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ABSTRACT: Affinity modulation of antibodies and antibody
fragments of therapeutic value is often required in order to
improve their clinical efficacies. Virtual affinity maturation has
the potential to quickly focus on the critical hotspot residues
without the combinatorial explosion problem of conventional
display and library approaches. However, this requires a
binding affinity scoring function that is capable of ranking
single-point mutations of a starting antibody. We focus here on
assessing the solvated interaction energy (SIE) function that
was originally developed for and is widely applied to scoring of
protein−ligand binding affinities. To this end, we assembled a
structure−function data set called Single-Point Mutant
Antibody Binding (SiPMAB) comprising several antibody−
antigen systems suitable for this assessment, i.e., based on high-resolution crystal structures for the parent antibodies and coupled
with high-quality binding affinity measurements for sets of single-point antibody mutants in each system. Using this data set, we
tested the SIE function with several mutation protocols based on the popular methods SCWRL, Rosetta, and FoldX. We found
that the SIE function coupled with a protocol limited to sampling only the mutated side chain can reasonably predict relative
binding affinities with a Spearman rank-order correlation coefficient of about 0.6, outperforming more aggressive sampling
protocols. Importantly, this performance is maintained for each of the seven system-specific component subsets as well as for
other relevant subsets including non-alanine and charge-altering mutations. The transferability and enrichment in affinity-
improving mutants can be further enhanced using consensus ranking over multiple methods, including the SIE, Talaris, and
FOLDEF energy functions. The knowledge gained from this study can lead to successful prospective applications of virtual
affinity maturation.

■ INTRODUCTION

The past decade has witnessed an exponential growth of the
field of monoclonal antibodies (mAbs) intended for therapeutic
use.1,2 As of 2015, several hundred mAbs were undergoing
clinical trials, and about 50 were approved or in review in the
European Union or the United States (https://en.wikipedia.
org/wiki/List_of_therapeutic_monoclonal_antibodies). These
molecules are used in humans for treating various diseases and
conditions, including not only cancer3 but also chronic
inflammatory diseases, transplantation, and infectious and
cardiovascular diseases, among others.4,5 Recent platforms to
improve antibody efficacy and/or reduce side effects include
bispecific antibodies and antibody−drug conjugates, both of
which have great potential and currently enjoy tremendous
interest.6,7

Many of these platforms depend on antibodies obtained by
animal immunization, e.g., via the hybridoma technique,8 and
often require subsequent optimization.9,10 Humanization,
required for most antibodies from animal sources, typically
leads to a reduction in affinity. Other modifications may also be
also introduced in order to modulate other properties such as
thermal stability, water solubility, pharmacokinetics, etc., which

often results in partial losses of the original antigen-binding
affinity. Finally, cross-species specificity is oftentimes required
during preclinical studies to enable testing in animal models,
which requires restoration or enhancement of antibody affinity
for the orthologous antigens found in those species.
It thus comes as no surprise that several technologies have

been devised in order to address antibody affinity-maturation
needs. The most widely used are display approaches based on
mutant selection on the surface of bacteriophage or yeast11,12

and screening approaches using synthetic antibody libraries.13

However, multipoint optimization with these approaches is
difficult because of the size of the sequence space that needs to
be explored. For example, the theoretical number of all possible
four-point mutations in a typical complementarity-determining
region (CDR) of an antibody is in the order of 1012, and each
additional mutation site incurs another factor of 103. This very
large space cannot be explored exhaustively, but it can be
prioritized. To this end, stepwise virtual affinity maturation has
the potential to quickly focus on the critical maturation hotspot
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residues without the sampling limitations of conventional
display and library approaches.14

In this protocol, given a crystal structure of a parent antibody
in complex with its antigen, one begins with an exhaustive
computational scan of the antibody’s CDR residues in order to
predict the most promising single-point mutations that improve
the antigen-binding affinity. Typically, up to two dozen single-
point mutants are selected for experimental validation, with the
confirmed mutations being combined into higher-order
mutants. Several cycles of computational predictions inter-
woven with experimental validation continue up to typically
quadruple mutants.
Clearly, the ability to make accurate affinity predictions at the

single-point mutation level is key to the success of structure-
based stepwise affinity maturation of antibodies, since these
mutations are carried over throughout the entire process.
Therefore, in order to provide an assessment of the ability to
address this critical step, in this study we directed our efforts on
two fronts: (1) evaluation of scoring functions for ranking

single-point antibody mutants with companion protocols for
mutant structure generation and (2) creation of a suitable
structure−affinity data set for carrying out this evaluation.
It is of the utmost importance to have an energy function

that can deliver useful predictions leading to affinity-matured
antibodies. While much work has been devoted to developing
scoring functions for binding affinity predictions,15,16 typically
predictions of protein−protein binding affinities provide a
greater challenge than protein−small-molecule binding affin-
ities.17 This may be due to multiple effects (entropy, strain,
solvation, etc.) that may be approximated or even neglected.
Another major effect that is typically ignored is protein
flexibility. In most mutation studies (including this one), it is
assumed that the protein is fairly rigid, and therefore, backbone
conformational changes are treated as rare events and ignored.
In fact, recent work showed that increasing protein flexibility
decreased the accuracy of binding affinity prediction.18 Even
with these deficiencies in current scoring function models,
Tidor and Wittrup showed almost a decade ago that it is

