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ABSTRACT

A brief survey of some unsupervised learning and clustering
algorithms is performed based on a classical pattern recog-
nition book. Other unsupervised approaches are also briefly
introduced in order to broaden the content of the survey of
such a large body of possible approaches. An example from
paleontology is used to motivate the unsupervised learn-
ing problem, while examples from proteomics, geophysical
prospecting and digital remote sensing are very briefly men-
tioned. In addition, an unsupervised learning procedure (the
Isodata clustering algorithm) was implemented and results
reported.
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1. INTRODUCTION
The real world consists of objects that have properties

associated with them; some of which may be measured in
natural or human-made ways. For example, natural phe-
nomenon occur such that molecules may be trapped within
the confines of other molecular substances. In particular, we
know that dinosaurs may have existed on the planet Earth
due to the fact that we have found the fossilized remains
of their bones (and other indications such as footprints in
stone), not by direct observation of a dinosaur (although
distant relatives such as birds, turtles and crocodiles do ex-
ist, so one might argue that dinosaurs still do exist) but
rather through the interpretation of the discovered remains
and their proximity relationships with nearby artifacts. How
did humans obtain the knowledge that dinosaurs existed in
the past? Certainly, the first human to discover such fossils
did not have a teacher that told them that it was a fossil,
but, in fact, it was an unsupervised process in which a gen-
eralization was made based on other facts. In particular, the
fossils looked like bones, so perhaps they were bones, they
were large, so perhaps they were from a large animal of some
kind, and they were surmised to be very old. These facts
(and certainly others, since the author is not a paleontolo-
gist, such as Charles Darwin was) enabled the generalized
description of the potential existence of an animal. It may
have been the case the the first guess was that of a mythical
creature such as a large and powerful serpent or other rep-
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tile, with magical or spiritual qualities otherwise known as
a dragon, or perhaps a first guess could have been that of
giants with a single eye in the middle of their forehead and
a foul disposition otherwise known as Cyclopes. But today,
the current best guess is that of a dinosaur.

So even humans, given a set of facts and no one to teach
them what those facts represent, can be misled into pseudo-
concepts (a flat world becomes a round world... our home,
Earth, changes from the center of the universe to merely
one planet in the universe... very small particles (atoms)
are theorized... and then subatomic particles... etc.). This,
then, is the goal; to learn something new, in an unsupervised
(rather than supervised e.g. [3]) sense but with the property
that the learned concepts are as close to representing the real
world observations as possible (Does this sound reminiscent
of a portion of the definition of science?). As such, a survey
of the concepts within a classical pattern recognition book[6]
is reported.

2. UNSUPERVISED LEARNING
A data set may be described as consisting of attributes

(columns) and samples (rows). Such a data set may have
labels associated with each sample giving an indication of
membership to a particular class. The usual membership
function would be a binary relation with the property that
a sample does or does not belong to that particular class. Of
course, such a membership function may be generalized (as
has been done) but regardless of the particular membership
function, the point is that one was given the class of each
training sample. As was suggested in the introduction, if one
has never seen a particular problem before, then one would
want to “learn” the classes contained within the data (as-
suming that no additional information other than the data
set itself was available and that each sample should logically
only have membership to one class – not a necessary restric-
tion, but one that is usually made). This process is called
unsupervised learning.

2.1 Semisupervised Learning
Supervised learning is such that all of the training sam-

ples have labels (i.e. associated classes), while unsupervised
learning is on the other extreme of the spectrum; namely,
that not one training sample has a label. Certainly, if such
a spectrum exists, then perhaps one might have a situation
where some of the training samples have labels, and some
do not. This latter situation is call semi-supervised learn-
ing[5] and usually consists of a few labeled samples that were
costly to obtain and a larger set of unlabeled data that was



much less costly to obtain. For example, the latter data may
aid the more accurate estimate of the distributions of the at-
tributes and in that sense (and others) is useful to have for
the learning process.

2.2 Motivation
There are three main reasons[6] for pursuing unsupervised

learning, which are ordered such that less and less supervi-
sion is given:

• Collecting and labeling many samples may be costly.
Perhaps learning a coarse classifier on a small, labeled
set of samples may be performed and then fine-tuned
by using a large set of unlabeled samples. This seems
to now be known by the name of semi-supervised learn-
ing[5].

• Once a classifier has been placed into a production
environment, the new samples that are given to the
classifier may drift with time. If such a classifier were
able to track such temporal changes in an unsupervised
manner, then perhaps improved classification would
result.

