

NRC Publications Archive Archives des publications du CNRC

Trends in aluminum laser welding: lightweighting applications Mirakhorli, Fatemeh

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23002292

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=c77bb016-3d22-4430-8c60-ba4172c11509 https://publications-cnrc.canada.ca/fra/voir/objet/?id=c77bb016-3d22-4430-8c60-ba4172c11509

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

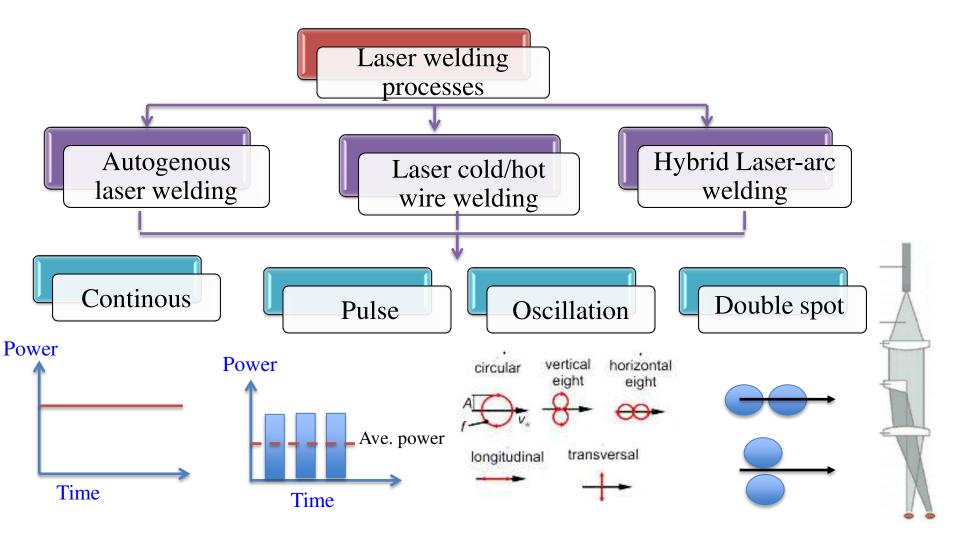
Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Trends in aluminum laser welding: Lightweighting applications

Fatemeh Mirakhorli, Ph.D, P.Eng.

Research officer, National Research Council Canada, Automotive and Surface Transportation Fatemeh.Mirakhorli@nrc-cnrc.gc.ca

14 Sept. 2017



Conseil national de recherches Canada

Outline

- Introduction
- Laser-cold wire welding of thick AA 6XXX aluminum alloys
- Single pass butt joint laser-cold wire welding of 4.5 mm thick AA 6XXX
- Gap bridging capability of butt joint laser-cold wire welding method
- Multi-Pass butt joint laser-cold wire welding of 6.5 mm thick AA 6XXX
- Fillet lap joint laser-cold wire welding of AA 6XXX
- Laser oscillation welding method
- Pulse laser welding of non-weldable AA7075-T6
- Laser-remelt method to improve fatigue property of GMAW
- Lap joint laser welding of thin AA 5XXX -backside esthetism assessment

Introduction Laser welding processes

Introduction Applications

Laser welded train wall panel http://www.industrial-lasers.com

no po

www.ilt.fraunhofer.de

Laser optics -

Hybrid arc.