Table 1. Overview of the SiPMAB Data Set

exptl ΔΔGbind
(kcal/mol) no. of mutants in subsets

antibody antigen
PDB
code

resolution
(Å)

no. of single-point
mutants binding assay ref assay range SD ΔQ=0 ΔQ≠0 to-Ala to-nonAla

A4.6.1 VEGF 1BJ1 2.4 68 SPR, ELISA 28 4.65 1.05 61 7 65 3

D1.3 HEWL 1VFB 1.8 39 SPR, ITC, ELISA 14, 29−31 4.51 1.14 23 16 17 22

HyHEL-10 HEWL 1C08 2.0 33 ITC, spectrophoto 32−35 7.26 1.95 27 6 14 19

herceptin HER2 1N8Z 2.5 26 ITC 36 6.26 1.73 21 5 21 5

A6 INFγR 1JRH 2.8 19 SPR 37 3.47 0.90 13 6 19 0

D1.3 E5.2 1DVF 1.9 17 SPR 29 3.95 1.24 12 5 16 1

HyHEL-63 HEWL 1DQJ 2.0 10 SPR 38 5.75 1.93 9 1 10 0

totals 212 7.97 1.56 166 46 162 50

Figure 1. Overview of parent antibody−antigen complexes for the systems in the SiPMAB data set. Structures are oriented with respect to their
antibody Fv fragments, which are rendered in magenta and yellow for the heavy and light chains, respectively. Ribbons rendered in other colors
represent the antigen structures. The names of the antibody and antigen and the PDB code of their complex are indicated below each structure.
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possible to design mutations leading to affinity-matured
antibodies.14

Here we focus on the solvated interaction energy (SIE)
function that we originally developed for scoring protein−
small-molecule-ligand binding affinities.19,20 The SIE function
was extensively tested in several rounds of the CSAR and
SAMPL challenges, constantly ranking as one of the best
scoring functions.21−24 Additionally, it has been applied by
various laboratories around the world and has been shown to
consistently produce reasonable predictions of protein−ligand
binding affinities irrespective of the protein target.25 We also
explore several protocols for mutation, given that structural
sampling has the potential to greatly affect computational
scoring of binding affinities. Alongside SIE we also test other
energy functions, such as those provided with the popular
FoldX and Rosetta programs, which were originally calibrated
on protein stability and protein−protein binding affinity
data.18,26,27

All of these tests are meaningful only if performed on a
suitable data set that is dedicated to the task at hand. To this
end, we assembled from the published literature a structure−
affinity data set called Single-Point Mutant Antibody Binding
(SiPMAB) consisting of 212 single-point mutants of antibodies
in their CDRs, curated to use only reliable binding affinity data
based on high-quality measurements. A defining characteristic
of this unbiased set is its composition based on seven
statistically suitable subsets of single-point mutants correspond-
ing to various antibody−antigen systems. These system-based
subsets are essential for testing not only the performance within
each system but also the transferability across various systems.
High-resolution crystal structures of the parent antibodies in
complex with their antigens are available in each of these
systems. This data set also allows decompositions into various
property-based subsets, like non-alanine mutations or charge-
altering mutations, which further challenge the ranking
performance of the computational protocols being tested.
To increase the usefulness of this data set, not only are the

mutations and associated affinities deposited as supplementary
data, but the structures generated with the best-performing
protocols are made available as well. Our goal in releasing this

database is that the community will use it as a resource for
developing the next generation of scoring functions for
computer-aided biologics design.

■ MATERIALS AND METHODS

Assembly of the SiPMAB Antibody−Antigen Struc-
ture−Affinity Data Set. The SiPMAB database comprises
212 single-point mutations that belong to seven antibody−
antigen systems curated from the available literature.14,28−38

The curated binding affinity data are available in Table S1 in
the Supporting Information. Overviews of the data set are given
in Table 1 and Figure 1. The following criteria were used in
order to arrive at this composition of the SiPMAB data set: (i)
crystal structure available for the antigen in complex with the
parent antibody in each antibody−antigen system; (ii) all
single-point mutations located in the antibody CDR loops
(Kabat definition); (iii) binding affinity data measured with
high-resolution methods, mainly by surface plasmon resonance
(SPR) or isothermal titration calorimetry (ITC); (iv) relative
binding affinity range and standard deviation (SD) in each
antibody−antigen system of at least 3 and 0.6 kcal/mol (1kT),
respectively; (v) minimum of 10 single-point mutants in each
system.
In a few instances (8% of mutants), several experimental

methods were tested on the same mutations, sometimes
reported in different publications and from different labo-
ratories. The database records all of these data and classifies
them as main data (typically either determined with the higher-
accuracy assay or belonging to the largest subset of mutants
measured with a given assay) or alternate data. While the
absolute binding affinities may vary for the same parent
antibody−antigen reference pair, generally there is a good
correlation between the relative binding affinities in the main
and alternate groups. In cases for which only binding affinity
limits are available (5% of mutants), these values were used to
calculate relative binding affinities. If crystal structures for
mutant-antibody−antigen complexes are available (5% of
mutants), their PDB codes are also recorded. Occasionally,
when the residue ID numbers of literature and deposited crystal

Table 2. Protocol Description

protocol sampling and refinement of mutant structures affinity ranking

type name ID bound state free state scoring function
Boltzmann
ensemble self-mutation

