND. When FROM does reach FROT or DEND
reaches the last address of VOICE 2, a double bar line is placed at the end of VOICE 2.
A call is then made to DAMEL and TRAN and a branch is made to the WRITER program.

The other 3 choices are all very similar. If COPY BAR had been chosen, the
address of the beginning of the bar that cursor is in is stored in FROM, and the address
of the end of the bar is stored in FROT. The rest is the same as COPY ALL, C TO
END puts the address of the note where the cursor was left into FROM, and the address
of the end of the piece is FROT (as in COPY ALL). Again the rest is the same as
COPY ALL,

C ARRANG does everything that COPY ALL does, but it also copies the arrangement
table from the initial voice to the chosen voice,

STORE ADDRESS OF
2nd BAR LINE
IN FROT

1

- 82 -

AFLG = -1

STORE ADDRESS OF
OF BEGINNING OF
VOICE IN FROT

Y

STORE ADDRESS OF
END OF ARRANGEMENT
IN ARR2

f_
MAKE CHOICE
FROM LIST
C ARRANG OF CHOICES c TO END
copy ALLJ YCOPY BAR
2 3
AFLG=0

STORE ADDRESS OF
BEGINNING OF
MELODY IN FROM

STORE ADDRESS
OF NOTE UNDER
CURSOR IN FROM

STORE ADDRESS OF
END OF BAR IN
FROT

y

STORE ADDRESS OF v
BEGINNING OF
BAR IN FROM

Y

CHOOSE VOICE TO
COPY INTO

STORE ADDRESS OF
2ND BAR LINE IN
DEND

1

STORE ADDRESS OF
BEGINNING OF NEW
VOICE IN DEND

B

3

Figure 27. (a) COPY

- 83 -

STORE ADDRESS OF END OF
ARRANGEMENT TABLE OF
NEW VOICE IN ARR 3

!

COPY FROM FROM
TO DEND

Y

FROM = FROM+1
DEND = DEND+1

NO

0

COPY TABLE PRECEEDING
ARR2 TO AREA

PRECEEDINKG ARR3

—

CALL DAMEL
AND TRAN

BRANCH TO
DOLY

Figure 27. (b) COPY

- 8.4 -

Next on the COPY list are three choices that copy data from the waveform tables
to the first '2000 words of the envelope table and back again. These choices are
WAV1>ENV, WAV2>ENV and ENV >WAV2. Copying from the one table to the other
involves a slight translation (see Chapter 3).

Next we have AUGM BAR and DIMN BAR standing for augment bar and diminish
bar. If one of these is chosen, the duration of every note in the bar where the cursor
was left is multiplied by two (for augment bar) or divided by two (for diminish bar).

The last two choices on the COPY list are branches to two other overlay programs
that are loaded with COPY. Choosing KEY SIG branches to the program KEY SIG, and
SAVE IT branches to the program DUMPO.

KEY SIG

The purpose of the KEY SIG program is to scan through the melody, and add
accidentals to all the notes that normally have accidentals in a specified key signature.
For example, if the key of B is chosen, all the E's in the melody will be changed to
D sharps (as there is no facility for flats) and all the B's will be changed to A sharps.

The KEY SIG program has two tables that are used. The KEY table contains a
word for each of the 12 possible key signatures. The first bit of the word states whether the
key has sharps or flats. Each of the next seven bits represents one of the 7 notes from C to
B. If one of these bits is 1, the note that it represents needs to be changed, and if a bit is
0, the note will not be changed. For example, the first eight bits of the E key signature
word are 011 011 00, the first zero indicating that it is a sharp scale, the second bit
indicating that C's will be changed to C sharps, the third bit indicating that D's will
be changed to D sharps, etc.

When KEY SIG is loaded, it sets up the second table. This table is 32 words
long and is initially set to contain the integers (15 bit) in sequence from -11 to 20.
These are the numbers that represent the natural pitches. A list of 12 different key
signature choices is then presented, and after choosing one of the numbers of the
table that represent notes that are not to be changed are set to -1 (24 bits). The table
now contains only the numbers representing the pitches that are to have accidentals
added. The melody is then scanned through, with the pitch of every note checked against
those in the table. If it is there, a '37 is added to the pitch for a flat or a '40 is
added for a sharp (see Appendix D). After this is done, a branch is made to DAMMU.

DUMPO

DUMPO is the same as the systems program DUMPER except that different data
sets are stored on disc (see Appendix E).

AUTOSAVE and -SAVE IT

These programs enable the dumping of file 13 (AUTO SAVE) or individual
melodies (-SAVE IT or ADBOT) on magnetic tape. These are systems programs for the Whole
computer system and are documented in the DSS Program Library (1147 and 1148).

- 85 -

TUNER (12)

Each of the sound generators contains a table containing a member for each
pitch. In the monophonic sound generators a number from the table is stored in
an index register which is then counted down to 0 to time each step of the wave-
form. The number in this table is X where

C/1.75

X= B

- A J-D

C is the length of the period in microseconds, 1.75 microseconds is the cycle
time of the computer, A is the number of computer cycles in the initialization
of every period, B is the number of steps in the waveform, and D is the time
of the output.

In the polyphonic sound generator, a number from the table is added to
a memory location every time through the play loop causing this memory location
to .alternate between positive and negative. Therefore this number X, depends on
F, the number of cycles in the play loop, C, the number of microseconds in the
period and '80,000,000, the number that must be added to the memory location
during one period. X = ('80,000,000) F .
C

The TUNER program was written so that a new table could be placed in the
sound generator that would produce a different set of pitches, The program consists
of an assembly language main program callinga FORTRAN subroutine. When TUNER isloaded,
the assembler part of the program presents the user with a list of sound generators.
After one of these is chosen, a choice has to be made between tempered and
equitempered scales. If a tempered scale is requested, a base frequency is typed in
by the user. The FORTRAN subroutine then takes over, and calculates the pitches
based on the base frequency and the tempered scale for C.

If an equal tempered scale is chosen, the typewriter prompts for a base
frequency, and the number of intervals per octave. The computer then cal-
culates the true pitch table using the formula C x 2A/TONE where C is the base
frequency, TONE is the number of intervals per octave, and A is the number of in-
tervals from the base frequency.

After the true pitch table is calculated in both the cases of tempered or
equitempered scale, the table for the sound generators is calculated using one of the
formulae given previously. This table is overlaid on the old one inside the sound
generator.,

NEW ENVL

NEW ENVL is a program that writes a Gaussian distribution curve repeatedly
in the envelope. The horizontal shaft encoder wheel controls the width of the curve
and the vertical wheel controls the amplitude. For example, if the horizontal wheel
was set so the curve was '50 words long, the curve would be repeated '100 times in
the '5000 word long envelope.