• During the early stages of Exploratory Data Analysis
(EDA), now more commonly known as Data Mining,
one may be given a data set for which no information
is known. It then becomes of interest to learn if an
inherent nature or structure exists within the data.
For if such consistencies (e.g. abnormalities, oddities,
specific events, groups, etc) exist, then perhaps the
design of a classifier for that data would need to be
significantly re-thought.

2.3 Assumptions
A first approximation at tackling the unsupervised learn-

ing problem is to assume a functional form for the underlying
probability density and then learn the value of an unknown
parameter vector. This approach has some known problems
(e.g. the functional form of the probability density may not
be known, more than one density may statistically fit the
data very well, etc.) and so it may be reformulated as one
of partitioning the data into subgroups (clusters). Such a
partitioning is known as clustering.

It is also known that the concepts that an investigator is
pursuing within the data may not support a crisp partition-
ing and that a fuzzy partitioning may be more appropri-
ate. For example, in the single class problem of known cave
measurements and measurements that are not known to be
cave or non-cave[10], one goal would be to find the degree
of membership of an unknown sample measurement with
that of the known (labeled) cave measurement. One cannot
simply perform a crisp partitioning of the data, due to the
geophysical properties of the concept of cave. That is, caves
do not simply exist and then not exist. Sometimes there
are also small spaces that are within the ground (or simply
loosely compacted ground) that tend to resemble some of
the properties of caves, but not all, for which, depending on
the application, may not be of practical interest. Another
example of unsupervised learning is within the context of
analysing proteomics data for which no classes exist[4].

3. UNSUPERVISED APPROACHES

There are many approaches that attempt to address the
problem that is inherent within an unsupervised setting.
Only a small subset of the possibilities are reported from
the literature[6].

3.1 Form of Model Known
If a systematic progression from simple to more complex is

used then the simpler approach (meaning more assumptions
are used, and that the problem has been restricted from the
most general incarnation) starts by assuming that the model
is known, but the parameters are not. In particular, the
following assumptions are made:

1. there are a known number of classes (call that number,
c) to which all samples (Xi) belong

2. before any measurements are taken, the probability of
membership within a particular class is known. That
is, the a priori probabilities P (ωj) for each class are
known for j = 1, 2, · · · , c. (Also called mixing param-
eters)

3. the models are known. That is, the class-conditional
probability densities p (X|ωj , θj) are known for j =
1, 2, · · · , c. (Also called a component density)

4. the model parameters are not known. That is, the c

vectors θ1, θ2, · · · , θc are not known.

This, then, leads to the fact that the probability den-
sity function for the samples (a particular sample is X) is
given by: p (X|θ1, θ2, · · · , θc) =

∑c

j=1 p (X|ωj , θj) · P (ωj),
which is known as a mixture density because of the obvi-
ous fact that the density is composed of a set, or mixture,
of component densities. The basic goal is to estimate the
unknown parameter vector θ = θ1, θ2, · · · , θc, so that the
mixture may be decomposed into its component densities;
in effect solving the original statement of the problem in
this context (i.e. when the form of the model is known
and the parameters are not). But can it be done? More
specifically, if more than one value of θ leads to the same
value of the observed value p (X|θ), then there clearly ex-
ists an ambiguity. More concretely, a density p (X|θ) is said
to be identifiable if θ 6= θ′ implies that there exists an X

such that p (X|θ) 6= p (X|θ′) In the study of unsupervised
learning, the restriction to identifiable mixtures clearly sim-
plifies the task. Luckily, most mixtures that are commonly
encountered[6] are identifiable, with the exception that dis-
crete mixtures tend to be less co-operative. A simple ex-
ample of a non-identifiable mixture, is a special case when
normal densities are considered, with P (ω1) = P (ω2) and

p (X|θ) = P (ω1)√
2π

· e
−1

2
·(X−θ1) + P (ω2)√

2π
· e

−1

2
·(X−θ2) because θ1

and θ2 may be interchanged without affecting the value of
p (X|θ).

3.1.1 General Maximum Likelihood Estimates

If given a set of unlabeled samples −X = {X1, X2, · · · , Xn}
that were drawn independently from the mixture density
previously defined, then the likelihood of actually drawing
the particular observed values in our set is, by definition, the
joint density: p (−X|θ) =

∏n

k=1 p (Xk|θ). The value of θ may
be estimated in various ways, and, in particular, the maxi-
mum likelihood estimate (θ̂) is the value of θ that maximizes

p (−X|θ). Some general necessary conditions for θ̂ may then



be derived from these facts (not described here). In addi-
tion, the results may be generalized to include the a priori
probabilities (P (ωi)) among those things that are unknown.
That is, we would then have a maximum likelihood estimate
for both θ (called θ̂) and for P (ωi) (called P̂ (ωi)).