SIE-SCWRL SIE-Scwrlmut S1 (1) repack and minimize mutated side chain only; (2)
postminimize around all mutated sites (AMBER)

rigid separation SIE no no

SIE-Rosetta SIE-Rosmut S2 (1) repack and minimize mutated side chain only; (2)
postminimize around all mutated sites (AMBER)

rigid separation SIE no no

SIE-Rosiface‑sc S3 (1) repack and minimize side chains at the Ab−Ag
interface; (2) postminimize around all mutated sites
(AMBER)

rigid separation SIE yes yes

SIE-RosCDR‑loop S4 (1) backrub sample backbone, repack side chains, and
minimize CDR loop containing the mutated site; (2)
postminimize around all mutated sites (AMBER)

rigid separation SIE yes yes

Rosetta Rosmut R1 repack and minimize mutated side chain only rigid separation Talaris-interface no no

Rosiface‑sc R2 repack and minimize side chains at the Ab−Ag interface repack after
separation

Talaris2013 yes yes

RosCDR‑loop R3 backrub sample backbone, repack side chains, and minimize
the CDR loop containing the mutated site

repack after
separation

Talaris2013 yes yes

FoldX FoldXB FB repack side chains around mutated site rigid separation FOLDEF-binding yes yes

FoldXS FS N/A repack side
chains
around
mutated site

FOLDEF-stability yes yes
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structures differ, the latter numbers are taken as the primary
identifiers and the alternate IDs are recorded in the database.
General structural preparation of the parent structures

starting from the crystal structures in the database included
removal of water and counterions, deletion of antibody residues
after the variable domains of the heavy and light chains, and
capping of chain termini as charged states or blocked with
neutral groups (acetyl and methylamino) as appropriate. The
protonation state at neutral pH was adopted, and polar H
atoms at the antibody−antigen interface were visually inspected
and manually preoriented to maximize the H-bonding network.
(Retrospectively, we found that this manual procedure led to
the same results as a much faster automated procedure for
systematic scanning and optimization of polar hydrogen
positioning that we developed while this work was in
progress.22) Structural refinement was then carried out by
energy minimization using the AMBER force field39,40 with a
distance-dependent dielectric (4rij) and infinite cutoff for
nonbonded interactions, constraining the non-hydrogen
atoms at their crystallographic positions with a harmonic
force of 5 kcal mol−1 A−2. Additional refinement was also
applied for each sampling−scoring protocol described below.
Sampling−Scoring Protocols for Mutant Affinity

Ranking. Several mutant structure generation protocols
based on the SCWRL and Rosetta methods were employed
in order to introduce various degrees of flexibility around the
mutated position prior to ranking of mutant binding affinities
with the SIE scoring function. For comparative purposes, the
Rosetta and FoldX scores (binding affinity and stability) were
also obtained using their generated structures. The main
characteristics of the sampling−scoring protocols employed in
this study are listed in Table 2 and described in detail below. An
in-depth description of the terms in the SIE, Rosetta, and
FoldX scoring functions can be found in the Appendix in the
Supporting Information.
SIE-SCWRL. The side-chain repacking program SCWRL

version 4.0 (Fox Chase Cancer Center, Philadelphia, PA;
http://dunbrack.fccc.edu/scwrl4)41 was used to generate a
mutant structure for each complex, and these structures were
then scored using the SIE end-point force-field-based
method.19−21,25 In this sampling protocol, termed Scwrlmut,
we adopted the most structurally conservative approach in our
study, that is, only the mutated side chain was repacked with
SCWRL. Since SIE is a force-field-based method, the resulting
SCWRL-generated structures of the mutants were again
energy-minimized with the AMBER force field39,40 to ensure
that we are in a local minimum for the SIE scoring function. A
set of mobile residues was defined extending 6 Å around the
mutated residue, keeping all of the other residues fixed. These
refined structures were then used for calculation of the SIE
scores in the SIE-Scwrlmut protocol.
SIE-Rosetta. Three protocols employing the Rosetta

software version 3.5 (University of Washington, Seattle, WA;
http://www.rosettacommons.org) were considered. First, the
Rosmut protocol repacks and relaxes only the mutated side chain
in a rigid protein environment. Second, the Rosiface‑sc protocol
repacks and then relaxes the side chains at the antibody−
antigen interface while keeping the backbone rigid. Third, the
RosCDR‑loop protocol performs limited backbone sampling of the
CDR loop containing the mutation site using the backrub
method,42 followed by repacking and relaxation of side chains
in that loop. The two latter protocols were included to explore
the effect of increased protein flexibility during the mutant

structure modeling stage. Before the application of these
protocols, the parent complexes were first refined with a
Rosetta built-in relaxation routine (Relax) by constraining the
backbone and energy-minimizing the side chains freely using
the all-atom Talaris2013 scoring function. The XML files of the
three structure-generation protocols, Rosmut, Rosiface‑sc, and
RosCDR‑loop, are provided in the Supporting Information.
Conformational ensembles of 10 and 100 replicates were
generated for each modeled mutant structure with the Rosiface‑sc
and RosCDR‑loop protocols, respectively, and were also generated
in the same way for self-mutations at the mutated positions
with these two protocols. The structures resulting from each
Rosetta protocol were energy-minimized on the respective sets
of mobile residues as described for SIE-SCWRL and then
scored using SIE. The final SIE-Rosiface‑sc and SIE-RosCDR‑loop
binding affinity scores were averaged over each resulting
conformational ensemble by applying Boltzmann factors
derived from the total energies of the complexes obtained
with the Talaris2013 function during the Rosetta structural
modeling phase of the protocol. No averaging was required in
order to calculate the SIE-Rosmut score, which was based on a
unique structure generated by the Rosmut protocol.

