

NRC Publications Archive Archives des publications du CNRC

Ice detection tripod modification, 2006 Osmond, T.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.4224/8895536 Student Report (National Research Council of Canada. Institute for Ocean Technology); no. SR-2006-12, 2006

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=a5e96dc1-83df-49b6-b234-925eecb77cfc https://publications-cnrc.canada.ca/fra/voir/objet/?id=a5e96dc1-83df-49b6-b234-925eecb77cfc

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

DOCUMENTATION PAGE

REPORT NUMBER	NRC REPORT NUMBER	DATE				
SR-2006-12		April 200)6			
011 2000 12		7.011 200	.0			
REPORT SECURITY CLASSIFICA	TION	DISTRIBU	TION			
unclassified		unlimited				
unolabolinoa		drimmited				
TITLE						
Ice Detection Tripod Mod	ification. 2006					
AUTHOR(S)						
T.Osmond						
110 ciliona						
CORPORATE AUTHOR(S)/PERFO	DRMING AGENCY(S)					
	- Institute for Ocean Technology					
PUBLICATION						
SPONSORING AGENCY(S)						
IOT PROJECT NUMBER		PAGES				
42_2096_10		5				
KEY WORDS		APP.	FIGS.	TABLES		
Tripod, Ice Detection		A-D	1	0		
SUMMARY						
This document outlines the	design work completed as modifi	cations to o	one of the	new		
QuickSet Hercules tripods a	and tripod heads purchased by the	e Institute f	or Ocean			
	ations will be implemented as pa			esign		
	one of the tripods for the IOT Ice D					
	f attaching two potentiometers to					
tripod so that pan and tilt ar		and pair an				
the so that part and the ar	igles may be measured.					
ADDRESS National Res	earch Council					
	Dcean Technology					
	le, P. O. Box 12093					
St. John's, N	-					
rei.: (709)	772-5185, Fax: (709) 772-2462	•				

Institute for Ocean Technology

¥

National Research Council Conseil national de recherches Canada Institut des technologies océaniques

ICE DETECTION TRIPOD MODIFICATION, 2006

SR-2006-12

T. Osmond

April 2006

Quickset Tripod Head Design Modifications

The purpose of this design modification is to attach potentiometers to the Quickset tripod head so that changes in pan and tilt angles may be read and accurately measured by a computer.

Potentiometer Selection

Experimentation and analysis into three different potentiometers yielded the results contained under CAD_User\Projects\42_2096 Ice Detection\TOsmond\Pot Linearity.xls. The data from these experiments are contained in Appendix A. The potentiometers tested were (for data sheets see Appendix B): A Bourns 3540, A Bourns 6534, And A Vishay Spectrol 157.

Two experiments were conducted on each potentiometer, fine linear measures and full range linear measurements. The same apparatus was used for both experiments. A dial was attached to the potentiometer and a quadrant encircled the potentiometer. In this way angle readings could be taken from visually from the quadrant. The potentiometer being tested was connected to a multimeter accurate to four decimal places and set to read voltage (see Figure 1).

For fine linear measurements the voltage output of each potentiometer was measured over a range of seven degrees. Readings were taken at 1/3rd of a degree intervals for a total of 21 readings each trial. Each potentiometer was tested three times.

For the full range linear measurements six to ten readings were taken of each potentiometer voltage over the full range of the individual potentiometer. Intervals were different because the full range of each of the potentiometers is different. Again three trial measurements were taken for each potentiometer. All data was analyzed in Microsoft Excel.

The three potentiometers were selected for testing based on availability from the electronics department. Data analysis following testing and consultation with Dr. Robert Gagnon decided the Vishay Spectrol 157 to yield the most accurate and predictable results. This potentiometer was selected to measure the angles in both pan and tilt. This potentiometer also carries the advantage of being capable full 360° travel without failing although the potentiometer has a dead band between 340° and 360°. This removes the risk of damaging the potentiometer by over-rotating it.

Following selection of the potentiometer to be used more extensive testing was conducted to gain a more accurate understanding of the linear characteristics of the piece of equipment. This involved taking voltage readings at 18 locations over the full range of the potentiometer over a series of five test trials. The results from these experiments are also contained in Appendix A.

Experimentation has indicated that the Vishay Spectrol 157-11/03 potentiometer displays linear characteristics with variation following a fourth power curve. Measured to this curve we have an accuracy of within approximately 10 ohms over a range of 300 degrees. This curve yields an error of approximately 0.35 degrees.

Though all potentiometers will have a different error in linearity the potentiometer we tested followed a linear profile of y = 7E-11x4 - 5E-09x3 - 2E-05x2 + 0.0303x + 0.0363. Readings were taken every 20 degrees and the change in resistance or increase in resistance over 20 degrees was found to follow the curve y = -8E-08x4 + 6E-05x3 - 0.0161x2 + 1.0532x + 548.98. In both cases fourth order polynomials were found to follow the data most accurately checking trends up to the sixth order polynomial as available in Microsoft Excel.

Looking at using brass gears from the available selection on www.smallparts.com.

Brass Spur Gears – 32 pitch 20° pressure angle.

<u>http://www.smallparts.com/products/descriptions/gbs.cfm</u> shows a table of gear selections (see also Appendix C).

The 1" gear GBS – 3232 is the smallest gear that will fit our potentiometer with no machining necessary. This attributed to the gear bore of 0.25" and the potentiometer shaft diameter of 0.249". This gear will be used in both pan and tilt applications.

Tilt Gearing

For this axis we need at least 90 degrees rotation. We can use up to 300 degrees on the potentiometer. Thus our maximum gear ratio must be 300/90 = 3.33:1. Using our available gear ration of 3:1 we will use a range of 270 degrees rotation of the potentiometer. This will yield a maximum resolution of 0.117 degrees.

Potentiometer pinion – 1" GBS – 3232 Tripod gear – 3" GBS – 3296

This gear will be mounted on the non-toothed side of tripod head and the potentiometer will attach to the base of the head (see drawing 2096U01 – Appendix D).

Pan Gearing

For this axis we need at least 180 degrees rotation. We can use up to 300 degrees on the potentiometer. Thus our maximum gear ratio must be 300/180 = 1.67:1. Using our available gear ration of 1.5:1 we will use a range of 270

degrees rotation of the potentiometer. This will yield a maximum resolution of 0.233 degrees.

Potentiometer pinion – 1" GBS – 3232 Tripod gear – 1.5" GBS – 3248

This gear will mount within the center of the tripod and the potentiometer will attach to the base of the head (see drawing 2096U02 – Appendix D).

Modifications and Design

Several modifications to the tripod are necessary. A number of unique pieces are to be fabricated by the Institute. These drawings are available under file: CAD_User\Projects\42_2096 Ice Detection\Tosmond\Tripod.ckd and is contained in Appendix D

Tilt Bracket Modification

One small modification is necessary for the Tilt Bracket. A ¹/₄-20 hole must be drilled and tapped through the tilt axis on one side. It is imperative that this hole be dead center of the tilt axis (see drawing 2096U04 – Appendix D).

Base Modification

In order to attach a gearing system to the tilt access several modifications are necessary. First of all a potentiometer mount must be attached to the base. Two clearance holes must be drilled through the side of the base to pass through two $\frac{1}{4}$ -20 bolts (see drawing 2096U04 – Appendix D).

Tilt Measurements

A potentiometer is mounted to the base of the tripod head and a gear is attached to the potentiometer. A pinion is fitted to a shafted that has been screwed into the hole in the tilt axis. The tilting of the head will cause the gear to turn the pinion and the potentiometer reads the angle of tilt when properly calibrated.

Pan Measurements

A 3/8" bolt holds the tripod head to the tripod. This bolt sets the pan axis and it is to this bolt that the shaft of the central pan gear will attach. The design proposes a drilled and tapped hole to penetrate the bolt, tapped for an 8-32 UNC-2B thread. A shaft with a threaded end will screw into the bolt passing through the center gear. Mating with that gear is a pinion. The pinion is mounted to the tripod head base using pre-existing threaded holes.

Rough Design

The design of the potentiometer mounts have been made according to rudimentary measurement methods and the accuracy is low in the wake of unavailable drawings from the fabricator. Therefore it is likely that both mounting blocks may require further adjustments in the form of, but not limited to, removing or adding material to certain surfaces and repositioning drilled holes. These terms are in reference to the fabrication drawings 2096U13 & 2096U14 (see Appendix D).

Conclusions

Bar some minor adjustments, the design for attaching the potentiometers to both the pan and tilt axes should provide smooth and accurate measurements. This design is to be implemented into one tripod only, that is the tripod holding the telescope. Maximum accuracies have been given above for the potentiometers including increased resolution due to gear ratios. Obviously these accuracies will not be achieved due to imperfections in fabrication and unavoidable backlash in the gears^{*}. With careful and precise fabrication an inaccuracy of 0.3-0.5 degrees may be expected.