3.1.2 Normal Maximum Likelihood Estimates

The general maximum likelihood result may be applied
to the case when the form of the model is the multivariate
normal density. That is, p (X|ωi, θi) ∼ N (µi, Σi). There are
4 parameters that may be either known or unknown (µi, Σi,
P (ωi), and c). This leads to quite a few different cases (in
fact, 24 = 16 cases) of which, only some will be explicated:

1. Unknown: µi. Known: Σi, P (ωi), and c.
In this case the maximum likelihood estimate for µi

is: µ̂i =
∑n

k=1
P (ωi|Xk,µ̂)·Xk

∑

n
k=1

P (ωi|Xk,µ̂)
, which, intuitively, is a

weighted average of the samples. Unfortunately, this
equation does not give µ̂i explicitly. After some alge-
bra, an iterative formula for µ̂i may be obtained, which
is basically a local optimization procedure for maxi-
mizing the log-likelihood function (not shown here).
As such, no global solution would be guaranteed to be
obtained. For example, given a two-component normal
mixture, with roughly equal a priori probabilities, and
given that a sample data set could be generated from
the mixture, two possible solutions would be obtained
that would both be approximately correct, based on
the particular data set generated.

2. Unknown: µi, Σi, and P (ωi). Known: c.
In this case, the maximum likelihood principle yields
useless singular solutions. For example, the likelihood
may be made arbitrarily large, so the maximum be-
comes unique. However, empirically, the maximum
likelihood principle yields meaningful solutions. The
local-maximum-likelihood estimates are:
P̂ (ωi) = 1

n
·
∑n

k=1 P̂
(

ωi|Xk, θ̂
)

µ̂i =
∑n

k=1
P̂(ωi|Xk,θ̂)·Xk

∑

n
k=1

P̂(ωi|Xk,θ̂)

Σ̂i =
∑n

k=1
P̂(ωi|Xk,θ̂)·(Xk−µ̂i)(Xk−µ̂i)

T

∑

n
k=1

P̂(ωi|Xk,θ̂)

with P̂
(

ωi|Xk, θ̂
)

being suitably defined in terms of

µ̂i, Σ̂i, and P̂ (ωi). Again, multiple solutions are pos-
sible. In addition, a larger computational overhead is
present, with, for example, repeated inversion of the
sample covariance matrix being made. However, sim-
plifications may be possible, by, for example, assuming
the classes have equal covariance matrices, or assum-
ing that they are each diagonal.

An elementary, approximate method for simplifying com-
putation and accelerating convergence is the Isodata proce-
dure ([9], [7], [1]), which is a typical methodology from a
class of procedures known as clustering algorithms. It is an
iterative optimization algorithm, like, for example, the well
known k-means (or c-means) family of algorithms.

Isodata may be viewed as a way to obtain maximum likeli-
hood estimates for the means. In general, when the compo-
nent densities (within the mixture density) overlap is small,
the maximum likelihood approach and the Isodata proce-
dure may produce similar results.

Algorithm 1 Basic Isodata Clustering Procedure

1: Choose some initial values for the means µ̂1, µ̂2, · · · , µ̂c.
2: repeat
3: Classify the n samples by assigning them to the class

of the closest mean. For example, by computing the
squared Euclidean distance, instead of the more com-
putationally expensive Mahalanobis distance.

4: Recompute the means as the average of the samples
in their class.

5: until no mean has changed

3.1.3 General Bayes Classifier

Maximum likelihood methods consider the parameter vec-
tor θ to be unknown, whereas the Bayesian approach as-
sumes that θ is a random variable with a known a priori
distribution p (θ|−X ). Formally, the unsupervised Bayesian
approach is quite similar to that of the supervised Bayesian
approach. Basic assumptions for the former over that of the
maximum likelihood approach are:

1. there are a known number of classes (call that number,
c) to which all samples (Xi) belong

2. before any measurements are taken, the probability of
membership within a particular class is known. That
is, the a priori probabilities P (ωj) for each class are
known for j = 1, 2, · · · , c. (Also called mixing param-
eters)

3. the models are known. That is, the class-conditional
probability densities p (X|ωj , θj) are known for j =
1, 2, · · · , c. (Also called a component density).

4. the model parameters are not known. That is, the
parameter vector θ = (θ1, θ2, · · · , θc) is not known.

5. some knowledge about the parameters is known. That
is, the a priori density p (θ) is known.