- 8.6 -

When the program is loaded, the present envelope is stored in the external
memory. A list of four choices, ENVEL 1, ENVEL 2, etc., is then presented on
the screen.

ENVEL 1 creates a one tailed Gaussian curve, ENVEL 3 makes a two-tailed
curve. ENVEL 2 and ENVEL 4 are versions of ENVEL 1 and ENVEL 3, respectively,
but they start the curve one half cycle later.

After a choice is made, the routine which displays the envelope is enacted.
Pressing the foot pedal allows changes in the horizontal and vertical parameters as
mentioned before. Pressing one of the black buttons activates a subroutine which
multiplies the present envelope by the old envelope that was stored in the external
memory. Every point of the envelope is loaded, multiplied by the corresponding
point of the old envelope (a number between 0 and 1) and then restored in the en-
velope.

PAR >SLID

As the pitch representation of the notes in SLIDER is slightly different than
in DOLY, PAR>SLID takes every word of the melody, checks to see that it is not
a command, bar line, or a rest, and using the last 15 bits of the word as a reference,
replaces these 15 bits with a value from a table. This new value represents the same
pitch in the SLIDER version of WRITER. After the translation has been completed, the
SLIDER synthesizer sound generator and the SLIDER version of WRITER are loaded.

SLID >PAR

SLID >PAR is the reverse of PAR> SLID. The last 15 bits of each note are
checked against a table of increasing numbers.

When an element of the table is found that is greater than this last 15 bits,
we have found the pitch of the note. For example, if the first element of the table
that was greater than the pitch was the 17th element, the pitch of that note is 17
semitones above low C. The number representing this pitch for the normal WRITER
program, DOLY, replaces the old 15 bits in the note. The synthesizer sound generator
PARAPLAY and DOLY are loaded after a call to SLID >PAR.

PITCHGEN

PITCHGEN, stored as a sound generator, allows the use of random numbers, and
envelope and waveform tables for melody input. A list of the possible melody inputs is
given in Appendix B, Table 9. PITCHGEN also contains a simple monophonic synthesizer
sound generator.

The portion of PITCHGEN which generates the new melody is based on the sound
generator. When the choice GENERATE is chosen from the PITCHGEN list of choices,
this sound generator is modified so that pitches and durations are loaded from the
waveform, envelope, melody, or random number generator, instead of solely from
the melody. Then, instead of playing these notes, the computer stores them in the
melody. The command GEN PART starts PITCHGEN at the present position of the
cursor.

- 817 -

Going through this in more detail, when GENERATE is chosen, a -1 is stored
in T2 (a 0 is stored if PITCHPART was chosen, then a minus one is stored in T3
(@ 0 would have been stored had PLAYER or PLAYPART been chosen). Next the be-
ginning addresses of the 3 waveforms, the envelope, and the melody are stored in
pointers. If GEN PART had been chosen (T2 = 0) the melody pointer would be loaded
with the address of the note under the cursor.

The buttons are then checked for a command. If the buttons that have been
pushed represent a command in Table 9 of Appendix B, a change is then made in the
program. For example, if a "Melody from Wave 1" command had been chosen, the
instruction that loads the pitches is changed so that it loads from WAVE 1. In this way
either the command that loads the pitch or the command that loads the duration is changed.
In the case of a duration command that is a combination duration and random, i.e.,
"duration wholes and random' or "duration as written and random'", two memory
instructions have to be changed, one is changed from a '"load the duration command"
to a 'branch to the random generator'" command, and the second change is the command
which adds the required duration to the random duration, i.e., for "duration wholes
and random'", this command will add a whole note to the random duration.

Now that the pitch and duration of the note have been calculated they are
stored in the melody. All the pointers are incremented by one, and the next word
in the melody is checked for bar lines or commands. If it is a command, it is treated
as a button control command. If it is a bar line, the next word is checked for a bar
line and if it is one as well, the computer branches to the WRITE program. If this next
word in the melody is neither a bar line nor a command, the pitch and duration of the
next note are calculated and stored in the next word of the melody.

-9.1 -

IX. LIMITATIONS OF THE MUSIC SYSTEM

The NRC computer music system requires that a minimum of 13 interconnected
programs and 6 large data tables be in core at any one time. A system of this size is
cumbersome and very difficult to modify, A program cannot be lengthened without
changing addresses in all the programs after it to make room. The address of an ex-
ternally addressed memory location may not be changed without modifying the programs
that reference it. In brief there is much inertia in a system of this sort. Furthermore,
a new program cannot now be added to the group of systems programs as there is no
unused space in memory. New programs have to be overlaid on a waveform or envelope
table. The latter limitation could be removed by increasing core memory. However;
such extension is difficult and expensive because the SEL 840 computer is no longer
manufactured.

This chapter, then, is to give suggestions on things that could be done differently
in a new system. These changes should be incorporated while the new system is in its
early stages, and modifications are more easily implemented.

The timing in our system is based on 32nd notes. It might be desirable to change
this basis to 96th notes which would allow triplets to be written into the music. For ex-
ample, a quarter note would have a duration of twenty-four (96th notes) but a quarter
note in a triplet would have a duration of 18 (96th notes). An alternate method of allow-
ing for triplets is a command that would cause the present tempo to be multiplied by
3/2 for triplets, or 5/4 for five notes in the time of four. The initial tempo could be
stored while the triplet is played and reloaded when the triplet is over. An example
this idea is in the listing for PLAIN 2 (18). A clock interrupt would be necessary for
each voice being played, so a change in tempo for one voice would not affect the others.

One of the main limitations in the present hardware is the small amount of
core memory (16K). In a computer where 1/2 words are addressable, it could be
possible to store two envelope or two waveform tables in the same core area, one
table using the most significant 8 bits of each word, and the record table using the least
significant 8 bits.

If there is space available in the data words for the notes, it might be possible
to add a flat sign capability. In tempered scales, a flattened note is not necessarily
the same as a sharp of a note one tone down, i.e., F sharp is not the same as G flat.
This feature may be worthwhile only if it is simple to add, as it is not likely to be
used often, though it will make the music more readable.

In any new system using software sound generators, the inclusion of both a
square wave polyphonic sound generator and a multi-timbre monophonic sound generator
in the basic system would be of great use. It would relieve the musician from the task
of constantly changing sound generators.