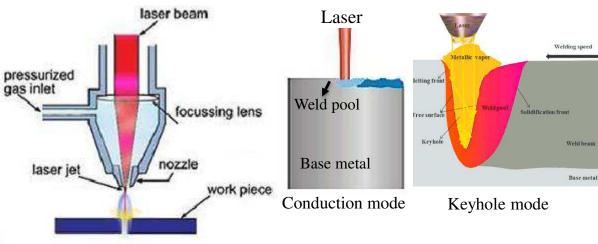
2nd arc for filler pass

Volvo roof laser seam welding

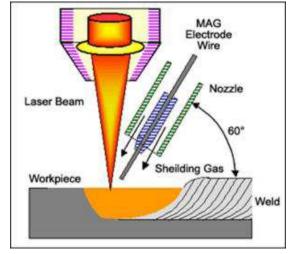
http://www.industrial-lasers.com

http://keywordsuggest.org

http://www.medicaldevice-network.com



http://www.energid.com

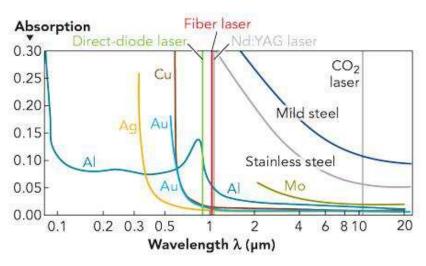

Introduction Laser for welding

Main Advantages

- Higher welding speeds
- Deep penetration
- Low consumable consumption
- ≻ Low heat input
- Reduced joint volumes
- Enhanced mechanical propert

Laser welding http://www.ustudy.in/node/3830

Laser-arc welding IIW Annual Assembly, Osaka, Japan, 2004

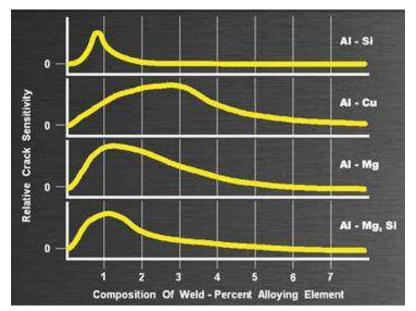

Automobile et transport de surface / Automotive and Surface Transportation

Limitations

- Large number of parameters
- Additional safety measures
- Strict part fit-up
- Costly laser source (45k\$CAD / kW)

Introduction Laser welding problems on Al alloys

• Reflectivity by metal surface



• Hot cracking

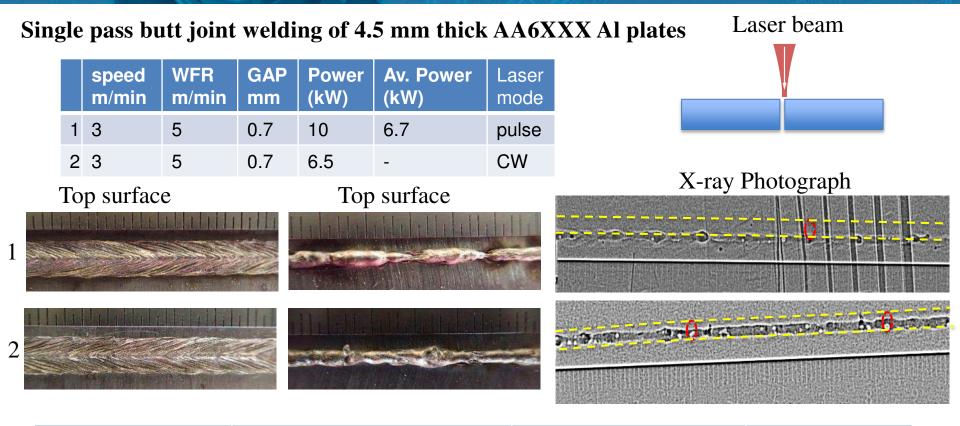
Hot cracking is an issue in autogenous mode and can be controlled to such extent with filler wire addition (Al-Mg; Al-Mg-Si) • Porosity and humping

Porosity in fibre laser weld 5XXX AL alloys

Equipment-Fusion welding

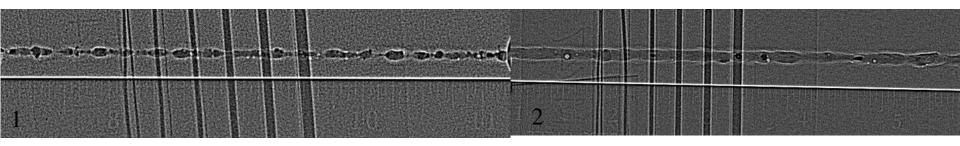
- > TRUMPF TRUDISK 10 kW solid-state disk laser for welding
- Fronius & Lincoln GMAW
- Miller TIG Welder
- SBI International Plasma Arc welding