6. the rest of the knowledge about θ is contained within
a set of n samples −X = {X1, X2, · · · , Xn} that were
drawn independently from the mixture density: p (X|θ)
=

∑c

j=1 p (X|ωj , θj) · P (ωj).

The basic equation for unsupervised Bayesian learning is

obtained using Bayes rule, and is: p (θ|−X ) = p(−X|θ)·p(θ)
∫

p(−X|θ)·p(θ)dθ
.

That is, given the set of samples (−X ), we want to learn the
parameter vector θ for our known densities, and so it may
be given as this ratio, where we are basically dividing our
point estimate for θ by an average over all possible values
of θ in order to normalize. This is a compressed version of
that from the classical book, so any inaccuracies are mine.

The Bayesian and maximum likelihood learning approaches
differ in the use of the fact that the a priori density p (θ) is
used in the former and not in the latter (i.e. prior knowledge
is used).

3.2 Form of Model Unknown
Perhaps one might be faced with the problem that they

are given a data set, but they do not know the form of
the model (density) from which the data derives. One way
to solve the exact problem arising from this situation is an
approach called decision-directed approximation. The idea
is straightforward (perhaps not the implementation). One



uses a priori information to design a classifier that may
be applied to the data in order to add labels, from which
a supervised approach may then be tried. Many variants
and hybridizations are possible that change when the la-
beling is performed versus when the classifier is updated.
The Basic Isodata Procedure is an example of a such a
decision-directed approximation approach. There are, of
course, as with any heuristic approach such as this, many
possible problems associated with the complete decision-
directed procedure that may occur; any one of which might
lead to incorrect results. For example, if an unfortunate se-
quence of samples is presented to the classifier for learning
(assuming the classifier is updated in a way that is depen-
dent on the presentation sequence) then such a classifier will
label the original data with labels that do not represent the
sample’s true class membership; clearly a less than ideal sit-
uation.

3.2.1 Clustering

The unsupervised learning problem has a set of samples as
input. Such input may be re-interpreted as a set of points
(or cloud(s)) in a d-dimensional space, from which statis-
tics (lower moments), such as the sample means or sample
covariances could be computed. Obviously if the complete
distribution could be computed (all of the infinity of mo-
ments) for the data, then a complete and compact descrip-
tion would be available for use by an algorithm that would
result in no loss of information. As a practical measure, one
may use c normal mixtures in order to estimate the true
density(ies), but this would be imposing structure onto the
data, rather than finding structure from the data. An alter-
native approach would be non-parametric estimates of the
unknown mixture density. But if subclasses are one possible
goal, then clustering may be a more direct methodology to-
wards learning something from an unknown data set. The
idea being that groups should be found that are highly inter-
nally similar and, simultaneously, externally quite dissimilar
(i.e. compact, separated groups).

3.2.2 Similarity Measures

What is a natural group within a data set? For if we can
answer this fundamental question, then our clustering pro-
cedure will simply need to produce these natural groups as
its output. For a higher level conceptual example, consider
4 geometric shapes; a line segment, a triangle, a square and
a circle. Which ones should be considered a natural group?
Perhaps the latter 3, because they all enclose an area? or
perhaps the first 3 because they all consist of straight line
segments? Or perhaps the triangle and the square are drawn
on a piece of paper in closer proximity, while the line segment
and circle are closer? Now that we have these 3 possible clus-
terings, which one should be considered more appropriate?
Clearly, the exact definition of similarity plays an absolutely
crucial role in determining a possible answer to the natural
grouping question.

As another example, if Euclidean distance is chosen as a
measure of dissimilarity, then the input feature space will
be isotropic (Greek iso, meaning alike or same, and tropos,
meaning turning. See http://amsglossary.allenpress.

com/glossary/browse?s=i&p=51). This means that the clus-
ters that would be output will be invariant to translations or
rotations (rigid-body motions of the data points) but that
they would not, in general, be invariant to linear or other

transformations that distort the distance relationships. The
main point is simply that normalization (and/or other trans-
formations) may dramatically change the results of a partic-
ular clustering algorithm and should be performed with care
(if performed at all). For if the data consists of very highly
dimensional data, for which we, as humans, cannot directly
visualize, then how would we, in addition, also understand
what a transformation would do to the resulting clustering
unless care is taken?