Rosetta. For comparative purposes, we also used the
structures generated with the three Rosetta protocols described
earlier, Rosmut, Rosiface‑sc, and RosCDR‑loop, for binding affinity
ranking with the Talaris2013 scoring function (eq 2 in the
Supporting Information), the default energy function in Rosetta
3.5. As suggested in a virtual alanine scanning mutagenesis
protocol that refines only the side chain of the mutated residue
in the fixed environment,18 the Rosmut protocol employed
Talaris-interface, a Talaris energy function with interface
weights calibrated specifically for mutations to alanine
(https://guybrush.ucsf.edu/benchmarks/benchmarks/alanine_
scanning). The other two protocols, Rosiface‑sc and RosCDR‑loop,
used the unscaled Talaris2013 weights for affinity ranking.
Binding affinities were calculated as differences in the total
energies in the bound and free states (the RosettaScripts XML
files are provided in the Supporting Information). It should be
noted that the free states were repacked independently before
energy calculations, as recommended for the Rosiface‑sc and
RosCDR‑loop protocols with increased protein flexibility but not
for the more conservative Rosmut protocol. Also for the
Rosiface‑sc and RosCDR‑loop protocols, the binding scores were
averaged using Boltzmann factors derived from the total
energies of the bound states in the conformational ensembles of
replicates for mutants and self-mutations, but averaging and
self-mutations were not used in the case of Rosmut (also see
Table 2).

FoldX. Two types of scores were calculated with FoldX
software version 3.0-beta-6 (Center for Genomic Regulation,
Barcelona, Spain; http://foldx.crg.es),26 antibody−antigen
binding affinity scores and antibody stability scores. The
RepairPDB routine was used to refine the structures of the
parent antibody−antigen complexes for affinity scoring and also
the parent antibody structures extracted from these complexes
for stability scoring. Antibody mutants were modeled in the
complex state and also in the free state (after antibody
extraction from the complex) using the BuildModel routine,
with structural flexibility limited to side-chain repacking around
the mutated site. The number of replicates was set to 10 for the
generation of the mutant structures as well as for self-mutations
at each position in order to generate replicates of the parent
structures that are compatible with the mutants. The binding
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affinity scores, FoldXB, for the generated mutant and parent
complexes were obtained with the AnalyseComplex routine,
whereas the stability scores, FoldXS, for the generated mutant
and parent antibody structures in the free states were obtained
with the Stability routine. Final relative binding and stability
scores (FoldXB and FoldXS, respectively) were calculated as
differences between Boltzmann-averaged scores for the mutated
structures relative to the corresponding Boltzmann-averaged
scores for the parent structures via self-mutations. The
Boltzmann factors were derived from the total energies of the
complexes or the free antibodies using the Stability routine in
both cases. Default settings were used throughout the FoldX
routines, except for the ionic strength, which was set to 0.1 M.
A strong rotamer penalization due to internal inter-residue
clashes was applied in order to account for internal strain and
obtain more realistic protein structures (VdWDesign option set
to 2). The clash penalty was included in the energy score if it
had a positive value.
Consensus Scoring and Data Analysis. Prior to being

combined into a consensus score, the raw values xi
SFj obtained

for mutants i with individual scoring functions SFj were first
normalized into Z scores:

=
−

·
Z

x x

1.4826 MAD
i

iSF

SF

median

SF

j

j j

where xmedian
SFj and MAD are the median and the median-

absolute-deviation values, respectively. In comparison to the
more common Z scores based on the average and SD values,
this median approach is less sensitive to outliers. The consensus
score was then calculated as the arithmetic average over the
normalized Z scores obtained with n scoring functions:
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=

Z
n

Z
1
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j

n
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1
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In order to reduce the outlier bias, performance is reported
using the Spearman rank-order correlation coefficient (ρ)
between the experimental and calculated data, with a
bootstrapped standard deviation over 1000 replicate samples
with replacement, as calculated in R.43 The receiver operating
characteristic (ROC) curves and their area under the curve
(AUC) calculations for enrichment analysis were also
performed in R using 10 000 bootstrapped replicate samples.

■ RESULTS AND DISCUSSION

Single-Point Mutant Antibody Binding (SiPMAB)
Structure−Affinity Data Set. The composition of the
SiPMAB database is shown in Table 1 and Figure 1, and
details of the curation process are presented in Table S1.
Relative experimental and calculated binding affinities are given
in Table S2. Overall, the data set contains 212 single-point
mutants of antibodies in their CDRs, with curated measured
binding affinities relative to parent antibodies having high-
resolution crystal structures available in complex with their
respective antigens. The measured affinity data span 8 kcal/mol
with a standard deviation of 1.6 kcal/mol and were determined
mainly by ITC and SPR measurements. It should be noted that
in this data set and throughout this study, the terms antibody
and binding affinity refer to antibody fragments bearing a single
paratope (i.e., Fab or Fv fragments) rather than full-length
dimeric antibodies (having two identical paratopes that
introduce avidity effects into affinity measurements).