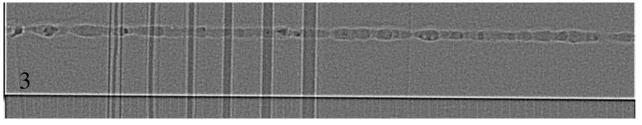
Laser welding of thick AA 6XXX Aluminium alloys


Butt joint laser cold wire welding
Gap bridging ability of laser-cold wire welding technique
Fillet lap joint laser-cold wire welding
Seam lap joint laser welding

Conseil national de recherches Canada

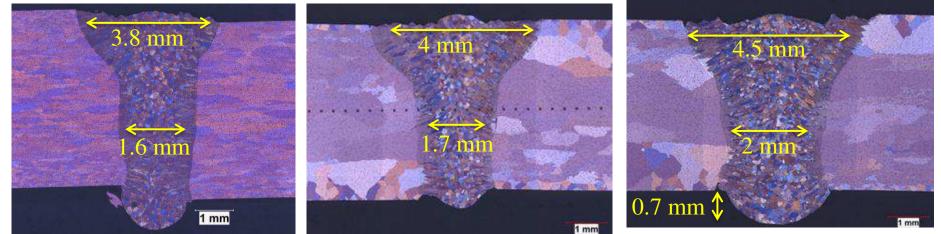
Laser welding of thick Aluminium plates Butt-joint design

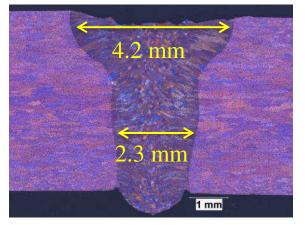



	Max. single porosity dimension	Max. cluster porosity dimension	Porosity area fraction
Trial #1	1 mm	1.2 mm	2.0%
Trial #2	1.7 mm	2.2 mm	5.6%
EN ISO 13919, Level B	$h \le 0.3t (1.44 \text{ mm})$	$h \le 0.3t (1.44 mm)$	$f \leq 3\%$
EN ISO 13919, Level C	$h \le 0.4t \ (1.92 \ mm)$	$h \le 0.4t \ (1.92 \text{ mm})$	$f \le 6\%$

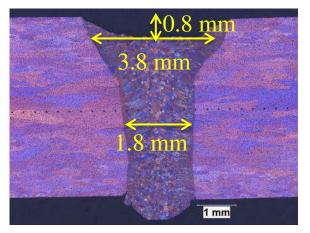
Laser welding of thick AA 6XXX Al plates Butt-joint design

Gap bridge ability of laser-cold wire welding on 4.5 mm thick AA6XXX Al plates


n	power	Ave.	Speed	WFR	mode	Gap
		Power	m/min	m/min		mm
1	10	6.5	3	3	pulse	0.3
2	10	7.7	2.75	6.5	pulse	1
3	8	-	4.5	6.5	CW	0.7


X-ray Photograph

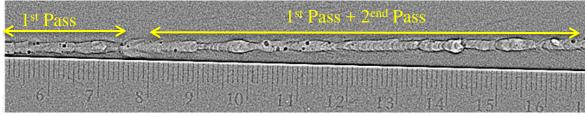
Laser welding of thick AA 6XXX Al plates macrostructure at different gap size and laser mode



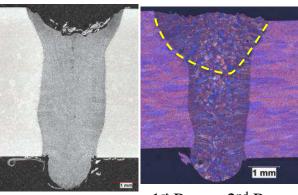
3 m/min, pulse, gap: 0.3 mm 3 m/min, pulse, gap: 0.7 mm