Figures

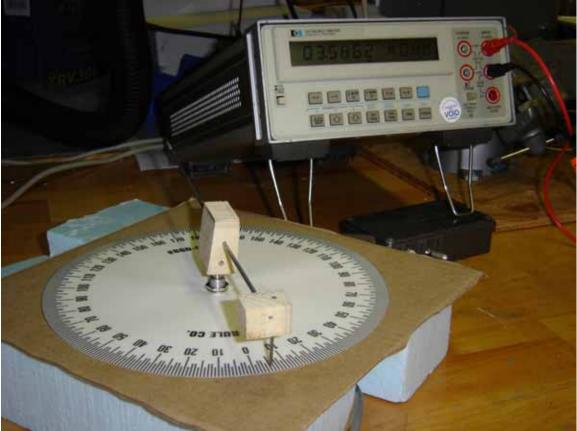
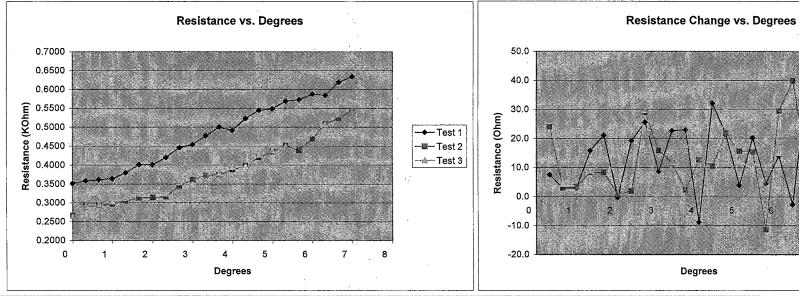
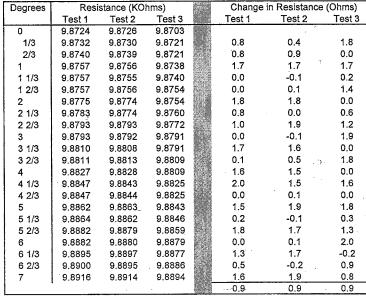


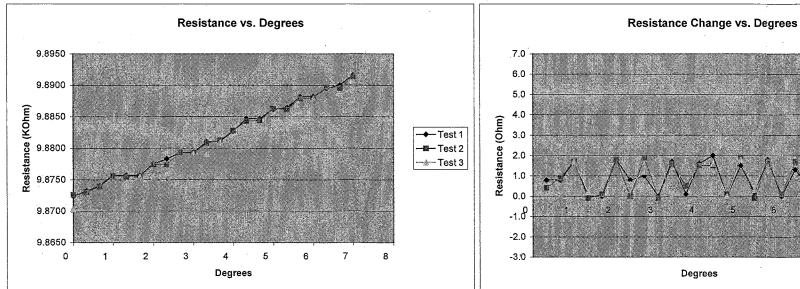
Figure 1 – Potentiometer Measuring Apparatus

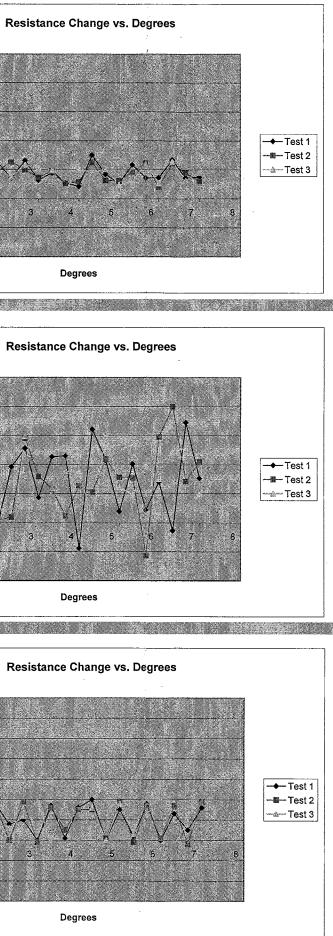
A more accurate device has been purchased to offer remote control of the laser. This device would also be useful for controlling the telescope should the potentiometer calibration and accuracy prove to be insufficient for this project application.


Appendices Appendix A – Experimental Data Appendix B – Data Sheets Appendix C – Gear Selection Table Appendix D – Modification Drawings

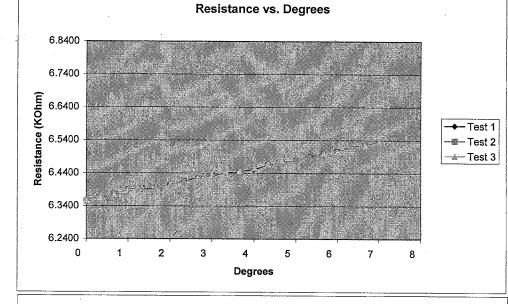
Appendix A – Experimental Data

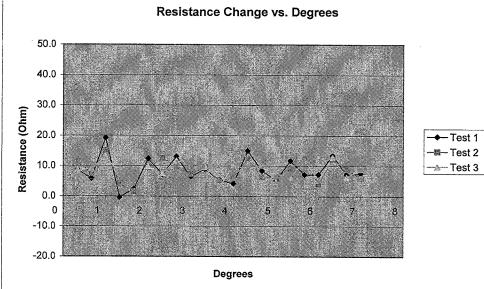

Degrees	Res	istance (KC)hm)	Change	in Resistanc	e (Ohm)			
	Test 1	Test 2	Test 3	Test 1	Test 2	Test 3	Resistance vs. Degrees		
0	6.3575	6.3551	6.3566						
1/3	6.3662	6.3664	6.3654	8.7	11.3	8.8			
2/3	6.3720	6,3740	6.3745	5.8	7.6	9.1	6.8400		50.0 T
1	6.3912	6.3891	6.3872	19.2	15.1	12.7			
1 1/3	6.3908	6.3931	6.3949	-0.4	4.0	7.7	6.7400		40.0 -
1 2/3	6.3931	6.3947	6.3945	2.3	1.6	-0.4			
2	6.4055	6.4042	6.4043	12.4	9.5	9.8			30.0
2 1/3	6.4126	6.4168	6.4119	7.1	12.6	7.6	Ē 6.6400		ê ^{30.0}
2 2/3	6.4257	6.4267	6.4236	13.1	9.9	11.7	(x)	Test 1	(mų 0) 20.0 -
3	6.4321	6.4340	6.4343	6.4	7.3	10.7		1 1	20.0
3 1/3	6.4410	6.4436	6.4442	8.9	9.6	9.9	6.3400 6.3400	Test 2	<u> </u>
3 2/3	6.4464	6.4488	6.4469	5.4	5.2	2.7	E Contraction of the second	Test 3	10.0
4	6.4506	6.4547	6.4574	4.2	5.9	10.5	6.4400		- 0.01 Kesistal
4 1/3	6.4656	6.4672	6.4663	15.0	12.5	8.9			Sec
4 2/3	6.4740	6.4735	6.4766	8.4	6.3	10.3	and the second sec		• 0.0 -
5	6.4793	6.4798	6.4814	5.3	6.3	4.8	6.3400		0
5 1/3	6.4910	6.4890	6.4876	11.7	9.2	6.2			-10.0 -
5 2/3	6.4981	6,5013	6.4994	7.1	12.3	11.8			-10.0
6	6.5053	6.5053	6.5048	7.2	4.0	5.4	6.2400		
6 1/3	6.5187	6.5175	6.5176	13.4	12.2	12.8	0 1 2 3 4 5 6 7 8		-20,0 -
6 2/3	6.5259	6.5264	6.5239	7.2	8.9	6.3	Degrees		
7	6.5334	6.5324	6.5329	7.5	6.0	9.0	569,000		
•				8.4	8.4	8.4	· · · · · · · · · · · · · · · · · · ·		L




Degrees	Resi	stance (KO	hms)		Change	in Resistance	e (Ohms)
	Test 1	Test 2	Test 3		Test 1	Test 2	Test 3
0	0.3509	0.2662	0.2635				
1/3	0.3584	0.2902	0.2916		7.5	24.0	28.1
2/3	0.3613	0.2932	0.2960		2.9	3.0	4.4
1	0.3642	0.2966	0,3040		2.9	3.4	8.0
1 1/3	0.3800	0.3049	0.3129		15.8	8.3	8.9
1 2/3	0.4011	0.3132	0.3242		21.1	8.3	11.3
2	0.4008	0.3141	0.3326		-0.3	0.9	8.4
2 1/3	0.4200	0.3160	0.3254		19.2	1.9	-7.2
2 2/3	0.4456	0.3449	0.3551		25.6	28.9	29.7
3	0.4543	0.3608	0.3477		8.7	15.9	-7.4
3 1/3	0.4770	0.3724	0.3596		22.7	11.6	11.9
3 2/3	0.5000	0.3747	0.3773		23.0	2.3	17.7
4	0.4912	0.3874	0.3950		-8.8	12.7	17.7
4 1/3	0.5233	0.3980	0.3965		32.1	10.6	1.5
4 2/3	0.5447	0.4199	0.4268		21.4	21.9	30.3
5	0.5486	0.4355	0.4391		3.9	15.6	12.3
5 1/3	0.5688	0.4509	0.4487		20.2	15.4	9.6
5 2/3	0.5732	0.4395	0.4687		4.4	-11.4	20.0
6	0.5873	0.4690	0.4837		14.1	29.5	15.0
6 1/3	0.5846	0.5089	0.5081		-2.7	39.9	24.4
6 2/3	0.6191	0.5231	0.5338		34.5	14.2	25.7
7	0.6344	0.5440	0,5436		15.3	20.9	9.8
	•			-	13.5	13.2	13.3