3.2.3 Cluster Criterion Measures

Once a set of c clusters have been output from a clustering
algorithm, one may be interested in the quality of the result.
Formally, a set of n samples −X = {X1, X2, · · · , Xn} is
partitioned into exactly c disjoints subsets −X = −X 1 ∪ −X 2 ∪
· · · ∪ −X c. Of course, this may be generalized so that the
subsets do not need to be disjoint, but merely need to cover
the set −X . In any case, given the restricted definition, one
may define cluster evaluation criteria, of which examples are:

1. Sum of squared error criterion. Let ni be the num-
ber of samples in −X i and let µi be the mean of those
samples, then this criterion is:

Je =
∑c

i=1

∑

x∈−X i
‖X − µi‖

2.

Intuitively, Je measures the total squared error in-
curred in representing the n samples by the c cluster
centers. An optimal partitioning is one that minimizes
Je. These kinds are partitions are also called minimum
variance partitions.

2. Minimum variance criterion. Je may be rewritten in
the following form:

Je = 1
2

∑c

i=1 ni · si,

where

si = 1
n2

i

∑

X∈−X i

∑

X′∈−X i
‖X − X ′‖2.

This form emphasizes the the Euclidean distance (a
dissimilarity) is being used, and that other possibilities
are possible.

3. Scattering Criterion. The scatter matrix for the i-th
cluster Si =

∑

X∈−X i
(X − µi)(X − µi)

T leads to the
concepts of the within-cluster scatter matrix, calcu-
lated as SW =

∑c

i=1 Si, the between-cluster scatter

matrix, calculated as SB =
∑c

i=1 ni(µi − µ)(µi − µ)T ,
and the total scatter matrix ST = SW + SB . This
criterion has a tradeoff, in which when the between-
cluster scatter goes up, the within-cluster scatter goes
down (in value). In the univariate case, the trace and
determinant of this scatter matrix ST have equivalent
values. The trace of the scatter matrix (sum of diag-
onal elements) =⇒ square of scattering radius =⇒
sum of squared error criterion =⇒ Trace(SW ) = Je.
The determinant of the scatter matrix measures the
square of the scattering volume because it is propor-
tional to the product of the variances in the directions
of the principal axes. The determinant based criterion
is:



Jd = |SW | = |
∑c

i=1 Si|.

4. Invariant Criterion. The eigenvalues λ1, λ2, · · · , λd of
S−1

W · SB are invariant under nonsingular linear trans-
formations of the data. Based on this, many possible
criterion are possible. For example, maximizing the
trace of S−1

W · SB =
∑d

i=1 λi is one approach. In gen-
eral, invariant criterion functions are more likely to
posses multiple local extrema.

3.2.4 Clustering as Iterative Optimization

Once a similarity measure and a cluster criterion mea-
sure have been selected, the process of clustering becomes
a problem in discrete optimization (because we have a dis-
crete number of classes and a discrete number of samples).
In theory, this may be solved by exhaustive enumeration of
all possible clusterings. For n samples and c classes, this

means 1
c!

c
∑

i=1

(

c

i

)

· (−1)c−i
in (or approximately cn

c!
) ways

of partitioning the set exist. For example, the best set of
5 clusters in 100 samples would require enumerating 1067

partitionings. Therefore, with such a large search space,
heuristics are used in order to reduce the amount of work
needed to find a global optimum, for which a local optimum
is the only thing that may be guaranteed. An example of
a basic procedure for minimizing the squared error criterion
is illustrated in A2.

Algorithm 2 Basic Minimum Squared Error Procedure

1: Select an initial partition of the n samples into clusters
and compute Je and the means µ̂1, µ̂2, · · · , µ̂c.

2: repeat
3: Select the next candidate sample X̂.

Suppose that X̂ is currently in −X i.
4: if Cardinality of −X i is greater than 1 then

5: ρj =







nj

nj+1

∥

∥

∥
X̂ − µj

∥

∥

∥

2

, j 6= i

ni

ni−1

∥

∥

∥
X̂ − µi

∥

∥

∥

2

, j = i

6: Transfer X̂ to partition −X k if ρk ≤ ρj for all j.
7: Update Je, µ̂i, and µ̂k.
8: end if
9: until Termination criteria has been satisfied.

E.g. Je has not changed in n attempts.

When this algorithm is compared with the Basic Isodata
algorithm, it is seen that while the latter waits for all n sam-
ples to be reclassified before updating, the former updates
after each sample as been reclassified. This algorithm has
the problems that it is more prone (experimentally shown)
to be trapped in local minima and the final paritioning de-
pends on the order of presentation of the samples to the
algorithm. As for all hill-climbing algorithms (i.e. greedy),
this algorithm depends on the initial partitioning into the
clusters.

