

NRC Publications Archive Archives des publications du CNRC

A new framework of operation research and learning path recommendation for next-generation of e-learning services Belacel, Nabil; Durand, Guillaume

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=960ff119-8cad-4a0a-b2e9-4d9a21942f13 https://publications-cnrc.canada.ca/fra/voir/objet/?id=960ff119-8cad-4a0a-b2e9-4d9a21942f13

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

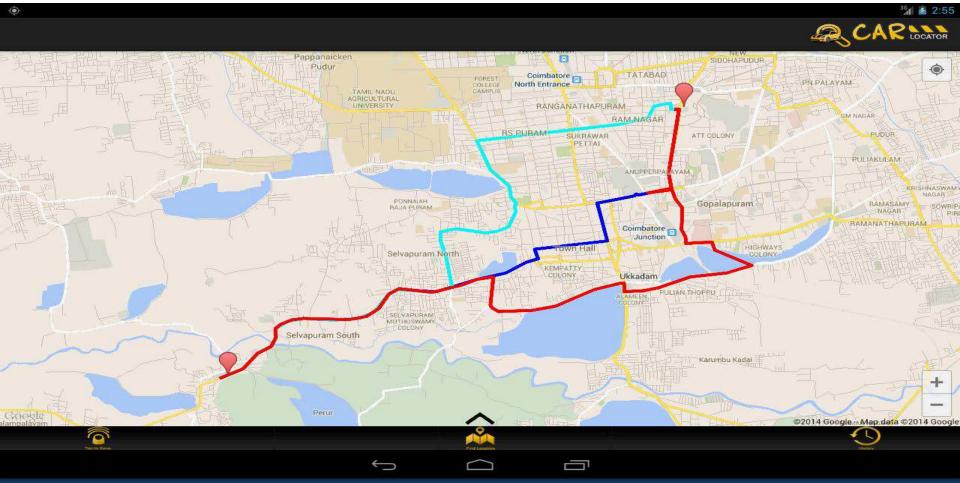
Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

A new framework of operation research and learning path recommendation for nextgeneration of e-learning services


Nabil Belacel, Guillaume Durand National Research Council Canada July 15th, 2015 EURO2015

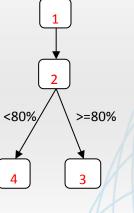
Outline


- Introduction
 - Learning Design concept, and challenges
- Proposed graph model and initial solutions
 - Graph Model
 - Induced sub-graph
- BIP Solver
- Example
- Discussion

NC CNRC

Introduction

Car navigation system $\leftarrow \rightarrow$ Learning path


NRC·CNRC

A learning design (LD) is a learning path, a **sequence** of ordered learning objects.

Example:

- 1. Read article A
- 2. Take a quiz
- 3. Do the lab
- 4. Read supplementary material S

'A teacher preparing a course is a learning designer, and learning design could be as simple as the activity of preparing a course.'

Introduction

Definitions:

- A competency is "an observable or measurable ability of an actor to perform a necessary action(s) in given context(s) to achieve a specific outcome(s)" (ISO 24763)
- A learning object (LO) is any digital resource that can be reused to provide a competency gain.

Personalized Learning path:

- Let G = (V, E) be a directed graph
- V (vertex/node): learning object set,
- E (arc): competency dependencies

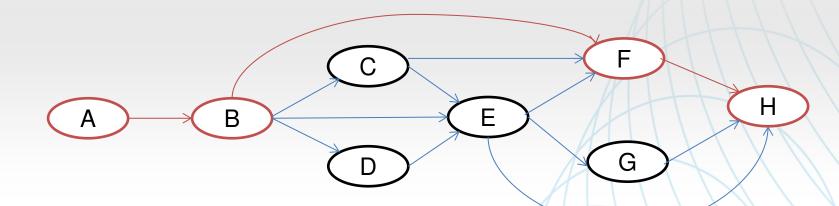
 C_{pre}

 Arc(u, v): the LO v is accessible from u (Two nodes are connected if there exist a dependency relation, such that one node is a prerequisite to the other.).

 C_{post}

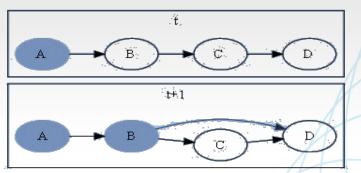
For each vertex, we have:

C_{pre} is a set of the competencies required by vertex v


LO

C_{post} is a set of competencies offered by vertex v

Personalized Learning path:


• A learning path is a path that starts from the initial knowledge of the learner and ends at the target knowledge.

• $(A \rightarrow B \rightarrow F \rightarrow H$ is the optimised personalized learning path.

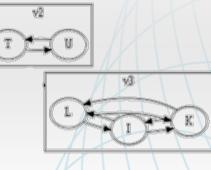
NRC.CNRC

- *C*_{pre} is a set of the competencies required by vertex *v*
- C_{post} is a set of competencies offered by vertex v
- $C_{pre}(v) \subseteq C_{post}(u) \Rightarrow Arc\{u, v\}$
- $Arc\{u,v\} \Leftrightarrow C_{pre}(v) \subseteq C_{post}(u) \cup C_{learner}(t)$

 LO can bring competencies that could be among the prerequisites of future learning objects

Induced Subgraph Reducing the solution space

- An induced sub-graph H of graph G is a graph whose vertex set is a subset of G's vertex set, and whose edges between vertices are kept from G.