10 Turn Pot Degrees



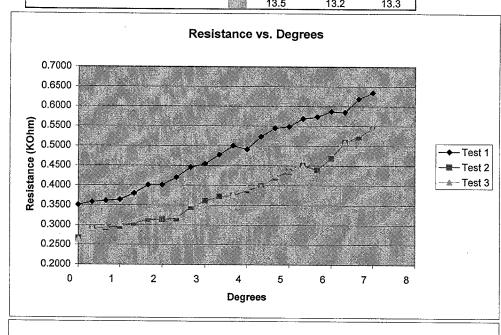


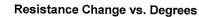
Degrees

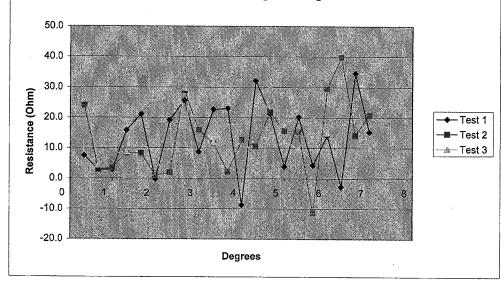
Continuous Pot

Degrees	Res	istance (KC)hm)	Change	e in Resistanc	e (Ohm)
	Test 1	Test 2	Test 3	Test 1	Test 2	Test 3
0	6.3575	6.3551	6.3566			
1/3	6.3662	6.3664	6.3654	8.7	11.3	8.8
2/3	6.3720	6.3740	6.3745	5.8	7.6	9.1
1	6.3912	6.3891	6.3872	19.2	15.1	12.7
1 1/3	6.3908	6.3931	6.3949	-0.4	4.0	7.7
1 2/3	6.3931	6.3947	6.3945	2.3	1.6	-0.4
2	6.4055	6.4042	6.4043	12.4	9.5	9.8
2 1/3	6.4126	6.4168	6.4119	7.1	12.6	7.6
2 2/3	6.4257	6.4267	6.4236	13.1	9.9	11.7
3	6.4321	6.4340	6.4343	6.4	7.3	10.7
3 1/3	6.4410	6.4436	6.4442	8.9	9.6	9.9
3 2/3	6.4464	6.4488	6.4469	5.4	5.2	2.7
4	6.4506	6.4547	6.4574	4.2	5.9	10.5
4 1/3	6.4656	6.4672	6.4663	15.0	12.5	8.9
4 2/3	6.4740	6.4735	6.4766	8.4	6.3	10.3
5	6.4793	6.4798	6.4814	5.3	6.3	4.8
5 1/3	6.4910	6.4890	6.4876	11.7	9.2	6.2
5 2/3	6.4981	6.5013	6.4994	7.1	12.3	11.8
6	6.5053	6.5053	6.5048	7.2	4.0	5.4
6 1/3	6.5187	6.5175	6.5176	13.4	12.2	12.8
6 2/3	6.5259	6.5264	6.5239	7.2	8.9	6.3
7	6.5334	6.5324	6.5329	7.5	6.0	9.0
				8.4	8.4	8.4

270° Pot	:							
Degrees	Resi	Resistance (KOhms)						
	Test 1	Test 2	Test 3					
0	0.3509	0.2662	0.2635					
1/3	0.3584	0.2902	0.2916					
2/3	0.3613	0.2932	0.2960					
1	0.3642	0.2966	0.3040					
1 1/3	0.3800	0.3049	0.3129					
1 2/3	0.4011	0.3132	0.3242					
2	0 4000	0.04.44	0 0000 ·					

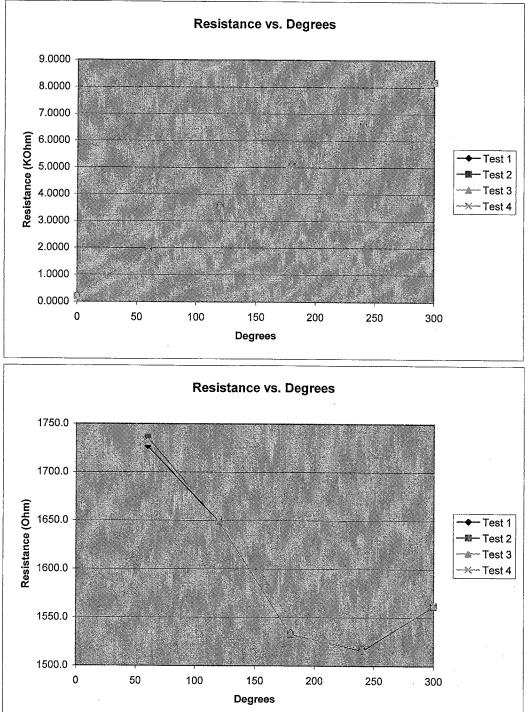

110	0.0007	0.2302	0.2910		7.0	24.0	20.1	
2/3	0.3613	0.2932	0.2960		2.9	3.0	4.4	
1	0.3642	0.2966	0.3040		2.9	3.4	8.0	
1 1/3	0.3800	0.3049	0.3129		15.8	8.3	8.9	
1 2/3	0.4011	0.3132	0.3242	197	21.1	8.3	11.3	
2	0.4008	0.3141	0.3326		-0.3	0.9	8.4	
2 1/3	0.4200	0.3160	0.3254		19.2	1.9	-7.2	
2 2/3	0.4456	0.3449	0.3551		25.6	28.9	29.7	
3	0.4543	0.3608	0.3477		8.7	15.9	-7.4	
3 1/3	0.4770	0.3724	0.3596		22.7	11.6	11.9	
3 2/3	0.5000	0.3747	0.3773		23.0	2.3	17.7	
4	0.4912	0.3874	0.3950		-8.8	12.7	17.7	
4 1/3	0.5233	0.3980	0.3965		32.1	10.6	1.5	
4 2/3	0.5447	0.4199	0.4268		21.4	21.9	30.3	
5	0.5486	0.4355	0.4391		3.9	15.6	12.3	
5 1/3	0.5688	0.4509	0.4487		20.2	15.4	9.6	
5 2/3	0.5732	0.4395	0.4687		4.4	-11.4	20.0	
6	0.5873	0.4690	0.4837		14.1	29.5	15.0	
6 1/3	0.5846	0.5089	0.5081		-2.7	39.9	24.4	
6 2/3	0.6191	0.5231	0.5338		34.5	14.2	25.7	
7	0.6344	0.5440	0.5436		15.3	20.9	9.8	
					13.5	13.2	13.3	


Change in Resistance (Ohms) fest 1 Test 2 Test 3

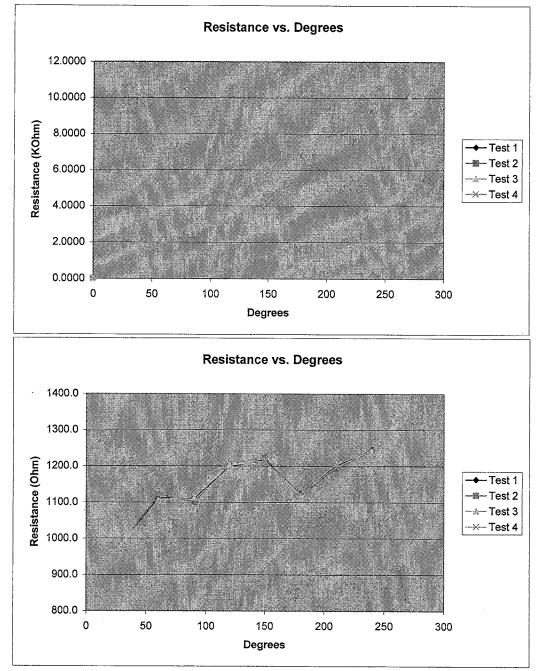

24.0

28.1

Test 1 7.5

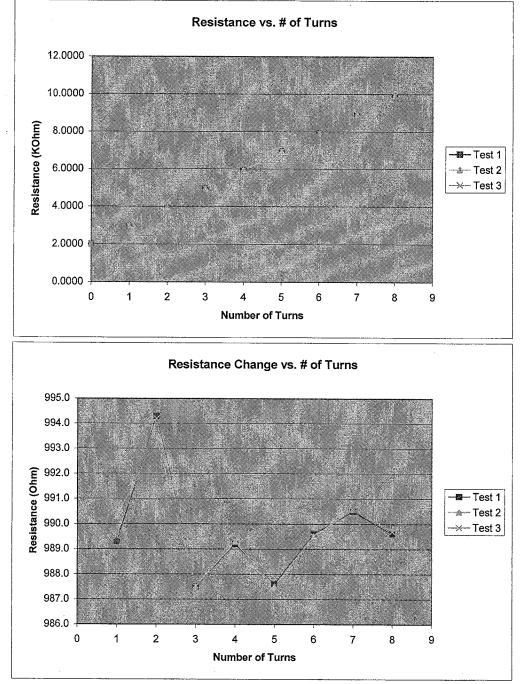


10 Turn Pot Degrees Resistance (KOhms) Change in Resistance (Ohms) Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 0 9.8724 9.8726 9.8703 1/3 9.8732 9.8730 9.8721 0.4 0.8 1.8 2/3 9.8740 9.8739 9.8721 0.8 0.9 0.0 1 9.8757 9.8756 9.8738 1.7 1.7 1.7 1 1/3 9.8757 9.8755 9.8740 0.0 -0.1 0.2 1 2/3 9.8757 9.8756 9.8754 0.0 0.1 1.4 2 9.8775 9.8774 9.8754 1.8 1.8 0.0 2 1/3 9.8783 9.8774 9.8760 0.8 0.0 0.6 2 2/3 9.8793 9.8793 9.8772 1.0 1.9 1.2 3 9.8793 9.8792 9.8791 0.0 -0.1 1.9 3 1/3 9.8810 9.8808 9.8791 1.7 1.6 0.0 3 2/3 9.8811 9.8813 9.8809 0.1 0.5 1.8 9.8827 9.8828 4 9.8809 1.6 1.5 0.0 4 1/3 9.8847 9.8843 9.8825 2.0 1.5 1.6 4 2/3 9.8847 9.8844 9.8825 0.0 0.1 0.0 5 9.8862 9.8863 9.8843 1.5 1.9 1.8 5 1/3 9.8864 9.8862 9.8846 0.2 -0.1 0.3 5 2/3 9.8882 9.8879 9.8859 1.7 1.8 1.3 6 9.8882 9.8880 9.8879 0.0 0.1 2.0 6 1/3 9.8895 9.8897 9.8877 1.3 1.7 -0.2 6 2/3 9.8900 9.8895 9.8886 0.5 -0.2 0.9 7 9.8916 9.8914 9.8894 1.6 1.9 0.8 0.9 0.9 0.9 **Resistance vs. Degrees** 9.8950 9.8900 Resistance (KOhm) 9.8850 ← Test 1 9.8800 -- 38--- Test 2 - Test 3 9.8750 9.8700 9.8650 0 2 3 1 4 5 6 7 8 Degrees **Resistance Change vs. Degrees** 7.0 6.0 5.0 4.0 Resistance (Ohm) 3.0 - Test 1 2.0 -772-- Test 2 - Test 3 1.0 0.0 6 -1.0 -2.0 -3.0