2.75 m/min, pulse, gap: 1 mm

3 m/min, CW, gap: 0.7 mm

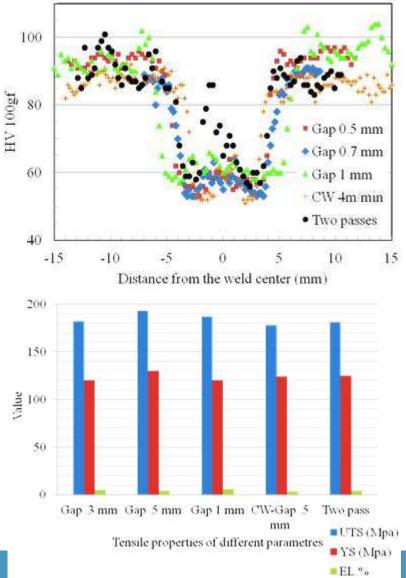

4.5 m/min, CW, gap: 0.7 mm

Laser welding of thick AA 6XXX Al plates Two pass Butt-joint weld

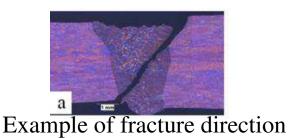

Two pass butt joint welding of 6.5 mm thick AA6XXX Al plates

	Welding speed m/min	Wire feed speed m/min	GAP mm	Power (kW)	Av. Power (kW)
pass1	4	3.5	0.5	9	-
pass2	3	4	-	4.5	6.48

X-ray Photograph

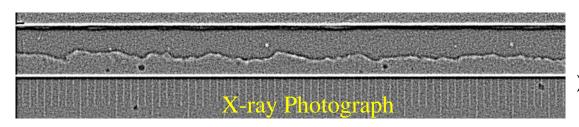


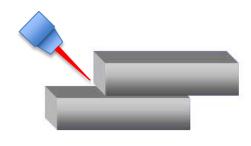
1st Pass


1st Pass + 2nd Pass

Butt-joint laser welding of thick AA 6005 AL alloys Hardness & Tensile properties

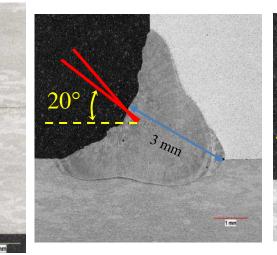
FL


- The minimum hardness occurred in the FZ center (~34% softening compare to (BM).
- The harness increased gradually from FZ to HAZ and BM.
- The softening in FZ and HAZ is related to dissolution of smaller hardening precipitates and over-aging.
- The tensile properties of butt joint in pulse laser mode was slightly higher than CW laser mode
- The Tensile fracture start at FL, then the failure reach top surface, at the opposite direction, ending again to



Laser-cold wire welding of thick AA6XXX AL Fillet lap joint

Effect of laser beam angle on weld bead geometry

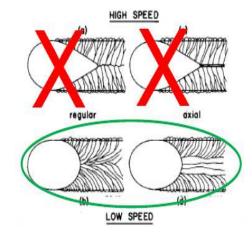

n	Power	Speed	WFR	Gap	Laser angle	Penetration
	kW	m/min	m/min	mm	Deg.	mm
1-3	10	3	5	0	30, 20, 10	3, 3, 2.8

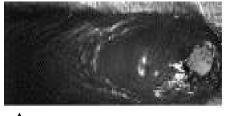
- Laser-cold wire welding of AA6XXX, without gap show no porosity.
- The maximum effective throat of 3mm was achieved at 20° laser angle

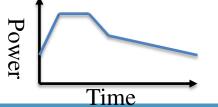
2.8 mm

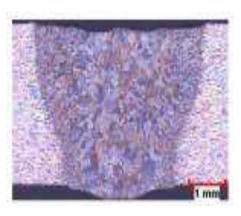
Pulse laser welding of 2 mm thick AA7075-T6

Conseil national de recherches Canada




Pulse laser welding process development on AA7075-T6 2.0mm

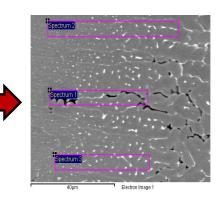

Molten pool <u>as small as possible & round</u> (limit alloying elements segregation & solidification shrinkage)