An attempt could also be made to improve TONE 2 (18) so that it could play four
lines of music at once. The trouble with TONE 2 at the moment is the length of time spent
in one pass through its play loop. With a modern computer with a shorter cycle time and
more hardware registers, all the data for the play loop could be stored in registers, and the
cycle time through the play loop could be shortened considerably. If this were done, a four

-9.2 -

voice TONE 2 and an elaborate 2ND PLAY could be the standard polyphonic sound generator
and monophonic sound generator respectively and both could be stored in core at the same
time.

In a similar vein, an extended version of 4 WRITE could easily contain all the
capabilities of DOLY, making DOLY obsolete. Therefore 4 WRITE could become the
main core resident WRITER program, and DOLY could be discarded.

These suggestions are intended to indicate some improvements that could easily be
made and to illustrate some advantages of more modern computers. They show that further
development of the system is possible and desirable. Since changes become progressively
more difficult to implement as the system is developed we feel that a great deal of thought
should go into the early stages of a new system and that the advantages and shortcomings
of this one should be carefully evaluated before proceeding with an improved version.

-10.1 -

X. CONCLUSIONS

When this system was being created, the objective of the project was to open
new avenues of man-computer communications. This means that the computer had to
communicate with the musician in a manner that was acceptable to the musician, It
would have been easy to overlook this aim and to program the computer so that it
was easy for the programmer or engineer to use. To avoid this fundamental error a
wide variety of musicians were invited to work with the music system with an in-
vitation to make suggestions for improving or modifying it. These modifications were
either to simplify the usage of the computer or to extend its facilities. It was con-
sidered very important to have a variety of musicians. Quite often one musician would
brand as useless a facility that is used extensively and praised by another.

In general, there have been two categories of musicians, commercial and ex-
perimental. The commercial musicians have composed successiully for films, radio
and TV. Many experimental pieces have also been produced. The computer music
system seems to have been accepted as a valuable musical tool by many musicians
who have seen and used it. Whilst we feel that the potential of an interactive system
has been convincingly demonstrated, there is scope for a great deal more development
and refinement. We believe that this kind of computer-aid-to-composers system has a
place in the future development of music and that it will be accepted more and more
readily by musicians as it is improved and tailored to their needs.

ACKNOWLEDGEMENT

I would like to acknowledge the help and direction received from Mr. J.K. Pulfer
the inventive genius behind the music system. I would also like to thank Mr. Frank
Cairns and the Data Systems Section whose constructive criticism made this report
possible.

- 10.2 -

REFERENCES

DATA SYSTEMS PROGRAM LIBRARY,
REED, M-50, NRC

1. No. 1030C, LISTER, M. WEIN, 1970

2. No. 1085B, D$STOR, J.K. PULFER AND M. JAVOR, 1970

3. No. 1087, CALCAR, M. D. DUGGAN, 1968

4, No. 1099, MELODY SUBROUTINE, J.K. PULFER, 1969

5. No. 1100, D AMMU, J.K. PULFER, 1969

6. No. 1101, EXPERIMENTAL MUSIC PROGRAMS, J.K. PULFER, 1969

7. No. 1107A, I$DECR, J.L. WOLFE, 1969

8. No. 1108, MUSIC PROGRAM PACKAGE, J.K. PULFER, 1969

9. No. 1118, DELEZE, J.L. WOLFE, 1969

10. No. 1138, DRAMU, K. M. WILSON, 1970

11. No. 1139, POLYFONY, P.P. TANNER, 1970

12. No. 1146, TUNER, T. TRICKER, 1971

13. No. 1147, AUTOSAVE, J.K. PULFER, 1971

14, No. 1148, ADBOT, J.K. PULFER, 1971

PUBLICATIONS

1. Pulfer, J.K. Man-Machine Interaction in Creative Applications, International
Journal Man-Machine Studies, 3/1/1971

2. Pulfer, J.K. Programmers Reference Manual for a Digital CRT Display, ERB-788,
REED, NRC., Ottawa, 1968.

3. Pulfer, J.K. and Tanner, P.P. Marvelous Music Machine Manual, unpublished
user's manual, REED, NRC, 1970, 1971 and 1972.

4, Tanner, P.P. Some Programs for the Computer Generation of Polyphonic
Music, ERB-862, REED, NRC, 1971.

5. Reference Manual for the SEL 840A General Purpose Digital Computer. System

Engineering Laboratories, Incorporated, Fort Lauderdale, Florida, 1966.

-A.1 -

APPENDIX A - LIST OF MEMORY CONTENTS

ADDRESS NAME CODE MEANING
(176 E BEGINNING OF SOUND GENERATORS
SOUND (200 E PLAY IT
GENERATOR (1516 NTB D LIST OF CHOICES
(1556 MEST D MESSAGES TABLE
1616 KLOK E CLOCK INTERRUPT
1623 IFLG P LENGTH OF NOTE LEFT
(1624 MARMU E BEGINNING OF MUSIC WRITING
(PROGRAM, '"MARKERS"
(1632 DITMU E "TEMPO"
(1640 DAIMU E "MODIFY"
(1650 DADMU E "DELETE"
(1660 DIMMU E "INSERT"
(1666 DAMMU E "WRITE'" (BYPASSES LIST OF VOICES)
WRITER (2444 MPTR P CURRENT CURSOR ADDRESS
(2471 TEMPO E "SET TEMP'
(2574 MWRD P PITCH INDEX VALUE
(3220 DUMMU E "WRITE'" (POLYPHONIC)
(3316 EG p CHECK FLAG
(3362 COUNT P NO OF 32NDS TO CURSOR (COUN)
(3442 FIRST P CURRENT ARRANGED BAR LINE
(POINTER (FIRS)
(3451 HERE p COUNT UP TO HERE
(3453 KFOUR P FLAG FOR COUNT (K4)
(3511 PATCH E "WRITE'" (MONOPHONIC)
(3515 PATCH2Z E SET DAMEL/TRAN COUNTERS
3574 LOOK E "NEXTPAGE"
4461 SPDTA E Change Library to decimal
4553 DELEZE E Delete reading zeros
4635 GETTER E "GET"
4677 DUMPER E ""DUMP"
5051 RHYTHM E PERCUSSION SUBROUTINE
5077 RYTAB D TABLE OF PERCUSSION CHOICES
5124 ARRAN E ""ARRANGE"
5137 THUD P ADDRESS OF END OF ARRANGEMENT TABLE
5142 I$DECR E INPUT NUMBERS FROM TYPEWRITER
5426 DAMEL E STORES ADDRESSES OF BAR LINES
5473 TUTAB P ADDRESS OF END OF VOICE
5474 TUMEL P ADDRESS OF BEGINNING OF VOICE
5615 TRAN E REARRANGE TABLE OF BAR LINE