The SiPMAB data set includes seven system-specific subsets,
each with at least 10 single-point mutants having measured
antigen-binding affinities relative to the parent antibody
crystallized in complex with the antigen. These subsets are
important in order to test the transferability of the SIE function
to different antibody−antigen systems, since good overall
performance does not guarantee good rankings within the
individual component systems. This follows the philosophy
used for the development of the SIE function, which was
calibrated on 11 protein targets, each with congeneric sets of
small-molecule ligands having measured binding affinities.19

Hence, in addition to having at least 10 data points in each
system, we also imposed the constraint that the measured
relative binding affinities in each subset span at least 3 kcal/mol
with a standard deviation of at least 1kT (0.6 kcal/mol).
In this study we also wanted to examine the behavior of

sampling−scoring protocols against subsets that are most
relevant for affinity maturation. Hence, a subset of 50 single-
point mutations to residues other than alanine (the “to-nonAla”
subset) was created as opposed to mutations to alanine (the
“to-Ala” subset). Arguably, predicting structures and affinity
changes upon mutations to alanine is easier than for other
mutations because of the reduction in size and lack of side-
chain conformational flexibility. Additionally, there is a growing
consensus that predictions of mutation effects that alter
electrostatic interactions are more challenging, possibly because
of the noise associated with canceling large opposing
electrostatic terms in the adopted molecular mechanics plus
solvation formalism.44 At the same time, computational
predictions of enhanced electrostatic interactions were found
to lead to validated affinity maturation of antibodies, as
opposed to designs via enhanced nonpolar contacts.14 For these
reasons, we examined a subset of 46 single-point mutations that
change the net charge of the antibody (the “ΔQmut ≠ 0” subset)
vis-a-̀vis the subset of mutants that maintain the charge of the
parent antibody (the “ΔQmut = 0” subset).
The defining characteristics of the SiPMAB data set highlight

its unbiased nature. In addition, it does become apparent that
the SiPMAB data set serves a particular purpose. The aim here
is to assess the suitability of the SIE scoring function, with a
companion mutation modeling protocol, for single-point
exhaustive screening of the antibody CDR. As mentioned in
the Introduction, this is the first and most critical stage of a
stepwise virtual affinity maturation pipeline. Hence, SiPMAB
differs considerably from other previously published protein−
protein structure−affinity data sets. For example, one of the
more recent sets used in blind testing of methods for affinity
ranking is based on low-resolution experimental data drawn
from mutation frequencies.45 Another set, which has high-
resolution affinity data for broad protein−protein interaction
systems, lacks subsets of multiple variants (mutants) per
system.17 An earlier set that was used for calibrating a Rosetta
energy function basically contains only alanine-scanning
mutagenesis data for various protein−protein interfaces.27

The recent AB-Bind data set, which contains about 1100
mutational data points across 32 complexes, serves a broader
purpose and includes non-CDR interfaces and a large
proportion of non-SPR/ITC affinity measurements.46 The
closest in spirit is the data set of 173 single-point mutants
belonging to seven systems previously employed in enrichment
analyses for evaluating the predictive performances of several
protocols for virtual affinity maturation. While three of those
system-based subsets are similar to those in the SiPMAB
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database, the other four subsets are not suitable for the present
affinity ranking study. Namely, three subsets have very narrow
ranges of measured binding affinities, one subset contains only
five mutants, one subset has low-resolution phage-ELISA-based
affinity data (with a significant fraction not measured
accurately), and another subset is not an antibody−antigen
pair.47 We also believe that including only single-point
mutation data at this stage is the most informative way of
assessing sampling−scoring protocols for antibody affinity
scoring and a stepping stone in moving forward toward
multiple-point mutations and de novo antibody designs.
SIE Scoring Function. We tested four protocols to model

antibody single-point mutations, each followed by SIE affinity
ranking. Among these, the SIE-Scwrlmut and SIE-Rosmut

protocols, which repack and relax the mutated side chains
and thus are the most structurally conservative ones (see Table
2), perform best on the overall set. The overall performance of
the SIE scoring function on this data set of 212 antigen−
antibody mutant complexes generated with the SIE-Scwrlmut
and SIE-Rosmut protocols (Spearman rank-order correlation
coefficient, ρ, of 0.58) is comparable with its performance
tested on the CSAR-2010 benchmark data set of 343 protein−
ligand complexes (ρ = 0.62).21 As can be seen in Table 3, SIE-
Scwrlmut clearly has the most consistent performance across all
of the individual subsets, with no ρ value below 0.45, whereas
SIE-Rosmut leads to ρ values of 0.36 and 0.38 for two of the
systems.
Introducing more protein flexibility appears to somewhat

degrade the performance and transferability, as evidenced by
the results obtained with the SIE-Rosiface‑sc and SIE-RosCDR‑loop
protocols (Table 3). From a comparison of these two
protocols, local side-chain and backbone sampling of the entire
CDR loop containing the mutation site with SIE-RosCDR‑loop
seems superior in terms of both overall ranking performance
and transferability across different systems in comparison to
SIE-Rosiface‑sc that repacks only side chains but over the entire
antibody−antigen interface.
Besides examining the overall performance and its

consistency across the various system-specific subsets, we
were also interested in the performance on the to-nonAla and
ΔQmut ≠ 0 subsets presented earlier, which impose a more
stringent test on the sampling−scoring method. It was
reassuring to see that the consistent performance of the SIE-