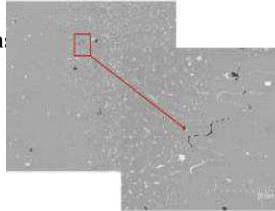

➢Welding energy <u>as low as possible</u> (limit alloying elements segregation

Ave. Power kW	Speed m/min	Tensile property
1.95	1	50% joint efficiency

No Zn/Mg evaporation loss in fusion zone

Cold-wire laser welding process development on AA7075-T6 2.0mm

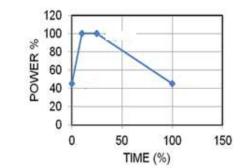

The use of filler wire generally showed a better response toward hot cracking VS autogenous

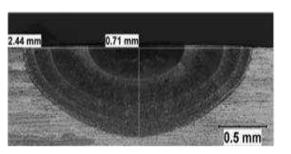

Welds at high speed of 4m/min show high amount of hot cracks
 & microvoid clusters (unsuitable at higher travel speed)

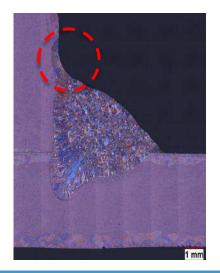
- ≻Highest joint efficiency (62%) in tensile testing achieved using high Mg content filler wire of ER5556 (Al-4.5Mg)
- ➤ Microvoids at fusion line appeared, but less than the other condition

Future work: use Sc modified filer metal

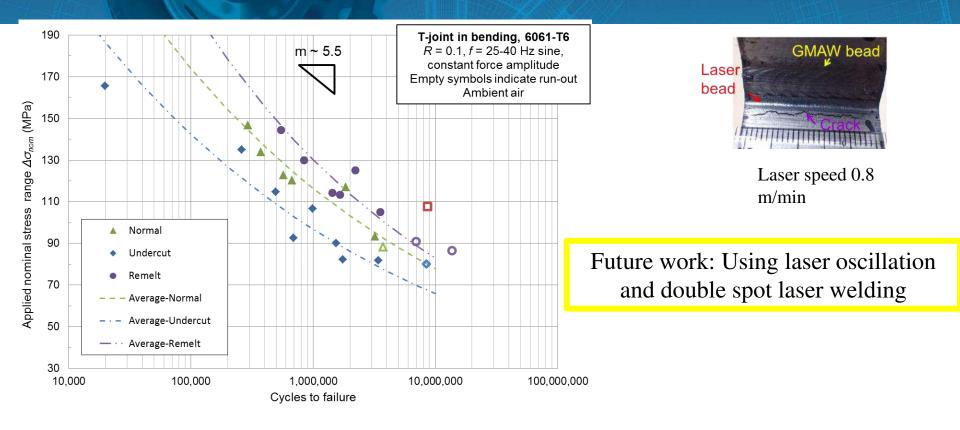
GMAW fatigue improvement using laser-remelting technique


Conseil national de recherches Canada


Laser-remelting Process development


•Major task: <u>Definition of the right pulse shape & parameters</u> to improve weld toe geometry and avoid hot cracking

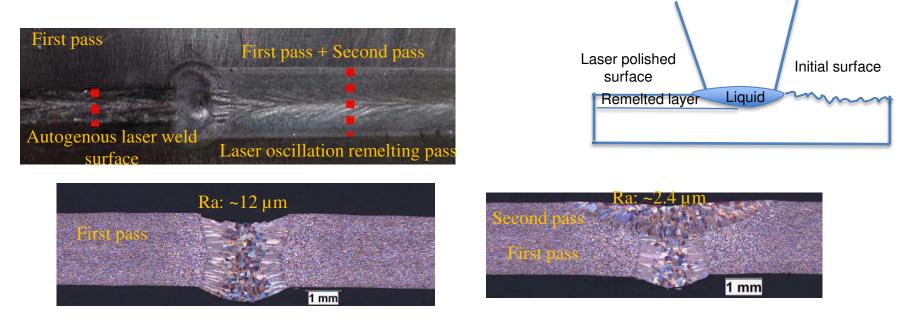
Power W	Speed m/min	Defocus mm	Av. Power W	Pulse Duration ms	mode
4730	0.8	+10	3500	20	conduction



Fatigue test results- before and after laser-remelting

► Laser-remelting at **0.8 m/min**, on 6061-T6-GMAW T-joint, leads to **10-15% increase** in fatigue strength of **normal samples** at high fatigue cycle ($\geq 10^6$)