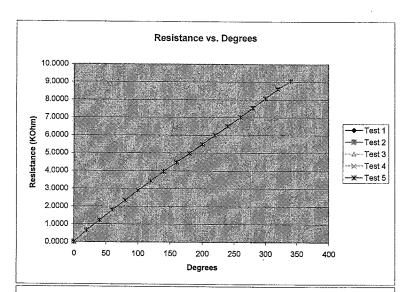

Degrees

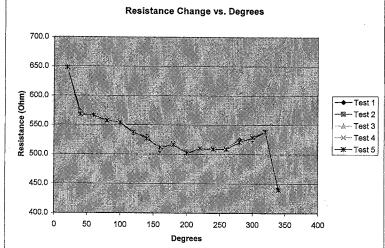
Continuous Pot

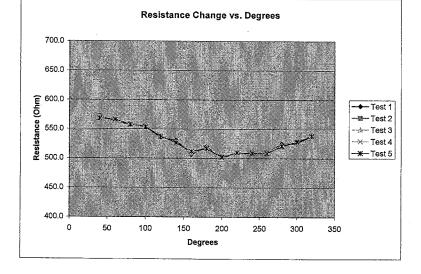
		Resistance	e (Kohm)	Change in	Resistance	(Ohm)		
Degrees	Test 1	Test 2	Test 3	Test 4	Test 1	Test 2	Test 3	Test 4
0	0.2044	0.1954	0.2004	0.1992				
60	1.9311	1.9311	1.9314	1.9303	1726.7	1735.7	1731.0	1731.1
120	3.5803	3.5802	3.5819	3.5807	1649.2	1649.1	1650.5	1650.4
180	5.1150	5.1126	5.1157	5.1155	1534.7	1532.4	1533.8	1534.8
240	6.6306	6.6309	6.6325	6.6338	1515.6	1518.3	1516.8	1518.3
300	8.1933	8.1923	8.1955	8.1970	1562.7	1561.4	1563.0	1563.2


	-							
		Resistance	(Kohm)	Change in Resistance (Ohm)				
Degrees	Test 1	Test 2	Test 3	Test 4	Test 1	Test 2	Test 3	Test 4
0	0.0004	0.0004	0.0004	0.0004				· · · · · · · · · · · · · · · · · · ·
30	0.9843	0.9828	0.9860	0.9842	983.9	982.4	985.6	983.8
60	2.0966	2.1056	2.0917	2.0905	1112.3	1122.8	1105.7	1106.3
90	3.2080	3.2060	3.2059	3.2066	1111.4	1100.4	1114.2	1116.1
120	4.4076	4.4111	4.4082	4.4130	1199.6	1205.1	1202.3	1206.4
150	5.6253	5.6347	5.6230	5.6268	1217.7	1223.6	1214.8	1213.8
180	6.7487	6.7526	6.7428	6.7497	1123.4	1117.9	1119.8	1122.9
210	7.9495	7.9474	7.9507	7.9475	1200.8	1194.8	1207.9	1197.8
240	9.1954	9.1878	9.1928	9.1928	1245.9	1240.4	1242.1	1245.3
270	10.0077	10.0084	10.0080	10.0074	812.3	820.6	815.2	

270° Pot

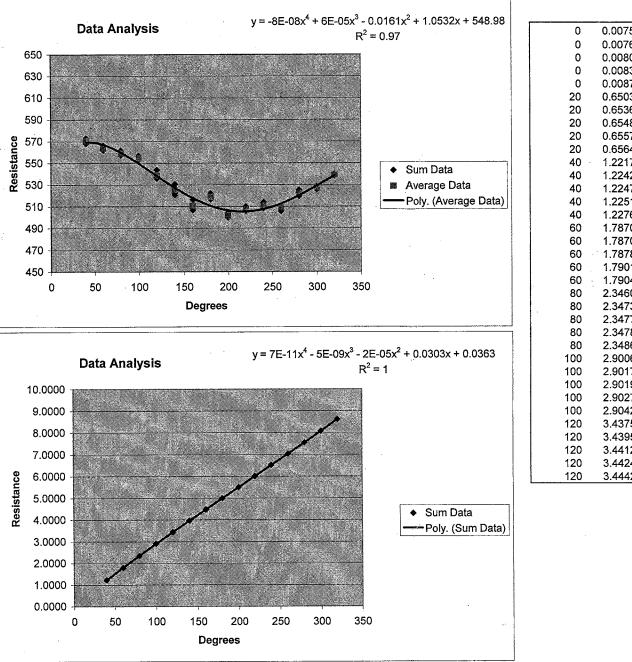

	Resistance (Kohm)					Change in Resistance (Ohm)			
Turns	De	egrees	Test 1	Test 2	Test 3	Test 1	Test 2	Test 3	
	0	0	1.9934	1.9933	1.9933				
	1	360	2.9827	2.9836	2.9828	989.3	990.3	989.5	
	2	720	3.9770	3.9770	3.9770	994.3	993.4	994.2	
	3	1080	4.9645	4.9645	4.9645	987.5	987.5	987.5	
	4	1440	5.9537	5.9538	5.9540	989.2	989.3	989.5	
	5	1800	6.9413	6.9413	6.9413	987.6	987.5	987.3	
	6	2160	7.9309	7.9308	7.9308	989.6	989.5	989.5	
	7	2520	8.9214	8.9214	8.9214	990.5	990.6	990.6	
	8	2880	9.9110	9.9084	9.9111	989.6	987.0	989.	


* *



Further Testing Continuous Pot

Resistance (Kohm)								
Degrees	Test 1	Test 2	Test 3	Test 4	Test 5			
0	0.0075	0.0076	0.0087	0.0080	0.0083			
20	0.6548	0.6536	0.6557	0.6503	0.6564			
40	1.2276	1.2247	1.2251	1.2217	1.2242			
60	1.7901	1.7870	1.7870	1.7878	1.7904			
80	2.3478	2.3460	2.3486	2.3473	2.3477			
100	2.9017	2.9027	2.9042	2.9006	2.9019			
120	3.4375	3.4412	3.4424	3.4442	3.4395			
140	3.9682	3.9689	3.9650	3.9648	3.9660			
160	4.4747	4.4774	4.4813	4.4751	4.4778			
180	4.9954	4.9940	4.9993	4.9973	4.9945			
200	5.4970	5.4985	5.4991	5.4975	5.4966			
220	6.0036	6.0045	6.0053	6.0045	6.0066			
240	6.5124	6.5165	6.5137	6.5184	6.5155			
260	7.0226	7.0268	7.0244	7.0240	7.0240			
280	7.5478	7.5461	7.5476	7.5459	7.5454			
300	8.0734	8.0743	8.0752	8.0740	8.0738			
320	8.6120	8.6126	8.6150	8.6131	8.6126			
340	9.0512	9.0508	9.0526	9.0524	9.0524			



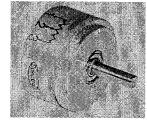
	Change in	Resistance	(Ohm)		
Degrees	Test 1	Test 2	Test 3	Test 4	Test 5
0					
20	647.3	646.0	647.0	642.3	648.1
40	572.8	571.1	569.4	571.4	567.8
60	562.5	562.3	561.9	566.1	566.2
80	557.7	559.0	561.6	559.5	557.3
100	553.9	556.7	555.6	553.3	554.2
. 120	535.8	538,5	538.2	543.6	537.6
140	530.7	527.7	522.6	520.6	526.5
160	506.5	508.5	516.3	510.3	511.8
180	520.7	516.6	518.0	522.2	516.7
200	501.6	504.5	499.8	500.2	502.1
220	506.6	506.0	506.2	507.0	510.0
240	508.8	512.0	508.4	513.9	508.9
260	510.2	510.3	510.7	505.6	508.5
280	525.2	519.3	523.2	521,9	521.4
300	525.6	528.2	527.6	528.1	528.4
320	538.6	538.3	539.8	539.1	538.8
340	439.2	438.2	437.6	439.3	439.8

Rearranging all values to produce one continuous data set **Continuous Pot**

		Resistance	(KOhm)		
Degrees	Test 1	Test 2	Test 3	Test 4	Test 5
0	0.0075	0.0076	0.0087	0.0080	0.0083
20	0.6548	0.6536	0.6557	0.6503	0.6564
40	1.2276	1.2247	1.2251	1.2217	1.2242
60	1.7901	1.7870	1.7870	1.7878	1.7904
80	2.3478	2.3460	2.3486	2.3473	2.3477
100	2.9017	2.9027	2.9042	2.9006	2.9019
120	3.4375	3.4412	3.4424	3.4442	3.4395
140	3.9682	3.9689	3.9650	3.9648	3.9660
160	4.4747	4.4774	4.4813	4.4751	4.4778
180	4.9954	4.9940	4.9993	4.9973	4.9945
200	5.4970	5.4985	5.4991	5.4975	5.4966
220	6.0036	6.0045	6.0053	6.0045	6.0066
240	6.5124	6.5165	6.5137	6.5184	6.5155
260	7.0226	7.0268	7.0244	7.0240	7.0240
280	7.5478	7.5461	7.5476	7.5459	7.5454
300	8.0734	8.0743	8.0752	8.0740	8.0738
320	8.6120	8.6126	8.6150	8.6131	8.6126
340	9.0512	9.0508	9.0526	9.0524	9.0524