Another approach to clustering, is that of agglomerative
or divisive hierarchical clustering depending on whether the
hierarchy is being built bottom-up or top-down. For the for-
mer, each sample is placed into its own cluster (so we have
n clusters) and the two most similar clusters are selected to
be merged. This continues until only 1 cluster is left, that
contains all of the samples. This is more formally specified
in A3, which has incorporated a truncation of the resultant

dendogram by the specification of a parameter c indicating
how many clusters are believed to be within the data. Cer-
tainly c should be specified as 1 for an initial exploration of
the data (if nothing is known a priori) in order to analyse
the complete dendogram. In other words, if c is specified to
something greater than 1, then implicitly, the dendogram is
being cut at a similarity level for which the user does not
know, and does not have any control.

Algorithm 3 Basic Agglomerative Clustering Procedure

1: Let ĉ = n and −X i = {Xi}, i = 1, 2, · · · , n.
2: while ĉ > c do
3: Find nearest pair of distinct clusters, say −X i and −X j .
4: Merge −X i and −X j , delete −X j , and decrement ĉ by one.
5: end while

Certainly, the nearest pairs of clusters in A3 implies that
a measure of nearness has been defined from one set (clus-
ter) to another set (cluster). For example, between the two
clusters, the distance between the nearest samples could be
defined to be the distance between the two clusters. Or,
perhaps, the distance between the farthest samples could be
defined to be the distance between the clusters. In the for-
mer case, it could lead to a minimal spanning tree algorithm
over the samples. The former distance tends to favour elon-
gated clusters (e.g. banana shaped clusters could be found)
whereas the latter tends to discourage elongated clusters.
Obviously, other measures could be defined. For example,
the mean or mode could be used. Selecting one definition
over the other should be performed after careful analysis of
the data and the domain for which the data was collected,
for one does not want to impose structure onto a data set;
rather, structure should be found within it.

3.2.5 Inducing a Metric

If our data set does not have a metric defined upon it,
but rather a dissimilarity for every pair of samples, then
we may induce a metric. That is, if we define a dissimilar-
ity that is the minimum (as in the nearest pairs sense) of
the dissimilarities of all objects in the two clusters that we
are considering for merging, then the hierarchical agglom-
erative clustering algorithm will yield a dendrogram with
least dissimilar clusters closest together. As such, when the
dendogram is “unwound”, it can be seen that all samples
may be ordered by their position in the tree; giving a total
order of the samples. The “unwinding” of the dendogram
is performed level-wise, meaning that the depth of a node
in the tree determines its order because no two nodes (sam-
ples) share the same level because of the way in which the
dendogram was constructed.

3.2.6 Graph Theoretic Methods

The dendogram produced by the agglomerative hierar-
chical method is known by the term “tree” in the theory
of graphs. As such, clustering problems may be posed in
terms of graph theory. For example, the minimum spanning
tree may be converted into a nearest neighbour dendogram,
and hence we may obtain a clustering (partition) from this
information.

3.3 Unknown Number of Clusters
Since we are within the context of unsupervised learning,

it could certainly be the case that the number of clusters



contained within our samples is unknown. For example, the
number of subtypes of brain cancer may be unknown to
everyone, and we may be interested in learning if there are
such subtypes and exactly how many of them there are so
that proper treatment and may start to be investigated for
each subtype.

One approach to dealing with this issue is to plot the clus-
ter criterion measure against the number of clusters (e.g.
c = 1, 2, 3, · · · ) and determine if a natural relationship indi-
cates an appropriate number of clusters. Another approach
involves heuristically determining a test for rejection of a
specified number of clusters at a specific significance level.
However, this cluster validity problem is essentially unsolved
from the point of view of using the data to determine the
appropriate number of clusters. Perhaps there are domain
dependent ways in which experiments may be performed
that could validate a particular number of clusters.

3.4 Low Dimensional Representations
Given a data set, one might be interested in obtaining a

lower dimensional representation that preserves as much as
possible the original structure of the data. Obtaining such a
representation of the higher dimensional space may lead to a
better understanding of the relationships that are occurring
between the samples both in a local and a global sense.

Classical approaches are through principal components anal-
ysis (which, in fact, produces an orthogonal mapping that
is equal in dimension to the original space, but for which
one may disregard some of the dimensions with low varia-
tion) and factor analysis. These representations are forming
linear combinations of the original features.

A modification of the hierarchical clustering algorithm
may be made in order to produce a feature reduction al-
gorithm, as shown in A4. This algorithm tries to reduce

Algorithm 4 Hierarchical Dimensionality Reduction

1: Let d̂ = d and Fi = {xi}, i = 1, 2, · · · , d.