ADDRESSES

WAVE 1
WAVE 2
WAVE 3

MELODY

FTNLNONNNONNNNTNLNNNNNNNTNN

ADDRESS NAME
5621 TULUP2
5624 TULUP4
5634 ULTA
5635 MELTAB
5744 ULTA1
6074 ULTA?Z2
6214 ULTA3
6334 ULTAB
6335 FORM
6343 FORM1
6351 FORM2
6457 FORMTB
10457 FORMT1
12457 FORMT2
14457 AMPT
14470 DMPT
14501 SPED
14622 ARA1
14742 ARA2
15062 ARA3
15202 TREAD
15204 MUTAB
16203 MUT1
16204 MUT12
17203 MUT2
17204 MUT13
20203 MUT 3
20204 MUT14
21202 AUTAB
21203 UTAB
21204 PLAPIC
22054 PLBPIC
22055 PLCPIC
22164 DYNA
22345 GENTAB
22451 SHIFT

- A2 -

CODE

o o o} 1t oo oo

o<

m o o avBav i v | ggooouooogoog o} (e o

MEANING

ADDRESS OF END OF ARRANGEMENT TABLE
ADDRESS OF END OF ARRANGED TABLE
OF BAR LINE ADDRESS

MELTAB LESS 1

VOICE ONE ARRANGED TABLE OF BAR
LINE ADDRESSES

END OF VOICE ONE TABLE

END OF VOICE TWO TABLE

END OF VOICE THREE TABLE

END OF VOICE FOUR TABLE

"SEE WAV1"
"SEE WAvV2"
"SEE WAV3™

FIRST WAVEFORM TABLE
SECOND WAVEFORM TABLE
3RD WAVEFORM TABLE

TABLE OF AMPLITUDE VALUES (NOT USED)

TABLE OF DECAY VALUES

INITIAL TEMPO

END OF ARRANGEMENT TABLE FOR
VOICE FOUR

END OF ARRANGEMENT TABLE FOR
VOICE TWO

END OF ARRANGEMENT TABLE FOR
VOICE THREE

END OF ARRANGEMENT TABLE FOR
VOICE ONE

BEGINNING OF VOICE ONE

END OF VOICE ONE

BEGINNING OF VOICE TWO

END OF VOICE TWO

BEGINNING OF VOICE THREE

END OF VOICE THREE

BEGINNING OF VOICE FOUR

ZND FROM END OF VOICE FOUR

END OF VOICE FOUR

ENTRY FOR PLAY PICTURE SUBROUTINE
PICTURE

DISTANCE FROM START OF PLAY PICTURE

ADDRESS OF START OF PLAY

"SEE ENV"
"GENERATE"
""TRNSFORM"

PARAMETERS
ENVELOPE

SYSTEMS
PROGRAMS

- A3 -

ADDRESS NAME CODE MEANING

22477 NENVT ENVELOPE PARAMETERS TABLE

22510 ENVT ENVELOPE
27553 ENVP2 ADDRESSES OF ENVELOPE PARAMETER
TABLES-15

27654 NTB2 LIST OF CHOICES (SYNTHESIZER PROGRAM)

30400 D§STOR
31600 LISTER

DISC HANDLER SUBROUTINE
SUBROUTINE TO CREATE LIST OF CHOICES

mm 9 oo

D - Beginning or end of a data table
P - Externally accessed pointer or flag
E - Entry points

1000

2000
3000

4000

5000
6000

7000

10000

11000

12000

13000

14000

15000

16000

17000

20000

21000

22000

23000

24000
25000

176

1615

3574

4677
5050

6335
6457

10457

12457

14457

15204

16204

17204

20204

21203

22510

27507

LOADED AS
MUsIC *72

-A.4 -

OVERLAYS

2ND PLAY

ALY, OTHER SOUND
GENERATORS

WRITER
(DOLY)

SYSTEMS FRO-
GRAMS (SEE
LIST OP
MEMORY CCN-
TENTS)

PUT MUSZC

[oVER DuMp |

PROGRAMS

et
SYSTEMS

TABLET

MOUSE

CLASSICL
AND
PITCHGEN

WAVE 1

AUTO
SAVE
TUNER

WRITE

SAVE
IT

COPY

TABLES STO-
RED WITH
MELODY

VOICE 1

VOICE 2

VOICE 3

VOICE 4

SYSTEMS
PROGRAMS

ENVELOPE

DRAW
MUSIC

NEW ENV.

MEMORY MAP
SHOWING PRINCIPAL
OVERLAYS

- B1-

APPENDIX B - LIST OF BUTTON COMMANDS

BUTTONS PARAMUS 1ST PLAY 2ND-5TH PLAY PLAINA+NORM2 DKAY4 TONE2
-~ - -X - DKL DK1 DKL *1 DKL DK1
- - X - - DK?2 DK?2 DK?2 *2 DK2 DK?2
- =X X - DK3 DK3 DK3 *3 DK3 DK3
- X - - - DK4 DK4 DK4 *4 DK4 DK4
-~ X -X - DK5 DK5 DK5 *5 DK5 DKS
- XX- - DK6 DK6 DK6 *6 DK6 DK6
- XXX - DK7 DK7 DK7 *7 DK7 DK7
X - == - DK8 DK8 DK8 *10 DKS8 DK8
X - -X - EN2 TIML TIML *11 *11 PIML
X -X- - WA} 2 TIM2 TIM2 *¥12 *12 TIM2
X - XX - EN>3 TIM3 TIM3 *13 *13 TIM3
X X - - - WAY3 SLON TIM4 *14 *14 TIM4
X X -X - SKIP SLOF TIMS TCKL *15 TIM5
X XX - - 0'S *16 TIM6 TCK2 *16 TIM6
X XXX - Tl *17 TIM7 TKL2 *17 TIM7
- - - - X T2 STAN TIM8 UOCT yocT ~ TIMS
- - -X X T3 DOCT TIMO DOCT DOCT TIM9
- -X- X T4 ¥22 TM10 *22 *22 TM1O
- =-=XX X TS *23 T™M11 *23 *23 T™11
- X -- X T6 PERC PERC PERC PERC ™12
- X-X X T7 NOPC NOPC NOPC NOPC ~ TM13
- XX - X PERC ENV ENV *26 *26 *26
- x XX x NOPC NENV NENV *27 *27 *27
X - - - X GLIS GLIS GLIS *30 *30 *30
X - -X X PP PP PP PP PP PP
X *¥X - X P P P P P P