D	•	Resistance	. ,	Tool 1	Test 5
Degrees	Test 1	Test 2	Test 3	Test 4	Testo
0	0.17.0	040.0	0.47.0	C 4 0 0	C 40 4
20	647.3	646.0	647.0	642.3	648.1
40	572.8	571.1	569.4	571.4	567.8
60	562.5	562.3	561.9	566.1	566.2
80	557.7	559.0	561.6	559.5	557.3
100	553.9	556.7	555.6	553.3	554.2
120	535.8	538.5	538.2	543.6	537.6
140	530.7	527.7	522.6	520.6	526.5
160	506.5	508.5	516.3	510.3	511.8
180	520.7	516.6	518.0	522.2	516.7
200	501.6	504.5	499.8	500.2	502.1
220	506.6	506.0	506.2	507.0	510.0
240	508.8	512.0	508.4	513.9	508.9
260	510.2	510.3	510.7	505.6	508.5
280	525.2	519.3	523.2	521.9	521.4
300	525.6	528.2	527.6	528.1	528.4
320	538.6	538.3	539.8	539.1	538.8
340	439.2	438.2	437.6	439.3	439.8

	Resistance	(Kohm)						Change in Re	esistance ((Ohm)	
0.0075	140	3.9648	280	7.5454		0		140	530.7	280	525.2
0.0076	140	3.9650	280	7.5459		0		140	527.7	280	519.3
0.0080	140	3.9660	280	7.5461		0	1	140	522.6	280	523.2
0.0083	140	3.9682	280	7.5476		0		140	520.6	280	521.9
0.0087	140	3.9689	280	7.5478		0		140	526.5	280	521.4
0.6503	160	4.4747	300	8.0734		20	647.3	160	506.5	300	525.6
0.6536	160	4.4751	300	8.0738		20	646	160	508.5	300	528.2
0.6548	160	4.4774	300	8.0740		20	647	160	516.3	300	527.6
0.6557	160	4.4778	300	8.0743		20	642.3	160	510.3	300	528.1
0.6564	160	4.4813	300	8,0752		20	648.1	160	511.8	300	528.4
1.2217	180	4.9940	320	8.6120		40	572.8	180	520.7	320	538.6
1.2242	180	4.9945	320	8.6126		40	571.1	180	516.6	320	538.3
1.2247	180	4.9954	320	8.6126		40	569.4	180	518	320	539.8
1.2251	180	4.9973	320	8.6131		40	571.4	180	522.2	320	539.1
1.2276	180	4.9993	320	8.6150	}	40	567.8	180	516.7	320	538.8
1.7870	200	5.4966	340	9.0508		60	562.5	200	501.6	340	439.2
1.7870	200	5.4970	340	9.0512		60	562.3	200	504.5	340	438.2
1.7878	200	5.4975	340	9.0524		60	561.9	200	499.8	340	437.6
1.7901	200	5.4985	340	9.0524		60	566.1	200	500.2	340	439.3
1.7904	200	5.4991	340	9.0526		60	566.2	200	502.1	340	439.8
2.3460	220	6.0036				80	557.7	220	506.6		
2.3473	220	6.0045				80	559	220	506		
2.3477	220	6.0045				80	561.6	220	506.2		
2.3478	220	6.0053				80	559.5	220	507		
2.3486	220	6.0066				80	557.3	220	510		
2.9006	240	6.5124				· 100	553.9	240	508.8		
2.9017	240	6.5137				100	556.7	240	512		
2.9019	240	6.5155				100	555.6	240	508.4		
2.9027	240	6.5165				100	553.3	240	513.9		
2.9042	240	6.5184				100	554.2	240	508.9		
3.4375	260	7.0226				120	535.8	260	510.2		
3.4395	260	7.0240				120	538.5	260	510.3		
3.4412	260	7.0240				120	538.2	260	510.7		
3.4424	260	7.0244				120	543.6	260	505.6		
3.4442	260	7.0268				120	537.6	260	508.5		


Appendix B – Data Sheets

Model 157

Vishay Spectrol

Precision Industrial Potentiometer

FEATURES

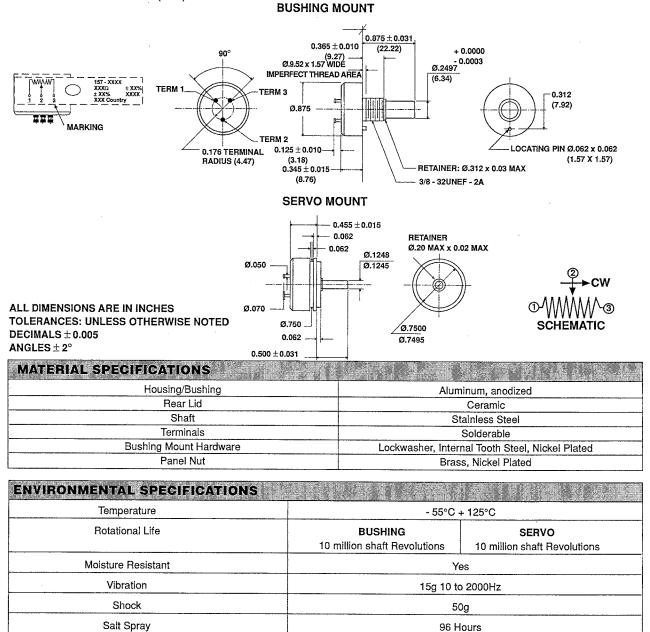
- High Quality
- Short Length Behind Panel (11/32") •
- ٠ Rugged One Piece Metal Housing
- Stainless Steel Shaft ٠
- •
- Long Rotational Life Wide Operating Temperature Range Linearities to \pm 0.25% Special ٠
- •
- Optional Sealed Construction (Bushing Mount Only)

ELECTRICAL SPECIFICATIONS	
PARAMETER	MIL-PRF-39024 TEST PROCEDURES APPLY
Resistance	1KΩ to 100
Resistance Tolerance	± 20%
Special to	± 10%
Linearity	± 2.0%
Special to	± 0.25%
Temperature Coefficient of Resistance	± 600ppm/°C
Power Rating	1.0 watts at 40°C Ambient
Derate to	0 watts at 125°C
Rotation	340° ± 4°
End Voltage	0.5% maximum
Dielectric Withstanding	1,000V _{RMS} , 60Hz
Insulation Resistance	100MΩ minimum, 500VDC
Output Smoothness	0.1%

MECHANICAL SPECIFICATIONS		
PARAMETER		
Weight	0.5 oz m	aximum
Rotation	360° (Cor	ntinuous)
Mount Bearing Type	BUSHING Sleeve Bearing	SERVO Ball Bearing
Operating Torque Starting Running	0.30 oz - in 0.25 oz - in	0.25 oz - in 0.15 oz - in
Mechanical Tolerance (in/mm) (maximum) Shaft Runout (TIR) Pilot Dia Runout (TIR) Lateral Runout (TIR) Shaft End Play Shaft Radial Play	0.002 in 	0.002 in 0.002 in 0.002 in 0.005 in 0.002 in

ORDERING INFORMATI	ON		
157	1	. 1	XXX
MODEL	MOUNTING	NUMBER OF SECTIONS (SINGLE SECTION ONLY)	RESISTANCE EIA CODE
Example: 1 57 - 1 - 1 - XXX	1. Bushing 2. Servo		

ł



Model 157

Precision Industrial Potentiometer

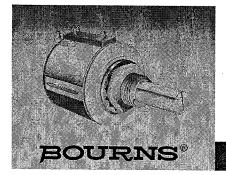
Vishay Spectrol

DIMENSIONS in inches (mm)

STANDARD RESISTANCE VALUES	
EIA CODE	RESISTANCE
102 202 502 103 203 503 104	1 ΚΩ 2 ΚΩ 5 ΚΩ 10 ΚΩ 20 ΚΩ 50 ΚΩ 100 ΚΩ

900 Hours

Load Life


Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Features

Bushing mount

- Optional center tap and rear shaft extension
- Optional AR lug feature
- Gangable with common or concentric shafts

3540/3541 - Precision Potentiometer

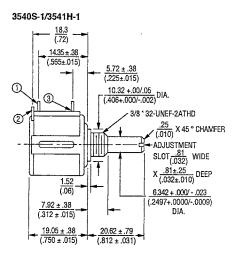
High torque available

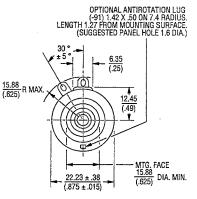
Models 3540 and 3541 are currently available, although not recommended for new designs. Model 3549 is preferred.

- Optional 0.1 % linearity
- Non-standard features and specifications available

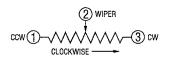
Electrical Characteristics	3540 Wirewound Element 3541 Hybritron® Element
	100 to 100 K ohms1 K to 100 K ohms
Total Resistance Tolerance	±5 %+10 %
Independent Linearity	±0.25 %
Effective Electrical Angle	3600 ° +10 °0 °
Absolute Minimum Resistance/	1 ohm or 0.1 % maximum0.2 % maximum
Minimum Voltage	(whichever is greater)
Noise/Output Smoothness	100 ohms ENR maximum0.1 % maximum
Dielectric Withstanding Voltage (MIL	-STD-202, Method 301)
Sea Level	1,000 VAC minimum
Power Rating (Voltage Limited By Po	ower Dissipation or 447 VAC, Whichever Is Less)
+70 °C	2 watts
+125 °C	0 watt0 watt
Insulation Resistance (500 VDC)	1,000 megohms minimum1,000 megohms minimum
Resolution	See recommended part nosEssentially infinite
Environmental Characteristic	
	 C

A second seco	
Operating Temperature Range	+1 °C to +125 °C+1 °C to +125 °C
Storage Temperature Range	55 °C to +125 °C55 °C to +125 °C
Temperature Coefficient Over	
Storage Temperature Range ²	±50 ppm/°C maximum/unit±100 ppm/°C maximum/unit
Vibration	
Wiper Bounce	0.1 millisecond maximum0.1 millisecond maximum
Shock	
Wiper Bounce	0.1 millisecond maximum 0.1 millisecond maximum
Load Life	
Iotal Resistance Shift	<u>+2</u> % <u>+5</u> %
Rotational Life (No Load)	1,000,000 shaft revolutions ² 5,000,000 shaft revolutions ²
Total Resistance Shift	±5 % maximum±5 % maximum
Moisture Resistance (MIL-STD-2	
Total Resistance Shift	±2 % maximum±5 % maximum
IP Rating	IP 40IP 40