2: while d̂ 6= d′ do
3: Compute the correlation matrix and find the most

correlated pair of distinct clusters of features, say Fi

and Fj .

4: Merge Fi and Fj , delete Fj , and decrement d̂ by one.
5: end while

the number of dimensions from the starting d dimensions
to the final (requested) d′ dimensions by iteratively (greed-
ily) merging the features one at a time by selecting features
based on the correlation.

To remind ourselves, the variance of a vector X is de-
fined to be σ2 = var(X) = E[(X − µ)2], which may be gen-
eralized to the concept of covariance between two vectors
X and Y by σ2

X,Y = cov(X, Y ) = E[(X − µX)(Y − µY )T ],
where µX = E[X] and µY = E[Y ] (the respective expected
values). In particular, the covariance between each pair of
vectors from a set of n vectors X1, X2, X3, · · · , Xn may be
expressed in matrix form:

Σ =











σX1,X1
σX1,X2

· · · σX1,Xn

σX2,X1
σX2,X2

· · · σX2,Xn

...
...

. . .
...

σXn,X1
σXn,X2

· · · σXn,Xn











,

and the relationship between covariance and correlation is

defined via the following equation:

ρX1,X2
=

cov (X1, X2)

σX1
· σX2

.

One serious criticism of the presented approaches, is that
they are all concerned with reproducing the representation
of the data (e.g. keeping the most variable features) but for
classification, the interest lies in discrimination, not repre-
sentation.

4. OTHER UNSUPERVISED ALGORITHMS
There are, of course, other unsupervised learning algo-

rithms than those listed within one section of a classical
pattern recognition book[6]. Such an example was detailed
in various incarnations[2], and was originally described as
the Leader Algorithm ([8] p.74), which begins with some
motivation for this particular quick partition algorithm: It
is desired to construct a partition of a set of M cases, a
division of the cases into a number of disjoint sets or clus-
ters. It is assumed that a rule for computing the distance
D between any pair of objects, and a threshold T are given.
The algorithm constructs a partition of the cases (a num-
ber of clusters of cases) and a leading case for each cluster,
such that every case in a cluster is within a distance T of the
leading case. The threshold T is thus a measure of the diam-
eter of each cluster. The clusters are numbered 1, 2, 3, ..., K.
Case I lies in cluster P (I)[1 6 P (I) 6 K]. The leading case
associated with cluster J is denoted by L(J). The algorithm
makes one pass through the cases, assigning each case to the
first cluster whose leader is close enough and making a new
cluster, and a new leader, for cases that are not close to any
existing leaders.

A translation of the Leader Algorithm using modern ter-
minology was performed[2] (e.g. removing goto statements)
and a number of variants were implemented. In addition,
the original algorithm used the terminology D(i, j)1, but it
is believed that D(i, L(j))2, may be more clear, and so the
translation described in A5 uses this change of terminology.

5. IMPLEMENTATION AND RESULTS
The basic Isodata procedure was implemented and run

using simulated data. In particular, the true ω1 mean vector
µ1 was specified as:

−8.48, −6.05, −7.10, −8.54, −9.16, −6.00, −6.69, −7.50.

While a covariance matrix that was used to generate the
data associated with ω1 was randomly generated that had
the property that it was positive semi-definite:

4.52 1.26 1.73 1.41 1.48 1.34 1.63 1.93
1.26 4.45 1.52 1.11 1.33 0.91 1.77 1.50
1.73 1.52 4.82 1.51 1.65 1.77 1.18 1.52
1.41 1.11 1.51 5.00 1.05 2.33 1.82 1.97
1.48 1.33 1.65 1.05 4.86 0.74 1.73 2.34
1.34 0.91 1.77 2.33 0.74 5.27 2.24 0.90
1.63 1.77 1.18 1.82 1.73 2.24 5.18 1.66
1.93 1.50 1.52 1.97 2.34 0.90 1.66 5.83

1meaning that case i is measured in terms of distance to
cluster j
2meaning that case i and case L(j) are measured in terms of
distance to each other, where L(j) is the leader for cluster j



Algorithm 5 Hartigan’s Leader Algorithm (Translation)

Input: Data X, number of cases M , distance threshold Td

Algorithm Negative Properties: i) the first data object
always defines a cluster and therefore, appears as a leader ii)
the partition formed is not invariant under a permutation
of the data objects iii) the algorithm is biased, as the first
clusters tend to be larger than the later ones since they get
first chance at “absorbing” each object