X -XX X MP MP MP MP MP MP
X X -- X MF MF MF MF MF MF
X X-X X F F F F F F

X XX - X FF FF FF FF FF FF
X X X X X NORM NORM NORM STAN STAN *37
PALM BUTTON SLUR SLUR SLUR *40 SLUR =~ SLUR

- B2 -
TABLE 2

EXPLANATION OF BUTTON CONTROL COMMAND CODES

DK1 - DK8 8 PRESET DECAY LEVELS (LEGATO - STACCATO)
TIMI - TM1l1 DIFFERENT TIMBRES
SCON PHASE SLIDE ON

SLOF PHASE SLIDE OFF

TCK1 TRACK ONE

TCK2 TRACK TWO

TK12 BOTH TRACKS

DOCT PITCH DOWN ONE OCTAVE
STAN PITCH AS WRITTEN

UOCT PITCH UP ONE OCTAVE
PERC PERCUSSION ON

NOPC PERCUSSION OFF

ENV ENVELOPE ON

NENV ENVELOPE OFF

GLIS GLISSANDO ON

NORM GLISSANDO OFF

PP,P,MP,MF,F,FF 6 PRESET AMPLITUDE LEVELS

SLUR MAKE DECAY APPLY TO FOLLOWING GROUP OF NOTES
EN> 2 ENVELOPE OUTPUT TO PARAMETER 2
WA? 2 WAVEFORM OUTPUT TO PARAMETER 2
EN>3 ENVELOPE OUTPUT TO PARAMETER 3
WA?>3 WAVEFORM OUTPUT TO PARAMETER 3
SKIP NO OUTPUT

O's OUTPUT OF O

T1 ENVELOPE 1 OR WAVE 1

T2 ENVELOPE 2 OR WAVE 2

T3 ENVELOPE 3 OR WAVE 3

T4 ENVELOPE 4

TS ENVELOPE 5

T6 ENVELOPE 6

T7 FULL ENVELOPE TABLE

- B3 -~

TABLE 3

SPECTIAL COMMANDS FOR "6TH PLAY', "8TH PLAY'", AND "10THPLAY"

X X - - - MOD Use modified version of waveform
X X -X - UNMD Use waveform as drawn
TABLE 4

SPECTAL COMMANDS FOR "7TH PLAY"

R e ¢ NPRT PORTAMENTO OFF
- - - X X PORT PORTAMENTO ON
TABLE 5

SPECIAL COMMANDS FOR '"22NDPLAY"

X - - - X ARON ARTICULATION ON

X XXX X AROF ARTICULATION OFF
TABLE 6

"PLAY+SEE'" COMMANDS FOR POLYPHONIC SOUND GENERATORS
AND 4 WRITE

0 DISPLAY VOICE
- - X- 0 VOICE
0 VOICE
0 VOICE

BN

KooK X X K X

KoMK N

XX X X
Koo

PALM BUTTON

bl

LT

=

(-

I T |

xo»

T T - R . T

MW1
MW2
MW3

MAWP
MR
DAW
D32
D4
DWH
D4R
DWHR
DAWR
DR
DWl

- B.4 -
TABLE 7

COMMANDS FOR "KEYBOARD"

THUMB BUTTON Lines of Music
Played by Computer

oL
HNWO

TABLE 8

ENVELOPE GENERATOR COMMANDS

SET ATTACK RATE

SET FIRST DECAY RATE

SET SECOND DECAY RATE

SET STARTING LEVEL

SET BEGINNING ATTACK TIME

SET BEGINNING OF FIRST DECAY

SET BEGINNING OF SECOND DECAY
TABLE 9

SPECIAL COMMANDS FOR PITCHGEN

MELODY AS WRITTEN
MELODY FROM WAVE 1

MELODY FROM WAVE 2

MELODY FROM WAVE 3

MELODY FROM ENVELOPE

MELODY AS WRITTEN + RANDOM
MELODY RANDOM

DURATIONS AS WRITTEN
DURATIONS 32ND NOTES
DURATIONS QUARTER NOTES
DURATIONS WHOLE NOTES
DURATIONS QUARTERS + RANDOM
DURATIONS WHOLES + RANDOM
DURATIONS AS WRITTEN + RANDOM
DURATIONS RANDOM

DURATIONS FROM WAVE 1

Lines of Music
Played by Keyboard

4
1
2
3

MIDDLE

AUHEHMAP WO URHHQPDWO U HHQPWQ DEAMGE » WA Ul

-C.1 -

APPENDIX C - PERCUSSION CONTROL

BRUSH
BRUSH
BRUSH

CYMBAL
CYMBAL

SILENCE

CYMBAL
CYMBAL
CYMBAL
CYMBAL

CONGA
CONGA
CONGA
CONGA
CONGA
CONGA

RIM

BASS
BASS
BASS
BASS
BASS
BASS
BASS

TAMBOURINE
BRUSH
CYMBAL
CLAVE

RIM

SNARE
CONGA

BASS

CYMBAL
CYMBAL
CYMBAL

TAMBOURINE
BRUSH

CLAVE
RIM

SNARE
CONGA

TAMBOURINE
BRUSH
CYMBAL
CLAVE

RIM

SNARE

BASS

TAMBOURINE
BRUSH
CYMBAL
CLAVE

RIM

SNARE
CONGA

RIM
BASS
SNARE

BASS

CYMBAL

-D.1-

APPENDIX D - CONTENTS OF BITS 9 - 23 OF THE WORDS
REPRESENTING NOTES OR RESTS

NOTES BITS 9-23 NOTES BITS 9-23
F '24 FH '64
E '23 E# (F) '63
D '22 D# '62
Octaves Above Middle C '21 CH '6l
B '20 B# (C) '60
A 17 A# '57
G '16 G# '56
F '15 F# '55
BE ‘14 E# (F) '54
D ‘13 D '53
Octave Above Middle C '12 CH '52
B '11 B# (C) '51
A ‘10 A# '50
C '7 CH# '47
F '6 FH# ‘46
E '5 E# (F) '45
D ‘4 D¥# 144
Middle C '3 CH '43
B 12 B# (C) Y42
A 'L A% ‘41
G '0 G# '40
F ‘-1 ¥ t37
E -2 E# (F) '36
D v-3 D '35
Octave Below Middle C ‘-4 CH '34
B '-5 B# (C) ‘33
A '-6 AH 132
G -7 GH '31
F '-10 F# '30
E '-11 E# (F) 127
D '-12 D# 126