Scwrlmut protocol was extended to these challenging subsets as
well (Table 3), considering the limited protein flexibility
allowed by this protocol. The evenness of the SIE-Scwrlmut

protocol across the four subsets, to-Ala, to-nonAla, ΔQmut = 0,
and ΔQmut ≠ 0, is impressive and distinguishes it further from
its closest competitor, SIE-Rosmut, which shows degraded
ranking performance especially for the very important to-
nonAla subset. Increasing the conformational sampling
flexibility with SIE-Rosiface‑sc and SIE-RosCDR‑loop does improve
the performance on mutants to non-alanine residues relative to
the more rigid SIE-Rosmut approach, but they do not surpass
the performance of the SIE-Scwrlmut protocol. The performance
of the SIE-Scwrlmut protocol on the challenging ΔQmut ≠ 0
subset is also superior or competitive to the other SIE-based
protocols tested.
There are several plausible sources for the leading ranking

performance of the SIE-Scwrlmut protocol. First, the preminim-
ization of the parent structure with the AMBER force field, on
which the SIE function is rooted, sets SIE-Scwrlmut at an
advantage relative to the other SIE protocols based on a
Rosetta-compatible parent structure, even if mobile residues are
postminimized with AMBER for these Rosetta-based protocols.
Second, conformational sampling may differ between SCWRL
and Rosetta even for the most similar conservative protocols,
SIE-Scwrlmut and SIE-Rosmut, in which only the mutated side
chain is sampled. The degradation of performance with
increased flexibility is not a new finding and has been noted
before in the context of Rosetta scoring of binding affinities18

and SIE scoring of protein−ligand binding affinities, where the
recommended protocol is to use strong constraints during the
energy minimization of the protein−ligand interface.25

Apparently, the inaccuracies inherent in any classical mechanics
force field or empirical energy function are exacerbated when
the number of degrees of freedom in the system increases,
leading to unreliable structural and energetic predictions. This
may lead to poorer performance especially in the case of SIE-
Rosiface‑sc, where a large number of side chains are allowed to
repack during mutation. An attempt to minimize these effects
by performing Boltzmann averaging of scores over conforma-
tional ensembles could not offset the noise introduced by the
increase in flexibility.

Other Scoring Functions. Although the primary focus
here is to test the performance of the SIE protein−ligand

Table 3. Ranking the Performance of Various Individual Sampling−Scoring Protocols and Consensus Scoringa

aValues represent Spearman rank-order correlation coefficients, ρ. Color shading is proportional to the ρ value. Standard errors from 1000
bootstrapped samples are given in Table S3.
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binding affinity scoring function in ranking antibody−antigen
interactions, we were also interested in positioning the
performance of SIE relative to those of other popular functions
for scoring protein−protein binding, such as Rosetta’s Talaris
energy function and the FoldX energy function FOLDEF.
It has been suggested that the weights of the Talaris

functional form can be fitted specifically for alanine scanning
(mutations to Ala only) and that a protocol based on protein
flexibility limited to the mutated site affords the best
performance.18 Hence, we used here the Talaris-interface
weights in the Rosmut protocol, which repacks and relaxes only
the mutated side chain (non-Ala side chains present in the to-
nonAla subset of this study). We found that Rosmut affords a
highly competitive performance with SIE-Rosmut and SIE-
Scwrlmut for affinity ranking on the overall set. It also shows
good transferability across various system-specific subsets,
somewhat less than SIE-Scwrlmut but slightly improved versus
SIE-Rosmut (see Table 3). The latter behavior is understandable
given the fact that the Rosetta-generated structure is more
compatible with Rosetta scoring using the Talaris-interface
function than with the SIE function. Importantly, the Rosmut
protocol does best what it has been trained for, namely, scoring
mutations to alanine. Its ranking performance on the to-Ala
subset (ρ = 0.65) is best across all of the tested individual
protocols (excluding the consensus ones). However, this is in
striking discrepancy to its performance on the to-nonAla subset
(ρ = 0.48), which is similar to the performance of SIE-Rosmut (ρ
= 0.46) but inferior to that of SIE-Scwrlmut (ρ = 0.57). The
Rosmut protocol, however, shows the best performance on the
other challenging subset, ΔQmut ≠ 0, with ρ = 0.63 slightly
surpassing that of SIE-Scwrlmut (ρ = 0.60).
As expected, the performance of the structurally conservative

protocol Rosmut degraded with increased protein flexibility, as
evidenced by the data obtained with the Rosiface‑sc and
RosCDR‑loop protocols described earlier (Tables 2 and 3). This
parallels the trend seen with the protocols involving SIE-based
ranking, although the degradation in performance among the
Rosetta protocols involving Talaris-based ranking is more
pronounced. This is in part due to the fact that the flexible
protocols Rosiface‑sc and RosCDR‑loop were matched with Rosetta’s
default Talaris2013 energy function instead of Talaris-interface
weights (recommended for rigid protocols and alanine-
scanning mutagenesis), which is appropriately employed in
Rosmut.
One can conclude on the basis of the results so far that the