Mechanical Characteristics'	
Stop Strength	-in) minimum
Mechanical Angle	$^{\circ}+10^{\circ}0^{\circ}$
Iorque (Starting & Running)	oz -in) max
Mounting	3 lbin.) max.
Mounting	003 in.) T.I.R.
Lateral Runout0.13 mm (0.	005 in.) T.I.R.
Shart End Play0.30 mm (0.	012 in.) T.I.R.
Shaft Radial Play	003 in) TIR
Pilot Diameter Runout	003 in.) T.I.R.
Backlash	0 ° maximum
Weight	nately 21 gm
Ierminals	d solder lugs
Soldering ConditionRecommended hand soldering using Sn95/Ag5 no	clean solder,
0.025 " wire diameter. Maximum temperature 399 °C (750 °F) fi	or 3 seconds.
No wash process to be used with	no clean flux.
Marking	ce value and
tolerance, linearity tolerance, wiring diagram, a	nd date code
Ganging (Multiple Section Pots.)	ps maximum
HardwareOne lockwasher (H-37-2) and one mounting	nut (H-38-2)
is shipped with each p	otentiometer.

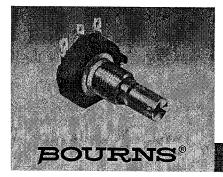

¹At room ambient: +25 °C nominal and 50 % relative humidity nominal, except as noted. ²Consult manufacturer for complete specification details.

Part Number	Resistance	Resolution	Part Number
3540S-1-201	200	.042	3541H-1-102
3540S-1-501	500	.031	3541H-1-202
3540S-1-102	1,000	.027	3541H-1-502
3540S-1-202	2,000	.021	3541H-1-103
3540S-1-502	5,000	.021	3541H-1-203
3540S-1-103	10,000	.019	3541H-1-503
3540S-1-203	20,000	.014	3541H-1-104
3540S-1-503	50,000	.011	k
3540S-1-104	100,000	.008	
	<i>J</i> =-+		


Specifications are subject to change without notice.

Customers should verify actual device performance in their specific applications.

TOLERANCES: EXCEPT WHERE NOTED DECIMALS: XX $\pm \frac{.25}{(.010)}$, XXX $\pm \frac{.13}{(.005)}$ FRACTIONS: $\pm 1/64$ DIMENSIONS: \underline{MM}


BOLDFACE LISTINGS ARE IN STOCK AND READILY AVAILABLE THROUGH DISTRIBUTION. FOR SERVO MOUNT VERSION AND OTHER OPTIONS CONSULT FACTORY.

REV. 02/06

Resistance 1,000 2,000 5,000

10,000 20.000

50,000 100,000

Initial Electrical Observation international

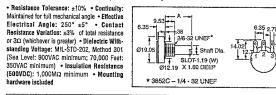
Features

- Single-turn (3851 and 3852)
- Linear and audio tapers
- **3**-3/4-turn (3856)
- Wide resistance range
- Minimal depth package
- Good resolution

3851/3852/3856 - 3/4 " Diameter Panel Control

Initial Electrical Characteristics		
	3851	3852/3856
	Conductive Plastic Element	Cermet Element
Standard Resistance Range		
Linear Tapers (A, B, E, and H)	1 K to 1 megohm	
Audio lapers (C, D, F, and G)	1 K to 1 meanhm	1 K ohms to 1 meanhm
Iotal Resistance Tolerance	+10 % or +20 %	+5% or +10%
Independent Linearity	+10 %	$(\Delta 8, \exists tanere) + 5.94$
Absolute Minimum Resistance	2 ohms maximum	2 ohms maximum
Effective Electrical Angle	250 ° ±5 °	
Contact Resistance Variation	±1 %	
Dielectric Withstanding Voltage (MIL-STD-202, Method 301)		(whichever is greater)
Sea Level		
70,000 Feet	350 VAC minimum	250 VAC minimum
Insulation Resistance (500 VDC)	1 000 megohmé minimum	
Power Rating (Voltage Limited By Power Dissipation or 350 VAC, V	Whichever Is Less)	
+70 °C	(Linear tapers) 1 watt	(Linear tapers) 2 watts
		(Audio tapers) 1 watt
+125 °C	Ó watt	, , ,
+150 °C		0 watt
Theoretical Resolution	Essentially infinite	Essentially infinite
Environmental Characteristics		
Operating Temperature Range	-1 °C to +125 °C	1 90 to 1105 90
Storage lemperature Hange	65 °C to +125 °C	-65 °C to +150 °C
lemperature Coefficient Over Storage Temperature Range	+1 000 nnm/°C	$\pm 150 \text{ nnm}/20$
Vibration	20 G	20 G
Iotal Resistance Shift	+2 % maximum	+2 % maximum
Voltage Ratio Shift	+5 % maximum	+6 % maximum
Shock	100 G	100 G
Total Resistance Shift	±2 % maximum	±2 % maximum
Voltage Ratio Shift	±5 % maximum	±6 % maximum
Load Life	1,000 hours	
Total Resistance Shift	±10 % maximum	±3 % maximum
Rotational Life (No Load)	100,000 cycles	
Total Resistance Shift Contact Resistance Variation	±15 % TRS maximum	±5 % or 5 ohms TRS whichever is greater
Moisture Resistance (MIL-STD-202, Method 103, Condition B)	±3 %	±3 %
Total Resistance Shift	+10 % movimum	
IP Rating	ΞτΟ 70 maximum	
Mechanical Characteristics		
Stop Strength		50 5 N (5 R)
Mechanical Angle		
Torque (Starting and Running)	A & R F	$\pm 50^{\circ} \pm 50^{\circ} \pm$
· · · · · · · · · · · · · · · · · · ·	C & F	bushings 0.21 to 4.23 N-cm (0.3 to 6.0 ozin.)
	042	3856 – 0.11 to 2.12 N-cm (0.15 to 3.0 ozin.)
Mounting (Torque on Bushing)		1.7.0 N m (15.10 lb in) maximum
Weight (Single Section)		30 grame maximum
		Printed circuit terminals or colder luce
Soldering Condition	Recommended hand soldering using Sr	95/Aq5 no clean solder, 0.025 " wire diameter
Maximum temp	perature 399 °C (750 °F) for 3 seconds. N	In wash process to be used with no clean flux
Dart oan h		the second state of the se
Marking	Manufacturer's trademark, wiring dia	iaram resistance date code and part number
		1 cup maximum
HardwareOne lockwasher and one mo	unting nut is shipped with each potentio	meter, except where noted in the part number.

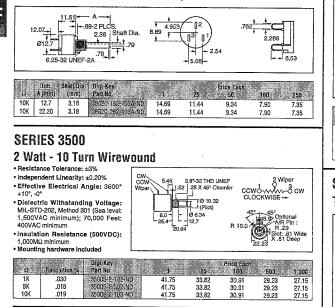
'AT ROOM AMBIENT: +25 °C NOMINAL AND 50 % RELATIVE HUMIDITY NOMINAL, EXCEPT AS NOTED.


BOURNS Precision Potentiometers

6.35 2.79-3 Plcs

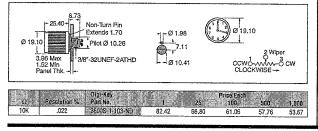
3-Ø.81 Wires Per Termina

SERIES 3852


2 Watt Cermet 3/4" (19.05mm) Diameter Panel Control

Û	Dim. A (mm)	Shaft Dia. (mm)	Digi-Key Part No	1	25	Price Each 50	100	250
1K	12.7	6.35	3852A-162-102A-ND	9.16	7.12	5.83	4.93	4.58
1K	22.20	6.35	3852A-282-102A-ND	9.16	7.12	5.83	4.93	4.58
5K	22.20	6.35	3852A-282-502A-ND	9.16	7.12	5.83	4.93	4.58
10K	22.20	6.35	3852A-282-103A-NO	9.16	7.12	5.83	4.93	4.58
10K	12.7	6.35	3852A-162-103A-ND	9.16	7.12	5.83	4.93	4.58
100K	22,20	6.35	3852A-282-104A-ND	9.16	7.12	5.83	4.93	4.58
10K	22.20	3.18	3852C-282-103A-ND*	9.16	7.12	5.83	4.93	4.58

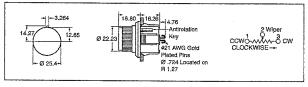
SERIES 3862 1 Watt Cermet 1/2" (12.5mm) Diameter **Single-Turn Panel Control**


· Resistance Tolerance: ±10% · Continuity: Maintained for full mechanical angle · Effective Electrical Angle: 260° 10° • Contact Resistance Variation: a5% of total resistance • Theoretical Resolution: Essentially infinite • Dielectric Withstanding Voltage: MIL-STD-202, Method 301 (Sea Level: 750VAC minimum; 70,000 Feet: 350VAC minimum) • Insulation Resistance (500 VDC): 1,000MΩ minimum • Mounting hardware included

SERIES 3600

1.5 Watt - 10 Turn Wirewound Clock Face

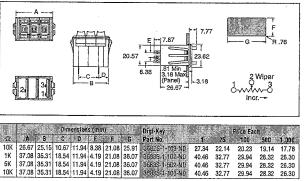
Resistance Tolerance: ±5% • Accuracy (Correlation of Dial Readout to Voltage Ratio Output): ±0.5% Voltage ratio • Hepeatability of Dial Readout: ±0.1% Voltage ratio • Effective Electrical Angle: 3600° nominal • Dielectric Withstanding Voltage: MiL-STD-202, Method 301 (Sea Level: 1,000VAC minimum); 70,000 Feet: 400VAC minimum