➤This fatigue strength at 0.8 m/min laser speed on normal sample, compared to the aswelded GMAW with undercut, shows 30% increase in fatigue strength at high fatigue cycle


Laser oscillation technique

Conseil national de recherches Canada

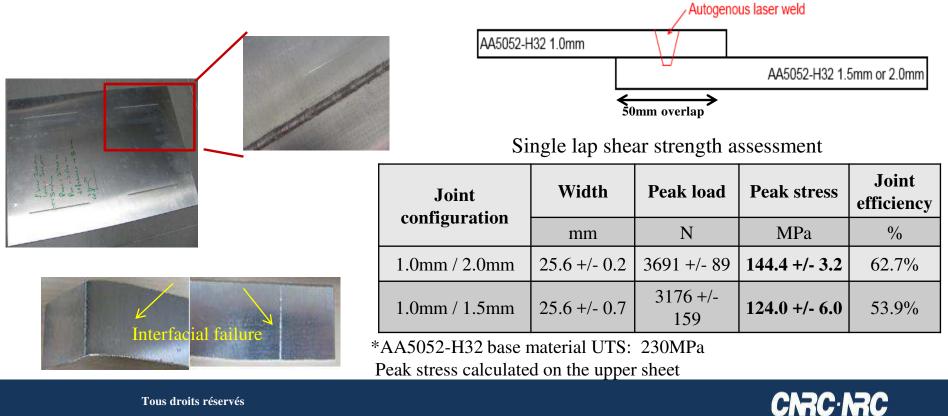
Laser oscillation technique to Polish as-welded surface

- Reducing the roughness of as welded surface by laser melting pass
- The polished surface area can increase 3 times using laser oscillation mode compare to pulse laser mode
- ➤ A thin surface layer is molten and the surface tension leads to a material flow from the peaks to the valleys. No material is removed but reallocated while molten, *Laser Polishing* [2017].

Other application:

Increase gap bridging in butt and lap joint laser welding , grain refinement in weld FZ

Autogenous laser weldingbackside esthetism assessment



Conseil national de recherches Canada

Autogenous laser welding- backside esthetism assessment

Stitch welding of 1.0mm/2.0mm thick AA5052-H32 Al alloy show no distortion in backside Thinner bottom sheet was also suitable: 1.0mm/1.5mm thick >Again, interfacial failure is observed but the backside finish esthetism is still kept ! ▶ 54% to 63% joint efficiency obtained for 1.0mm / 2.0mm and 1.0mm / 1.5mm thick lap joints repectively.

Tous droits réservés

Summary

Laser-cold wire welding of AA 6XXX alloy

- 4.7 mm and 6 mm thick 6XXX AL alloys were successfully welded using single pass and two pass laser-cold wire welding process
- Gap bridge ability of <u>1mm</u> was achieved using laser-cold wire welding process for 4.7 mm thick plates and in butt joint design
- > Porosity, underfill and excessive penetration were the most common welding defects.
- > The welds passed the requirement criteria of ISO 13919-2 standard (level B) for defects.
- Hot cracking was not observed in butt joint laser cold wire under X-ray analysis and optic microscopy

Laser welding of 2mm thick AA7075-T6

- Pulse shape optimization has great effect on reducing the FZ hot rack of AA7075-T6
- The joint efficiency of 62% was achieved during laser welding of AA7075-T6 using of ER5556 filler

Summary

Fatigue improvement using laser-remelting technique

Laser remelting technique can improve fatigue property of GMAW up to 30% by optimizing the laser parameters such as pulse shape and speed

Laser oscillation technique

Laser oscillation welding was used as a second pass to improve surface roughness before paining. This also can improve mechanical properties of weld in structural application

Autogenous laser welding- backside esthetism assessment Stitch welding of 1.0mm/2.0mm & 1.0mm/1.5mm thick AA5052-H32 Al alloy was performed WITH no distortion in backside

Thank you!

Question?

Fatemeh.Mirakhorli@nrc-cnrc.gc.ca

Conseil national de recherches Canada