1: k ⇐ 1 ✄ The current number of clusters

2: P (1) ⇐ 1 ✄ Classify the first case into the first cluster

3: L(1) ⇐ 1 ✄ Define the leading case of the first cluster

4: for i ⇐ 2 to i ≤ M by i ⇐ i + 1 do ✄ For every case

but the first in the data set

5: P (i) ⇐ −1 ✄ Case i is not assigned to a cluster yet

6: for j ⇐ 1 to j ≤ k by j ⇐ j + 1 do ✄ For each

currently known cluster

7: if D(i, L(j)) ≤ Td then ✄ Current case is within

the threshold

8: P (i) ⇐ j ✄ Case i is assigned to cluster j

9: break for
10: end if
11: end for
12: if P (i) = −1 then ✄ Case i isn’t close enough to one

of the existing leaders

13: k ⇐ k + 1 ✄ Create a new cluster

14: P (i) ⇐ k ✄ Classify case i to the new cluster

15: L(k) ⇐ i ✄ Define the leader of the new cluster

16: end if
17: end for

Since a 2-class problem was being investigated, the true
ω2 mean vector µ2 was specified to be:

6.64, 6.15, 7.57, 7.77, 8.74, 5.26, 9.23, 7.91.

While a covariance matrix for class ω2 was also generated
with the positive semi-definite property:

7.41 2.08 0.88 2.41 3.23 0.70 1.82 1.15
2.08 4.75 1.21 0.76 2.83 2.16 1.40 2.29
0.88 1.21 5.54 2.93 1.16 1.72 1.30 1.10
2.41 0.76 2.93 8.94 1.31 2.67 2.16 2.03
3.23 2.83 1.16 1.31 8.33 0.88 2.88 0.90
0.70 2.16 1.72 2.67 0.88 4.02 1.74 2.08
1.82 1.40 1.30 2.16 2.88 1.74 6.21 0.76
1.15 2.29 1.10 2.03 0.90 2.08 0.76 7.11

After the 2 classes were generated using the information
above, the samples were randomly shuffled together (like
two halves of a deck of cards being shuffled back together)
in order to present a data set for the Isodata procedure
that was not an easy unsupervised learning problem. After
Isodata was executed, it added labels to each of the 100
artificial samples (50 per class, so it was a balanced learning
problem). The learned mean vectors for the 2 classes are:

µ̂1 = −8.851422, −6.302922, −7.102150, −8.531888,
−9.380122, −5.562690, −6.959866, −7.887627

µ̂2 = 6.061690, 5.905239, 7.681886, 6.929916, 8.453957,
5.121132, 8.754080, 7.716288

When the learned µ̂1 is compared with the true µ1 it can
be seen that they are quite close in actual value. The dif-
ference is due to the fact that the samples were randomly
generated from the true mean vector, so it would be highly

improbably for the samples to have a sample mean equal to
the population mean from which they were generated. It
can be seen to be a similar situation when comparing the
estimated µ̂2 and the true µ̂2 for the other class. That is,
they are also quite similar estimates for the true population
mean vector.

Since this was an unsupervised problem, the samples given
to the Isodata procedure did not have labels associated with
them. Hence, the problem was for Isodata to apply a clas-
sification to the samples (given that Isodata was told that
the data contained 2 classes). As such, when the random-
ized samples labels were compared to their known values,
it was seen that Isodata achieved 100% accuracy. This is
certainly a positive result because the simulated data was
well separated, and such an accuracy would be expected, if
not demanded from the unsupervised learning procedure.

Investigating a little bit deeper, it can be seen in Fig.1
that the distances for all of the points within each class
(Class 1 points on the left and Class 2 points on the right
of the figure) lie within an interval that is separated from
each class mean by about 2.4 and 3 measurement units. The
distribution of the distances is such that the majority of the
points are close to the center, while fewer and fewer points lie
further and further away. This is certainly as expected and
hoped for within a well formed data set and unsupervised
learning problem.

6. CONCLUSION
The Isodata clustering algorithm was implemented and

was able to successfully learn a 2 class classification of a
well separated simulated data set.

The review has shown examples of unsupervised learning
algorithms that make certain assumptions about the under-
lying properties of the input data. In particular, the largest
assumption seems to be very near to the beginning of the
unsupervised learning methodology; that measurements of
real world objects are recorded, for example, in the binary,
integer or real domains. But what of real world objects
that may have other types of data associated with them?
How would unsupervised learning occur in those situations?
Should that additional data be thrown away? Answering
these questions is certainly outside the scope of the course
requirements and hence this review.
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