- An induced sub-graph that is a complete graph is called a clique.
- Any induced subgraph of a complete graph forms a clique.

NRC CNRC

Cliques as a graph reducer

	β ₆		
V ₁	A ⁶ ₅ E ⁶ _{3,5}	↑6	A
V ₂	T ^{3,2,4} 7 U ⁵ 0	↑ 3,5	
V ₃	L ^{0,7} 8,9 I ⁷ 9 K ⁰ 8	↑ 0, 7	
	α ^{8,9}	↑ 8, 9 <i>α</i>	<i>arget</i> clique vhile

 α : Fictitious LO with initial learner competency state β : Fictitious LO with targeted learner competency state $LO^{list of gained competencies} LO_{list of prerequisite competencies}$ "if every learning object in the clique is completed, then every learning object in the following clique is accessible".

targetClique = new clique with only the target learning object *clique* = *targetClique*

while *clique*'s prerequisites are not a subset of the learner's competencies

preClique = a new clique with all learning objects leading to any of *clique*'s prerequisites

if *preClique*'s prerequisites contain all of *clique*'s prerequisites AND are not a subset of the learner's competencies

break, as an infinite loop would ensue *clique* = *preClique*

NRC·CNRC

Notation:

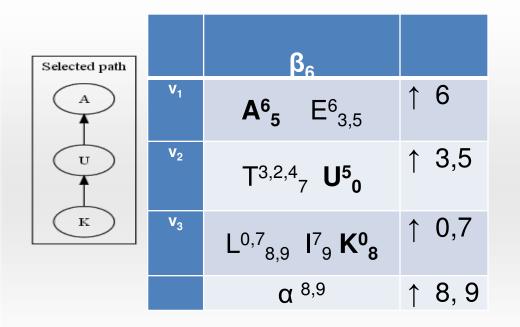
• Let $Q_{n,m}$, $G_{n,m}$ matrices (prerequisite and Gained competences of n items and $C_{n,v}$ is the clique distribution

NC CNC

Theoretical optimal solution

Strategy: minimize the cognitive load to the learner (function degree).

Let $S = \{s_0, s_1, \dots, s_v, s_{v+1}\}$ a solution set (s_i contains at least one learning object).


$$\forall s_{i=1..v} \in S, \qquad s_0 = \alpha, \, s_{v+1} = \beta, \qquad Q_{s_i} \subseteq G_{s_{i-1}} \quad (i)$$

$$\forall j = 1 \dots v \neq i = 1 \dots v, \, C_{s_i} \cap C_{s_j} = \emptyset \quad (ii)$$

$$\deg(S = \{s_0, s_1, \dots, s_{\nu}, s_{\nu+1}\}) = \sum_{i=0}^{\nu+1} \sum_{j=1}^{m} (Q_{s_i, j} + G_{s_i, j}) \quad (iii)$$

$$\forall s_{i=1..v+1} \in S; \exists s_{i=1..v+1}^* \in S^* \\ \deg(S^* = \{s_0^*, s_1^*, \dots, s_v^*, s_{v+1}^*\}) \leq \deg(S = \{s_0, s_1, \dots, s_v, s_{v+1}\}) \quad (iv)$$

NRC CNRC

Heuristic solvei

The local optimum is considered obtained when the minimum subset of vertices with a minimum "degree", being the sum of the number of prerequisite competencies and output competencies of the vertex are found.

Starting from targeted competencies.

for each prerequisite to satisfy, prerequisite selectedObject = a blank object whose degree = ∞ for each learning object in the clique, object if object is already in localOptimum continue to next prerequisite else if object produces prerequisite AND object's degree < selectedObject's degree selectedObject = object localOptimum.add(selectedObject) return localOptimum

Heuristic solver

	β ₆	
V ₁	M ⁶ ₅ N ^{6,7} ₄	↑ 6
V ₂	O ⁵ 3,9 P ⁴ 8	↑ 4,5
V ₃	$T_{7}^{8} Y_{7,}^{9} Z_{7}^{3}$	↑ 3, 9, 8
	α ⁷	↑ 7

Heuristic solver result: α , *Y*, *Z*, *O*, *M*, β

 $deg(\alpha, Y, Z, O, M, \beta) = 1 + 2 + 2 + 3 + 2 + 1 = 11$ $deg(\alpha, T, P, N, \beta) = 1 + 2 + 2 + 3 + 1 = 9$

BIP Solver

Binary integer programming (BIP) as follows: *Minimize:*

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{m} (Q_{i,j} + G_{i,j}) x_i \right) = \deg(X)$$
 (1)

Subject to:

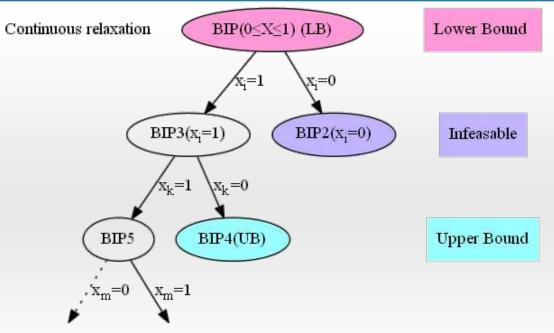
$$Q_{i,j}x_i - (\sum_{k=1}^{i-1} G_{k,j}x_k) \times Q_{i,j} \le 0$$
for $i = 2, ..., n-1$; for $j = 1, ..., m$; $x_i \in \{0, ..., m\}$

 $X = \{x_i, i=1,...,n\}, \text{ are the decision variables such that:} \\ x_i = \begin{cases} 1 & if \text{ the item i is selected;} \\ 0 & otherwise, \end{cases}$

We suppose that $x_1 = 1$ and $x_n = 1$, knowing that: $x_1 = 1$ presenting the initial item α and $x_n = 1$ presenting the resulting item β The function (1) represents the total number of prerequisite and gained competencies to be minimized.

The constraints (2) states that if the item *i* has competency *j* as one of its prerequisite competencies; the competency *j* should be gained from the items on the learning path (1,..., *i*-1)

(3)


NRC CNRC

Minin	nize :									
$deg (X) = 2x_2 + 2x_3 + 2x_4 + 3x_5 + 2x_6 + 2x_7 + 3x_8$							β ₆			
Subject to:						v ₁	M ⁶ 5 N	1 6,7	↑ 6	
$x_5 - x_3 \le 0$							IVI 5	v 4		
$\begin{array}{l} x_5 - x_4 \leq 0 \\ x_6 - x_2 \leq 0 \end{array}$						V ₂	O ⁵ _{3,9} P ⁴ ₈		↑ 4,5	
$\begin{array}{l} x_7 - x_5 \leq 0 \\ x_8 - x_6 \leq 0 \end{array}$						V ₃	$T_{7}^{8} Y_{7}^{9} Z_{7}^{3}$		↑ 3, 9, 8	
$-x_7 - x_8 \le -1$ $x_i \in \{0,1\}, i = 2,, 8$							α ⁷		↑ 7	
		- (-)-)	,,	, -		Æ		\square	//	/
Decision Variables	x ₁	X ₂	X 3	X ₄	X ₅	X ₆	X ₇	X 8	X 9	\searrow
LO	α	Т	Y	Z	0	Ρ	Μ	Ν	β	\searrow

NRC CNRC

Example Branch and Bound solver

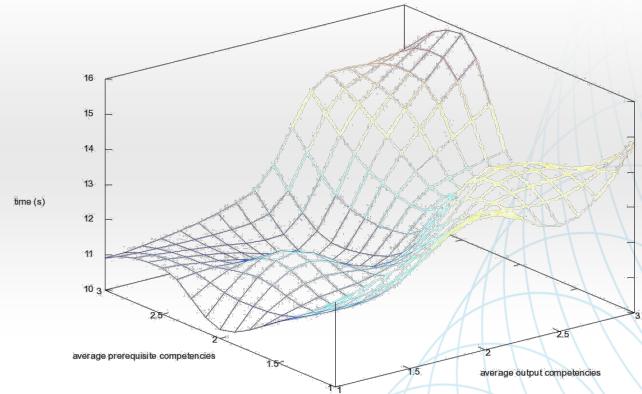
Dominated by UB

Simplex method to LP-relaxation of the example gave an integral lower bound solution (fathomed)

Decision Variables	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆	x ₇	x ₈	X ₉	
LO	α	Т	Y	Z	0	Р	Μ	Ν	β	-
X*	1	1	0	0	0	1	0	1	1	

NCCNC

Discussion

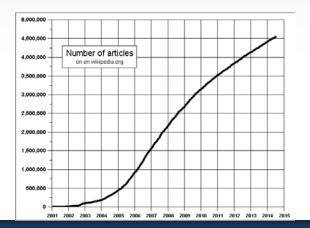


Average Number of Cliques on Calculated Learning Path Given 1 to 2 Output Competencies and 1 to 6 Prerequisites Competencies per Learning Object

NRC.CNRC

Discussion

Local vs global optimal performance



Average Calculation Time of Learning Paths Given 10⁵ Learning Objects and 10⁴ Competencies

NCCNCC

- Require a teacher/expert:
- Human capacity of processing information...

Gleich@wikipedia-20051105. 2672475 nodes, 19716459 edges.

NRC·CNRC

References

- Guillaume Durand, Nabil Belacel, François LaPlante (2013) Graph theory based model for learning path recommendation, *Information Sciences*, Volume 251, 1:10-21.
- Belacel, N., Durand, G., Laplante, F. A binary integer programming model for global optimization of learning path discovery (2014) CEUR Workshop Proceedings, 1183, pp. 6-13.