SERIES 3610

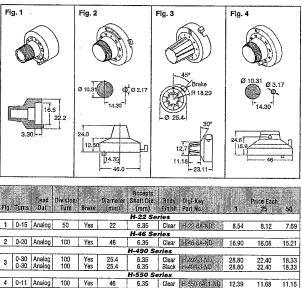
1.5 Watt - 10 Turn Wirewound Digital Clock Face

- Resistance Tolerance: ±5%
 Accuracy (Correlation of Dial Readout to Voltage Ratio Output): ±0.5%
 Voltage ratio
- Repeatability of Dial Readout: ±0.1% Voitage ratio

Effective Electrical Angle: 3600° nominal Dielectric Withstanding Voltage: MiL-STD-202, Method 301 (Sea Level: 1,000VAC minimum); 70,000 Feet: 400VAC minimum



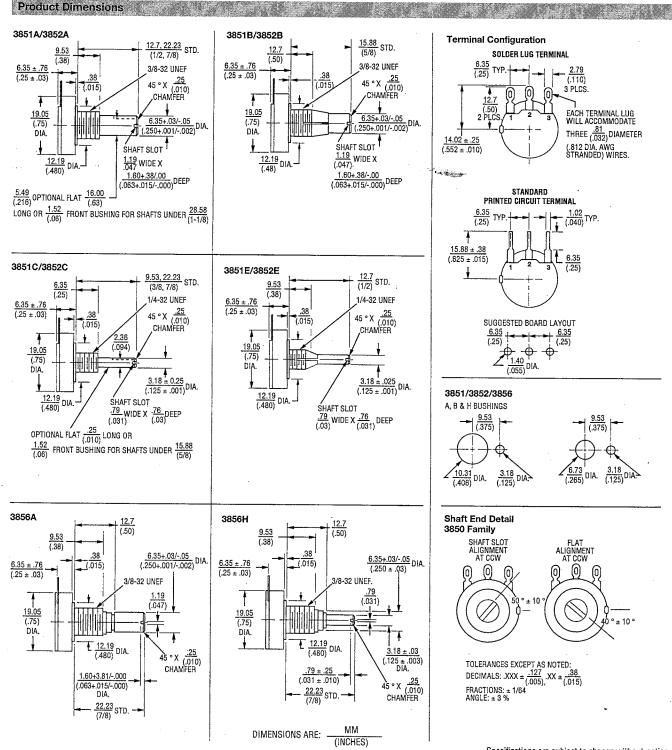
0	Wanah tan 6	Digi-Key			Price Each		
1K	.035	3610S-1-102-ND	60.92	49.35	45.08	42.66	39.60
5K	.027	3610S-1-502-ND	60,92	49.35	45.08	42.66	39.60
10K	.022	36105-1-103-ND	60.92	49.35	45.08	42.66	39.60


SERIES 3680

2 Watt Pushbutton Cermet

Resistance Tolerance: ±3% • Resolution: 3682: 1%; 3683: 0.1% • Power Rating: +25°C: 2 Watts • Dielectric With-standing Voltage: MIL-STD-202, Method 301 (Sea Level: 1000VAC minimum)

SERIES H-22, H-46, H-490, and H-550 **Turn's Counting Dials**



More Product Available Online: www.digikey.com Toll-Free: 1-800-344-4539 • Phone: 218-681-6674 • Fax: 218-681-3380

3851/3852/3856 - 3/4 " Diameter Panel Control

Bourns®

Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications. Appendix C – Gear Selection Table

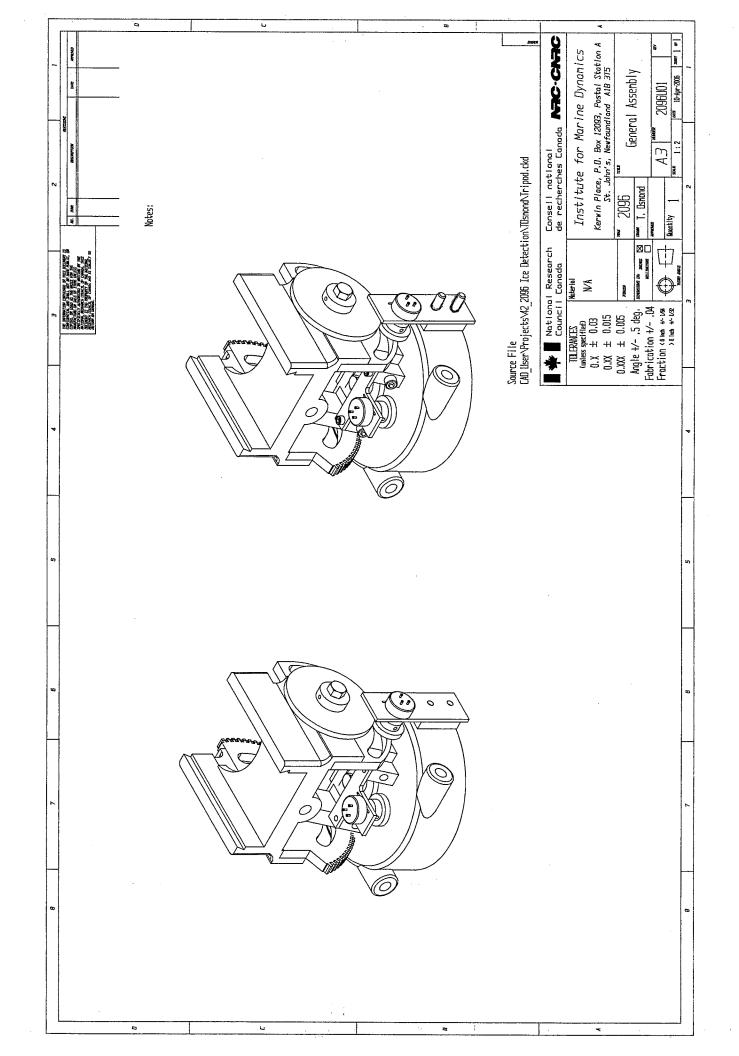
\mathfrak{C}
لاسل
0
2
ge
a
2

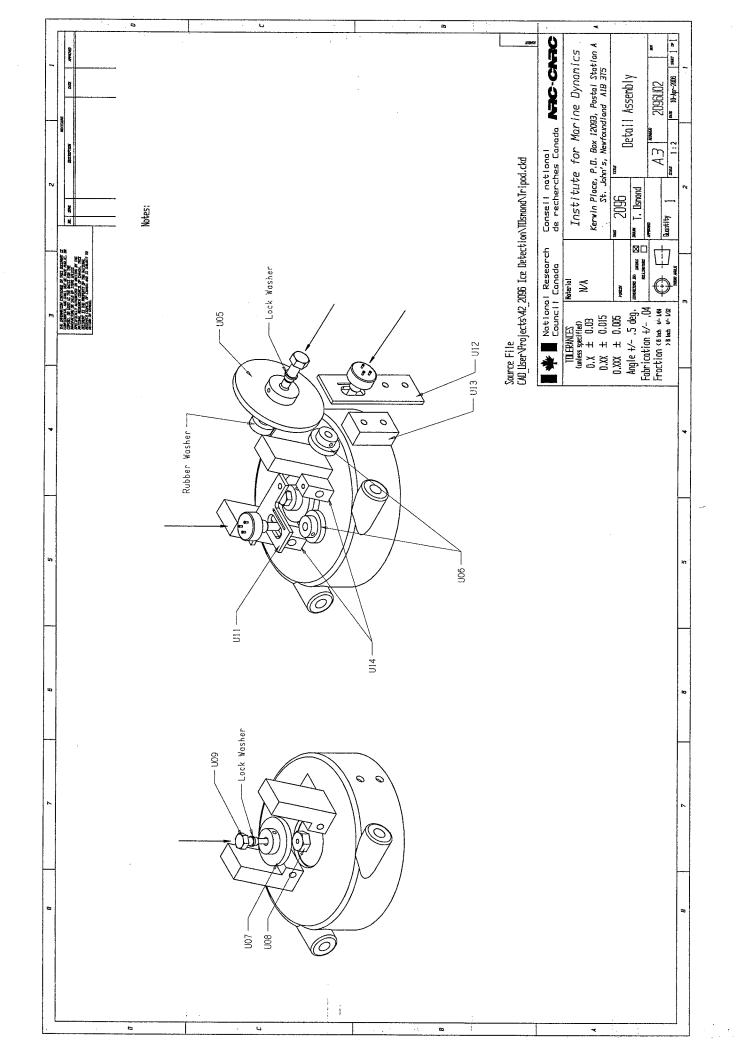
GBS-24054	54	2.250	0.3125	0.88	0.31	\$29.70	\$286.60
GBS-24060	. 09	2.500	0.3125	0.88	0.31	\$33.20	\$320.20
GBS-24072	72	3.000	0.3750	1.00	0.31	\$31.80	\$307.05
GBS-24084	84	3.500	0.3750	1.00	0.31	\$44.25	\$427.15
GBS-24096	96	4,000	0.3750	1.00	0.31	\$51.40	\$495.90
GBS-24120	120	5.000	0.3750	1.00	0.38	\$87.70	\$846.75
GBS-24144	144	6.000	0.3750	1.00	0.38	\$115.15	\$1,111.35