SIE-Scwrlmut protocol is competitive with the standard Rosmut
protocol for virtual alanine-scanning mutagenesis but outper-
forms it for ranking mutations to residues other than alanine.
The similar ranking performances obtained with the Rosmut and
SIE-Rosmut protocols (especially the split into to-Ala and to-
nonAla subsets), which are based on similar structures but
different scoring functions, may indicate that the choice of
scoring function (e.g., SIE vs Talaris-interface) is not that
critical. This is more complicated, however, since the
distribution of calculated scores with the two functions shows
a much larger spread (Figure S1) than what may be anticipated
by comparing the rank-order correlation coefficients to
experiment (Table 3). Two points can be made here. First,
unique combinations of sampling protocols and scoring
functions can provide improved ranking performance and
system transferability, and SIE-Scwrlmut appears to be one such
winning combination. Second, it is quite impressive that a
scoring function like SIE with only four energy terms and a

single global weighting factor can match and even outperform a
much more complex functional form like Talaris, which has 16
energy terms, each weighted independently. It is possible that
the accuracy of the continuum solvation model used by SIE is
responsible for its performance.
In the FoldXB protocol used here for binding affinity ranking,

we found that its FOLDEF scoring function including repulsive
clash terms could rank antigen−antibody binding affinities with
an overall ρ of 0.49, which is inferior to the more conservative
SIE-Scwrlmut and Rosmut protocols (Table 3). However, there
were a few particular system-specific subsets (1DVF, 1DQJ) for
which FOLDEF was superior to both SIE-Scwrlmut and Rosmut.
In terms of sampling, FoldX repacks side chains around the
mutation site, and thus, it is most similar to the flexible Rosetta
protocols, particularly Rosiface‑sc, although the extent of the
sampled set of residues as well as the sampling implementation
differ. Together with differences between the various energy
terms of the FOLDEF and SIE functions, it is perhaps not that
surprising that although the overall performance of FoldXB and
SIE-Rosiface‑sc are similar (each affording ρ = 0.49 with respect
to experiment), quite a different behavior is seen for several
system-specific subsets (FoldXB is better on 1VFB, 1DVF, and
1DQJ, and SIE-Rosiface‑sc is better on 1C08 and 1N8Z).
Finally, it was interesting to note that the stabilities of

antibody mutants relative to the parent antibodies seem to
rank-correlate, albeit weakly, with the measured antigen binding
affinities (Table 3, FoldXS protocol). Although antibody side
chains were repacked in the free state prior to stability
calculations, the FoldXS stability scores reflect the folding
process from the unfolded state all the way to the bound state
for the backbone conformation, which may not be the lowest-
energy state of an unbound antibody mutant. Hence, the
FoldXS scores include some of the conformational penalty of
transitioning between the unbound and bound states, which is a
strain energy cost directly related to binding affinity.

Consensus Scoring. Previous experience in the field of
protein structure and binding affinity predictions indicates that
prediction accuracy can be improved by applying a consensus
approach over several methods.48−51 Hence, here we sought to
apply the same strategy for ranking antigen−antibody mutant
binding affinities, since reasonable ranking performance was
afforded by several protocols and scoring functions with subtle
differences on several subsets. Because individual scoring
functions can lead to different score magnitudes, scales, and
dynamic ranges, relative ranks are often used instead of absolute
binding scores. Since the rank alone lacks information about the
data spread, we instead used Z scores for the normalization of
raw scores.52 In addition, our Z scores are based on the median
value instead of the average value for each scoring function,
which reduces the sensitivity of Z scores to outliers.
In Table 3 we show the performance of four possible

consensus functions, termed Cons1 through Cons4, which are
arithmetic averages of the Z scores obtained with various
individual scoring protocols. The strategy was to use the best-
performing protocols based on the SIE, Talaris, and FOLDEF
energy functions, that is, SIE-Scwrlmut, Rosmut, and FoldXB. As
shown in Figure 2, there is a reasonable correlation between the
raw scores obtained with these protocols, which is required for
building successful consensus functions,53 but there is also
sufficient variation that further warrants exploration of the
consensus approach.
The Cons1 function includes the Z scores from SIE-Scwrlmut

and Rosmut, the leading protocols based on the SIE and Talaris
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scoring functions. Although Cons1 does not significantly
improve the overall performance, it combines the best
behaviors of its component functions, namely, it retains the
best performance obtained with SIE-Scwrlmut on the important

to-nonAla subset without compromising the excellent perform-
ance of Rosmut in ranking mutations to alanine. The result is a
consistently good performance across all four property-based
subsets (to-Ala, to-nonAla, ΔQmut = 0 and ΔQmut ≠ 0). Cons2
is a three-function Z-score-based consensus that builds upon
Cons1 and introduces the FOLDEF scoring function via the
FoldXB protocol. The overall performance is again only
marginally increased, but there is some improvement relative
to Cons1 on the system-specific subsets where FoldXB

performed best (1DVF and 1DQJ) while maintaining the
consistent performance on the four property-specific subsets.
Finally, we added to Cons1 and Cons2 the Z scores from

antibody stability calculations with the FoldXS protocol. This
was based on the observation that although by itself the FoldXS