Octaves Below Middle C '-13 CH '25

APPENDIX E - MAXIMUM LIMITS FOR STORING

-E.1-

PUT AWAY
COMMAND

1 VOICE
2 VOICES
3 VOICES
4 VOICES
PUT WAVL
PUT WAV2
PUT WAV3
PUT ENV
1 ARGMT
2 ARGMTS
3 ARGMTS
4 ARGMTS
MONO - MEL
ALL WAVS
WHOL ENV
PLAYER
SCALE

CODE

BEGINNING
ADDRESS

MINIMUM
LAST ADDRESS

PPN e

OO NN R HREE

14457
14457
14457
14457

6457
10457
12457
22477

14457
14457
14457

14457
14457

6457
22510

200
574

15206
16206
17206
20206

15206

10456
12456
14456
22507

14622
14742
15062
15202

14456
27507
1615
673

MAXIMUM
LAST ADDRESS

16204
17204
20204
21204

21204

LMNE -

NiGHIE
AN
AlP
AMA
AMX
LOP
A5C

BAN
BAP
BAZ
BO

By

U
CLA
CMA
CNS
csB

D1V

EAB
EAD
EBA
EDP
EDV
EFP
EFU
ElA
ELL
ELLN
ELO
EMU
ENO
EPS
JONEM
ESN
ESO
ESP
ESR
EST
ESU
ESZ
EXU

FLA
FLL
FRA
FRL

ap
CODE

31
172
05

61
170
00-20

1=0
2 -03
[

20

0o o7

10

21-03
45
21-02
2l-12
£0
21-14
Q111
21-01
54
51
52

21-00
21-06
59
21-07
21-10
21-13
00-23
53
46
21-05
16

uo-13
00-17
00-12
00-14

-F.1-

APPENDIX F - LIST OF SEL 840A INSTRUCTIONS

FUNCTION

Add () 1o (M)
{(Unit) to A
Add (M) to (A)
Add (M) to (X)
(A) to Unit
Comp. A sign

Braanch if (A) neg.
Branch if (A} pos.
Branch if (A)=0
Brasch on O'FLOW
Brarsh to M

Command Fxl, Unit
Cleasr (A)n 0
Compare {(A) and (M)
Convert Nn. System
Copy B sign

Divide

{EA) to EB

EAU add

{EB) to EA

EAU D. P, mode
EAU Divide

FAU F.P. moade
Un-normatize F, P,

(EA) to EB, (EB) to EA

Load LSH of (EA)
Load (M) in EA

I.oad (M) in EA

EAU Multiply

IZAU Normalize

Skip if {EA) pos.
Store LLSH of (FA)
Skip if (EA) neg.

Skip on EAU O'FLOW
EAU S. P. mode

Skip if EAU not ready
Store (EA)

EAU Subtract

Skip if (EA)=C
Execute (M)

Full Left Shift, Arith,
Full Left Shift, T.og.

Full Right Shift, Arith.

Full Left Rotate, Log.

MNE. opP
PAGE MONIC CODE FUNCTION
2-114 HIST (0.0 Halt
255
2-13 IAB 00-06 (A) to B, (B) to A
2-14 IAM 44 (A} to M (M) to A
2-54 IIB 34 {(X)+1, Brauch if noi 0
2-26 IMS 14 {(M)r1;Skip if 0
2-22 LAA 01 (M)t A
2-22 ILLBA 02 M)to B
2-21 LLCS 57 Switches to A
2-23 LIX 32 :
2-18 LSA no-11
LSL 00-16
252
2-31 MAA 27 (M) AND(A)
2-21 MEA 26 {M) Exclusive OR (A)
2-26 MI1P 176 (Unit) tc M
2-33 MOA 30 (M) OR {A)
MOP 174 (M) to Uit
2-16 MPY 07 Multiply
2-62 NEG 56 2's cuirg. (A)
2-65 NOP c0-22 Nn uj.eration
2-61 NOR 50-32 Noermatize (A) and (B)
2-59
2-68 PI1D .43 P.1. Disable
2-60 FPIE 1.43 P.I. Disable
2-58 PIR 36 P.1. Return
2-61 POF €3 Protect Bit Off
2-72 PON 62 Protect Bit On
2-69
2-70 RNA 60 Round (A) by (B)
2-67 RSA 00-10 Rignht shift A, Arith,
2-60 RSL 00-15 Right shift A, Lcg.
2-63
2-72 SAS on-21 Skip on A sign
2-64 SMA 06 Subtract (M) from {(A)
2-64 SMP 35 Skip if (M) pos.
2-59 SNS 134 Skip No Switch
2-62 SPB 12 Store Place & Branch
2-71 STA 03 (A) to M
2-66 STB 04 {B) to N
2-63 ST1 33 (X) to M
2-44
TAB tu-05 (A)to B
2-38 TAJ 00-01 {A) to X
2-42 TBA on-04 (B) to A
2-37 TBI 00-02 {B)to X
2-39 TEU 132 Test Ext. Unit

Padl

NIV oo N
[:

IV Pe —
S Wt

o

=

IS V)
'
— O«

N
|
w D

~

' 1
BN S I e

[A s I SV SV VI V]
[
(SN PR U B GV I o

'
o

o~
1

)
ol

)

2.1

™~ ne
[

— A g da

O SN o “

[v o
v
=)
~ ok

2-724
2.!5
2 24
2.20
2-19
2-10
2-11

2-11

2-32
2-30
2-32
2-11

2-53

-F.2 -

SELECTED CRT DISPLAY COMMANDS

USAGE COMMAND TO COMMAND TO
CRT EXTERNAIL. MEMORY

Load scale '11 *12
factor register

Plot a point 1251 '252

Plot high speed by '71061 '71062
transferring scale
factor

Blank point '4251 14252

Plot four characters '701 '702

Load colour register *501 '502

Plot adjacent blank '4351 14352
points

Line by transferring '1061 '1062
scale factor

Input shaft encoder '6

Plot single character '401 *402

Plot character + Y ‘441

Start buffer to '100000

display
Set memory address *30000000
Branch to O *20000000

N.B. The above numbers are stored in the data
word following a C.E.U. command. For
complete information see ERB-788. (16)