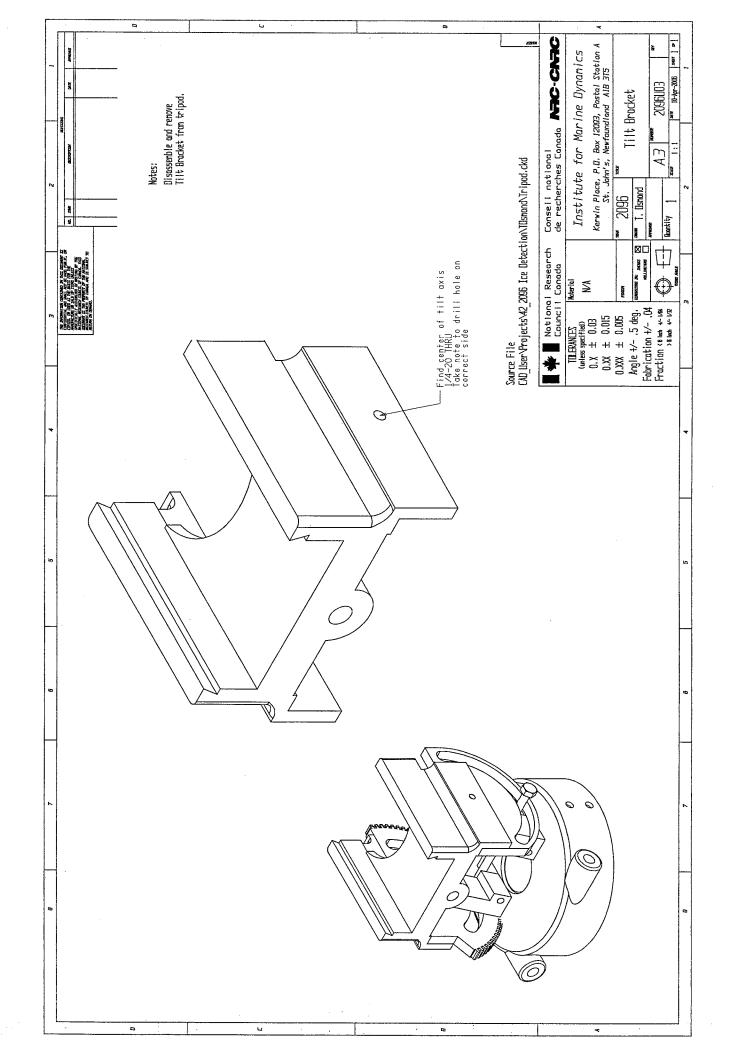
BRASS SPUR GEARS – 32 Pitch, 20º Pressure Angle Eace Width: 0.188" Outside Diamater - Ditch Diamater - 0.65% Outside

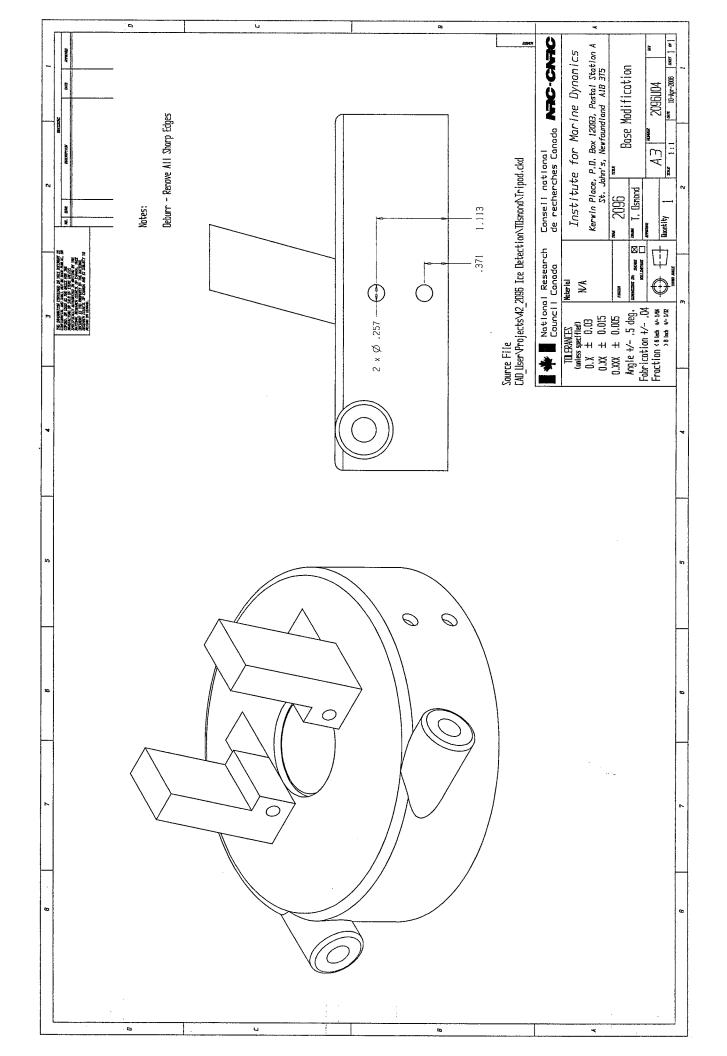
i doctioni 0 1 00" + 11th Br 447 1 10

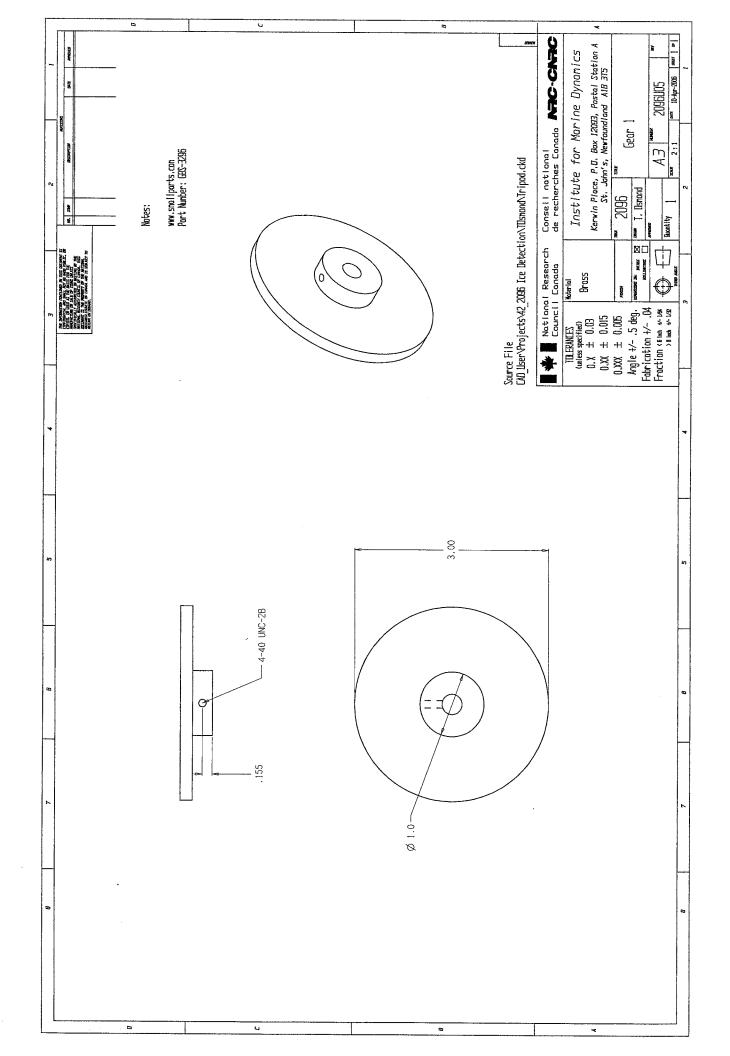
	Din	nensions In Inches	S			Pr	Price
Part No.	Teeth	Pitch Dia.	Bore	Hub Dia.	Hub Project	Each	10
GBS-3212	12 ·	0.375	0.125	0.28	0.25	\$8.05	\$60.40
GBS-3214	14	0.438	0.125	0.34	0.25	\$8.50	\$63.75
GBS-3216	16	0.5	0.188	0.4	0.25	\$8.95	\$67.15
GBS-3218	18	0.562	0.188	0.43	0.25	\$9.40	\$70.50
GBS-3220	20	0.625	0.188	0.47	0.25	\$10.05	\$75.40
GBS-3224	24	0.75	0.188	0.53	0.25	\$11.40	\$85.50
GBS-3228	28	0.875	0.188	0.59	0.25	\$12.45	\$93.40
A G85-3232	32	1	0.25	0.66	0.25	\$13.35	\$100.15
GBS-3236	36	1.125	0.25	0.72	0.25	\$15.80	\$118.50
GBS-3240	40	1.25	0.25	0.72	0.25	\$17.15	\$128.65
> GBS-3248	48	1.5	0.25	0.78	0.25	\$20.15	\$151.15
GBS-3256	56	1.75	0.313	0.84	0.25	\$21.85	\$163.90
GBS-3264	64	2	0.313	0.9	0.25	\$33.15	\$248.65
GBS-3272	72	2.25	0.313	0.88	0.31	\$35.80	\$268.50
GBS-3280	80	2.5	0.313	0.88	0.31	\$39.00	\$292.50
SBS-3296	96	С	0.313	-1	0.31	\$43.20	\$324.00
GBS-32112	112	3.5	0.3125		0.31	\$52.15	\$422.55
GBS-32128	128	4	0.3125	 i	0.31	\$63.65	\$515.85
GBS-32160	160	S	0.3125	᠇᠇	0.31	\$81.00	\$656.70


Face Width: 0.125". Outside Diameter = Pitch Diameter + 0.042". Overall Length = 0.125" + Hub Projection


	Dime	nensions In Inches	S			Price	ce
Part No.	Teeth	Pitch Dia.	Bore	Hub Dia.	Hub Project	Each	10
GBS-48012	12	0.25	0.125	0.18	0.19	\$6.90	\$51.75
GBS-48015	15	0.312	0.125	0.22	0.19	\$7.40	\$55.50
GBS-48018	18	0.375	0.125	0.28	0.19	\$8.05	\$60.40


http://www.smallparts.com/products/descriptions/gbs.cfm


29/03/2006


Appendix D – Modification Drawings