antibody stability score correlates only weakly with antibody−
antigen binding affinity, it has the surprising ability to
consistently improve the affinity ranking performance of the
other individual protocols (see Figure S2). The resulting Cons3
and Cons4 consensus functions outperform the best individual
methods SIE-Scwrlmut and Rosmut as well as the consensus
methods Cons1 and Cons2 overall and on the vast majority of
system-based and property-based subsets. Upon inclusion of
FoldXS into the consensus, there is a tendency to improve the
performance for the to-Ala subset while maintaining the
performance on the to-nonAla subset and also to improve
the performance on the ΔQmut = 0 subset and decrease it on
the ΔQmut ≠ 0 subset (still above the level obtained with
individual protocols). We note that the FOLDEF energy
function was trained on folding free energy data for mutations
to alanine.26 Although the improvements are marginal in some
of the cases (also see the bootstrapping standard errors in Table
S3), they are very consistent across the various subsets, as
evidenced by the increase in the average and the decrease in the
standard deviation of ρ values across all 12 sets (Table 3). This
is a notable achievement for the consensus approach,
particularly when considering that no training of weights was
applied to the component Z scores from individual protocols. A
visual comparison of the ranking ability of Cons4 versus SIE-
Scwrlmut is presented in the scatter plots shown in Figure 3.
A legitimate question concerns the extent to which the

predictive power is affected by the limitations of the physical
model rather than the scoring function. In an attempt to
separate the effects of structural predictions from scoring, we
analyzed 11 mutants from the SiPMAB database for which
crystal structures are available and which belong to two systems
(six mutants from 1C0832,33 and five mutants from 1VFB30).
We found that the modeled mutant structures produced by the
better-performing protocols for each of the three scoring
functions (SIE-Scwrlmut, Rosmut and FoldXS) are very similar to
each other and to their crystal structures, indicating that the
structural predictions are reasonable. However, there appears to
be a marked improvement in the relative ranking of these
mutants when a single scoring function (e.g., SIE) is replaced
by consensus scoring (Figure S3). This points toward a greater
role of the scoring component than the structural modeling
component in the performance of the model. Outlier analysis
lends further support to this hypothesis by focusing on the
subset of mutants that incur charge changes (three Asn-to-Asp
mutations from the 1C08 system), which are misranked by SIE
(Figure S3A), with two of them appearing as moderate outliers
even after consensus scoring (Figure S3B). However, their
structural predictions are the closest to their corresponding
crystal structures among the analyzed set of 11 crystallized

Figure 2. Correlations between the raw scores obtained with the three
scoring functions analyzed in this study. The protocols that performed
best in ranking experimental relative binding affinities are used: SIE-
Scwrlmut for the SIE function, Rosmut for the Talaris function, and
FoldXB for the FOLDEF function. The least-squares correlation line is
indicated and the associated linear equation and squared correlation
coefficient are provided for each pair.
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mutants (Figure S3C). Since their mutated sites engage in H-
bonding and salt-bridge interactions with the antigen, including
bridging-water-mediated contacts,33 further refinements of the
scoring functions may be needed to capture these electrostatic
interactions with greater accuracy. Other avenues for further
improving scoring functions for protein−protein complexes are
also feasible. For example, currently the correlation slope
between the SIE scores and experimental affinities is about 0.5
for antibody−antigen complexes (Figure 3), whereas it is close
to 1 for small-molecule-ligand−protein complexes.21,25 Plau-
sible factors for this discrepancy are vibrational and configura-
tional entropies and nonpolar solvation (e.g., different
molecular surface curvatures of proteins vs small molecules).
As mentioned at the beginning of the paper, a highly relevant

practical application of in silico mutagenesis of antibody−
antigen interfaces is to guide the affinity maturation of
antibodies. With that practical task in view, it is instructive to
find out the extent to which the various protocols explored in
this study are able to identify mutations that actually improve
binding. Available data sets are typically dominated by
destabilizing mutations, and the SiPMAB database is no
exception, with 26 affinity-improving mutants out of a total
of 212 single-point mutants. We analyzed various protocols
studied in this paper in terms of their prediction performances

toward enrichments in affinity-improving mutants. These data
are shown in Figure 4 as ROC curves and the corresponding
AUC values. We see that individual scoring functions with the
best-performing protocols for affinity ranking also have
reasonable enrichment capabilities, with AUC values of around
0.7 (AUCrandom = 0.5, AUCideal = 1). The advantage of the
consensus approach is also evidenced in this type of analysis, as
it gives an AUC of about 0.8, thus outperforming the individual
protocols. A relatively robust early enrichment was also
obtained with the consensus protocol, that is, several affinity-
improving mutants are top-ranked by consensus scoring.

■ CONCLUSIONS

We have assessed the suitability of the solvated interaction
energy (SIE) function, originally developed for small-molecule
protein−ligand binding affinities, for use in antibody−antigen
systems. Using a database of 212 single-point mutant antibodies
(SiPMAB), we have found that the SIE function together with a
very local side-chain rotamer sampling protocol can reasonably
predict relative binding affinities with a Spearman rank-order
correlation coefficient of about 0.6 across seven antibody−
antigen systems. This did not require any reparametrization of
the SIE function. We also examined the use of consensus
ranking by adding the Rosetta Talaris and FoldX FOLDEF

Figure 3. Comparison of the consensus approach vs the best single-method. Shown are scatter plots between experimental relative binding affinities
and raw scores obtained with (A, B) the SIE-Scwrlmut protocol and (C, D) the Cons4 consensus approach for (A, C) to-Ala/to-nonAla subset
decomposition and (B, D) ΔQmut = 0/ΔQmut ≠ 0 subset decomposition.
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scoring functions to the SIE function in a Z-score-normalized
way. Consensus ranking only marginally improves the overall
Spearman correlation coefficient but does improve the
transferability across the different systems and enrichment
predictions of mutants with improved binding. These results
give us confidence in applying the SIE function to guide the
design of antibodies to improve or modulate their binding
affinities for their target antigens.
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