1ST PLAY ZND PLAY

-G1-

2ND PLAY

APPENDIX G - VARIABLES IN 1ST PLAY AND 2ND PLAY

X

X

X

X

~ xoKoX

PP KX

CODE

ENVF
T3

NFLG
LWDF

WFLG
T2

S$FG

FFLG
ZFLG

PFLG

KM12
S$IFLG

CAMP
DAMP
HERE
POIN
PEEC

NPCH

SAV
SKIL

NOTE

MEANING

= 0 if envelope is off,
-1 if envelope on
= 0 if percussion off
-1 if percussion on
= 0 if glissando off
-1 if glissando on
= 0 if slur on
-1 if slur off
positive i1f note, negative if rest
= 0 if PLAYPART chosen,
-1 otherwise

= 1 if PLAY+SEE chosen
-1 if PLAYER chosen

used for lowering pitch one octave

= 0 if phase shift off

= -1 if phase shift on

= 0O if pitch down one octave

-1 if standard pitch

No. of steps in waveform

No. of 32nd Notes left to play
(negated)

No. of notes until PLAPIC must be
recalled (negated)

current amplitude

decay amplitude

address of note under cursor
(for PLAYPART)

address of present position in
bar line table

address of present position in
melody

pPresent pitch

initial amplitude (before decay)

output pitch

output amplitude

Contents of word currently being
played

-H.1 -

APPENDIX H - KEYBOARD VARIABLES

CODE MEANING

AAC 3 no. of 32nd time intervals left in note

COMQ pitch for VOICE 4 (=CONT-1)

COMR pitch for VOICE 3 (=CONT-2)

COMS pitch for VOICE 2 (=CONT-3)

COMT pitch for VOICE 1 (=CONT-4)

CONQ sign of amplitude control for VOICE 4

CONR sign of amplitude control for VOICE 3

CONS sign of amplitude control for VOICE 2

CONT sign of amplitude control for VOICE 1

CONT, 3 pitches

CRUB,1 amplitude table

CRUB, 3 present position is arranged bar line table

G000, 3 present amplitudes

K1 present amplitude for VOICE 1 (=G000-4)

K1,4 initial amplitudes

K2 present amplitude for VOICE 2 (=GO0O-3)

K3 present amplitude for VOICE 3 (=G0O00-2)

K4 present amplitude for VOICE 4 (=G000-1)

NOT1 no. of 32nd time intervals 1left in note
for VOICE 1 (=AAC-4)

NOT2 no. of 32nd time intervals left in note for
VOICE 2 (=AAC-3)

NOT3 no. of 32nd time intervals left in note for
VOICE 3 (=AAC-2)

NOT4 no. of 32nd time intervals left in note for
VOICE 4 (=AAC-1)

OLDN last input word from keyboard

ONT1,3 present note playing

P ,3 present position in melody

T1 choice in main 1list

T1,3 note playing during the last 32nd time interval

T2 choice in secondary 1list

-L1-

APPENDIX I - DOLY VARIABLES

CODE TYPE INDEX MEANING
INSTRUCTION

ADDX c - no. of notes to be plotted before cursor note

BEEP P 3 address of the end of chosen voice less one

CNTR C - current duration in COUN subroutine

CPTR o - current contents of index 2

CRFL F - =0 before cursor drawn, =-1 after cursor drawn

DEE o - vertical position of rests

ENCO o - 0ld encoder position

ENC o - new encoder position

FFLG F - -VE if right foot pedal pressed, =0 otherwise

FG F - -1 for WRITE+CH, =0 for WRITER

FIRS P - address of beginning of arranged bar line
table for chosen voice

HERE P - address of cursor note for COUN

ADD o) - controls ADD Y

JPTR P - address of beginning of chosen voice

KEYB o - contains button input data

KFLG F - =0 when buttons pushed, =-1 after input
processed

KPTR P 2 address of beginning of chosen voice +36

Kl,1 E - addresses of end of melodies

K2,1 E - addresses of beginning of melodies

K3,1 E - addresses of end of arrangement tables

K4 F - +VE if COUN counts to cursor, -VE if COUN
counts to value in VAL

K5,1 E 1l,STA addresses of end of arranged bar line table

Ké6,1 E 1,STA address of beginning of arranged bar line

K7)4 - address of end of music

LFFL F - -VE if left foot pedal pushed, =0 otherwise

MEEP P 3 address of end of chosen voice

MPTR P - current address of cursor note

CODE

MWRD
M888
NCR

PEEP
POIN

POS

RPTR
UFLG
UPTR
VAL

XNCR
INCR
YNC2
YTAB

- L2 -

TYPE INDEX, MEANING
INSTRUCTION

o) - pitch of current dot position

o - integer 2

] - X increment for messages

0 - storage for A accumulator

P - pointer to arranged bar line table

for COUN

o - X position

P 2 address of end of chosen voice +31

F - +VE if note, -VE if rest

P 2 address of first displayed note +'40
0 - duration where COUN places cursor

o) - X spacing

0 - ='40

o - vertical spacing between staff lines
o - pitch of present position of dot

VARIABLE TYPES

F Flag
P External Pointer
E Fixed external address pointer
C Counter
o] Other data
MODE FLAGS
WRITER INSERT DELETE MODIFY MARKERS TEMPO USE
MAFL - - - - 0 -1 Tempo
TFLG -1 -1 -1 -1 0 0 Marker or Tempo
MFLG 0 -1 0 -1 -1 -1 Insert
DFLG 0] 0 -1 -1 -1 -1 Write or Insert
NFLG 0 -1 0 0 0 Delete

-J.1 -

APPENDIX J - 4 WRITE VARIABLES

CODE TYPE MEANING

B1,3 E Beginning of arranged bar line tables

B2,3 E End of arranged bar line tables

BRIT, 3 0 Intensity and scale (notes)

BRI, 3 o Intensity and scale (sharps)

BRIT o Bright intensity and large scale (notes)

BRI o Bright intensity and large scale (sharps)

BUTA o Contents of keyboard register

BLUE 0] Blue colour data

Ccl,3 p¥* Address of current note

COLR, 3 0 Colour of notes and rests

COLR o) Red colour data

Dl1,3 p Address of first note on display

DBL1, 3 F =0 1if double bar line has passed through display,
=-1 otherwise

DBL.2,3 F =0 if current note is after double bar line,
=-1 otherwise

DARK o Dim intensity and small scale (notes)

DAR 0 Dim intensity and small scale (sharps)

EL,3 c* Number of 32nd time intervals up to end of last plotted
note

F1,3 c Number of 32nd time intervals up to and including
first note on display.

Gl,3 C Number of 32nd time intervals up to but not including
lst note on display

H C Number of 32nd notes to present position

H,3 P Flag for finding F1,3

HILO, 3 F +VE if note stems up, -VE if down

INTZ o Storage of original red button interrupt command

INTN 0 Initial X position

J F Voice of word currently being written

K o Various uses

-J.2 -

CODE TYPE MEANING

KFLG F =0 when buttons are pushed, =-1 after buttons have
been dealt with

Contents of smallest Gl,3

=0 if no chosen voice; otherwise contains voice
number of chosen voice

N,3 F +VE if voice not chosen (LOOK), -VE if voice chosen

NFL F =0 if LOOK chosen, =-VE otherwise

NCR o spacing for messages

P,3 P address of position in arranged bar line &able of
first note on display

POS o X position

POSA o X position for sharps, and dots

POSB o) Y position of dot

Q,3 P Address of current position in arranged bar line table

R C Plot cursor when O

S P Address of note under cursor

T F =0 for write; =1 for INSERT; =2 in DELETE; =3 in
MODIFY; =4 for MARKERS; =5 for TEMPO

T,3 E End of voices

U c Number of notes before cursor drawn

v C Number of piled up messages (negated)

w,3 E Beginning of voices

X,3 E End of arrangement tables

X P =-1, move forward; =0 no motion; =+1 move backwards

XFLG F =-1 drift forward; =0 no drift; =+1 drift backwards

XNCR, 3 0 Spacing after sharps and dotted notes

XNCR 0 Large spacing for sharps and dotted notes

XNCS 0 Small spacing for sharps and dotted notes

Y C El,3 of note after cursor

Z F =-1 if cursor has just been plotted, =0 otherwise

-dJ.3 -

VARIABLE TYPES

Flag

Pointer to data tables

Counter

Fixed external address pointer

Other data

* O ®H O v H

Used for a different purpose by the Going Backward
routine

ARRAN
ARRANGE
AUTOSAVE

Bar lines

BRANCH
CHR INV

CHR TRAN

COMMANDS

CONTINUE
COPY

DAMEL
DELETE
DELEZE
DIA INV

DIA TRAN
DKAY 4

DOLY

DRAMU

INDEX

program description
4,5

program description
format 3.2

use 4.6

4.7

program description
use 4.6

program description
use 4.6

format 3.2

list of B.1

Meaning B.2

use 4.4

4.9

list of choices 4,11
use 4.7, 4.11
program description
program description
use 4.3

program description
program description

use 4.6
use 4.6
program description

use 4.9

listing I

program description
program description

use 4,11

7.2

7.1

7.1

8.1
7.3

ERB862

6.

1
6. 10

DUMPER
DUMPO
DYNA

8TH PLAY

Envelope

5TH PLAY
1ST PLAY

FORM
4 WRITE

14THPLAY
4TH PLAY
GEN ENV
GENERATE
GEN PART
GET
GETTER
Hardware
HI PLAY
INSERT
INVERT

program description
program description
program description
commands B.3
program description
use 4.12

format 3.1

program description
use 4.9

use 4.11

commands B.1l
program description
use 5.6

program description
list of choices 4.10
listing J

program description
use 4.10

6.11

4.11

4,7

4.12

4.12

4.5

program description
2.1

4.11

4.3

program description

use 4.9

7.2
3.4
7.5

5.7

(DYNA) 7.6

5.6

7.3

6. 11

7.2

7.1

I$SDECR
KEYBOARD

KEY SIG
KLOK

program description

listing H

7.2

program description ERB 862

use 4.9
program description

program description

LOOK (choice in 4 Write) 4,10

8.4
7.1

LOOK (NEXTPAGE Program) program description 7.1

Main List of Choices
MARKERS

Memory

MODIFY

Monophonic sounds,
generator

NEW ENVL
NEXT PAGE

NOTES
PARAMUS
PAR>SLID

Percussion

PLAIN 2

PITCHGEN

4.1

4.4

contents A.1

format 3.1

hardware 2.1

map A.4

4.3

program desrcription
use 4.11

5.1

program descrition 8.5

list of choices 4.6
program description
use 4.5

format 3.2

commands B.1l
program description
use 4.17

program description
commands C.l
program description

use 4.9
8.6

(LOOK) 7.1

8.6

(RHYTHM) 7.3

ERB 862

PLAIN 4

PLAPIC
PLAYER
PLAY KEY
PLAYPART
PLAY+SEE
POLYFON
PUT AWAY

QUIT
RECORD
RETROGRD
REV ENV
RHYTHM
SAVE IT
2ND PLAY

SEE ENV

SEE WAVI

SEE WAV2
SEE WAV3
SET TEMP
7TH PLAY

commands B.1l

program description ERB 862
use 4.9

program description g, 10

4.4

4.9

4.4

4.4

4.11

program description (DUMPER) 7.3 °
use 4.5

4.4

4.5

4.7

4.7

program description 7,2
program description (DUMPO) 8.4
commands B.l

listing G

program description 5.1

use 5.1

commands B.8

program description (DYNA) 7.6
use 4.7

program description (FORM) 7.5
use 4.6

4.6

4,6

4,7

command B.4

program description 5.8

use 4.12

6TH PLAY

commands kB.3
program description 5.8

use 4.12

SLIDER (writer program) 6.10

SLIDYPAR

Sound Generators,

SPDTA
STOR KEY

SWITCH ?
TEMPO
10THPLAY

3RD PLAY
13THPLAY
TONE 2

TONE 2

TRAN
TRANSFRM
TRANSPOSE

TUNER

use 4,17

program description 8.6

monophonic, program description 5.1

use 4.7

polyphonic, program description ERB 862

use 4.8

7.1
4.9

4.3

4.4

commands B.3

program description 5.8
use 4.12

4,11

4.11

commands B.l1l

program description ERB 862
use 4.13

commands B.l

program description ERB 862
use 4.9

program description 7.4

4.7

program description 7.1

use 4,8

program description 8.5

use 4,11

12THPLAY 4.11
24THPLAY 4.11
22NDPLAY commands B.5
use 4.11
Utility programs use 4,10
VOICES ? 4.1
Waveforms format 3.1

program description (FORM) 7.5
use 4.9
WRITER Listing I
program description 6.2
use 4.2

WRITE+CH 4.2
4 WRITE 4.10

