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ABSTRACT: We developed a generalized solvation force extrapolation
(GSFE) approach to speed up multiple time step molecular dynamics
(MTS-MD) of biomolecules steered with mean solvation forces obtained from
the 3D-RISM-KH molecular theory of solvation (three-dimensional reference
interaction site model with the Kovalenko-Hirata closure). GSFE is based on a
set of techniques including the non-Eckart-like transformation of coordinate
space separately for each solute atom, extension of the force-coordinate pair
basis set followed by selection of the best subset, balancing the normal
equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion
integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are
extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces
obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with
GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nose−́Hoover chain (OIN)
thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of
different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein
G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1−4 ps while
accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves
time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of
protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of
conformational sampling for these systems, compared to conventional MD with explicit solvent. We have been able to fold the
miniprotein from a fully denatured, extended state in about 60 ns of quasidynamics steered with 3D-RISM-KH mean solvation
forces, compared to the average physical folding time of 4−9 μs observed in experiment.

1. INTRODUCTION

Prediction of the structure and functioning of proteins at the
molecular level from the first-principles, i.e. solely from amino
acids sequences and interaction potentials between the solute
and solvent atoms, remains a challenging task.1 The main
problem is that the processes responsible for conformational
and folding equilibria in these complex systems take place on
time scales ranging from picoseconds to micro- and milli-
seconds. During the last decades, molecular dynamics (MD)
simulations originally designed to study simple liquids2−5 have
been developed into a powerful tool6−18 that enabled
understanding the mechanisms of protein folding, one of the
most fundamental biochemical operations. However, such
simulations must be very long (at least several microseconds)
to stand a good chance of observing a single folding event even
for the simplest proteins.1 In the course of development, the
MD simulation length has continuously increased, first reaching
one microsecond8,9 and then ten microseconds.14 Recently, a
barrier of one millisecond has been broken.15−17 However, the
consideration was restricted to relatively simple systems. With
the present capabilities of high performance computing, MD

simulations of relatively large proteins are bounded, as a rule, to
tens to hundreds of nanoseconds.19 This is, of course, quite
insufficient for usual MD to obtain a full pattern on the folding
behavior.
A promising way to significantly accelerate molecular

simulations has been to combine the MD method with the
3D-RISM integral equation theory of molecular liquids (three-
dimensional reference interaction site model)20−29 comple-
mented with the Kovalenko-Hirata closure relation.24,27,29 In
the hybrid MD/3D-RISM-KH approach, individual trajectories
and dynamics of solvent molecules are contracted to
quasiequilibrium 3D density distribution functions of their
interaction sites around the biomolecule in successive
conformation snapshots. The evolution of the biomolecule
thus becomes quasidynamics steered with mean solvation
forces obtained for each conformation of the biomolecule from
the 3D-RISM-KH molecular theory of solvation.30−33 The
latter produces mean solvation forces by converging the 3D-
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RISM-KH integral equations derived from the first-principles of
statistical mechanics, beginning from an input of the interaction
potentials and geometries of the biomolecule and solvent
molecules (molecular force field). The 3D-RISM-KH mean
solvation forces statistically mechanically averaged over the
distributions of an infinite number of solvent molecules are thus
added to the direct intramolecular interactions for integrating
the equations of motion of atoms in the biomolecule. A chief
advantage of this hybrid approach is that slow solvation
processes in the confined geometry of the biomolecule,
particularly under its conformational changes, such as solvent
exchange and re-equilibration, localization of structural solvent,
ions distribution and localization, and protein−ligand binding,
which constitute a major challenge for conventional MD are
readily accounted for by 3D-RISM-KH mean solvation forces
and thus excluded from the biomolecule quasidynamics. This
leads to drastic compression of time scale in protein
quasidynamics compared to real dynamics and thus enables
fast access to structural and folding properties of large
biomolecular systems in solution.
Worth emphasizing is a profound advantage of the 3D-

RISM-KH molecular theory of solvation as compared to
continuum solvation methods which represent polar solvation
forces with either the Poisson−Boltzmann (PB)34 or the
Generalized Born (GB)35−37 models and empirically account
for nonpolar solvation forces with the solvent accessible surface
area (SASA, or SA) model supplemented with additional
volume and dispersion integral terms.38,39 These continuum
solvation approaches are parametrized for hydration of
biomolecules and are not transferable to other solvent or
solvent system with cosolvent, ions at a finite concentration
(physiological concentration in biomolecular systems), and
other solvent species, in particular, in the recent methods40−43

treating ligand fragments as part of a solvent mixture.
Continuum solvation models based on the concept of a
solvation cavity in dielectric structureless medium representing
solvent entirely ignore effects of finite size of solvent molecules
on mean solvation forces between solute molecules, for
example, a desolvation barrier due to expelling solvent
molecules from the gap between the surfaces of proteins
(parts of protein) when bringing them together in contact.
Furthermore, SASA is well-defined for an outer surface of a
biomolecule but loses physical meaning and becomes
inadequate inside small inner cavities of biomolecules like a
narrow channel accommodating an ion and a few water
molecules. As distinct, the 3D-RISM-KH molecular theory of
solvation readily accounts for all such and other molecular
solvation effects and yields both the structure as 3D maps of
solvent density distributions and the solvation thermodynamics
at the level of molecular simulations. (A comparison attainable
if molecular simulations are feasible; for many biomolecular
systems, affordable simulation times are too short to gain
meaningful statistics of rare essential solvation events, while the
molecular theory of solvation provides the solvation structure
and thermodynamics in the equilibrium ensemble.) It is useful
to clearly position these approaches in the context of solvation
models nomenclature used in the literature: GB(PB)SA are
implicit and continuum solvation models; whereas the 3D-
RISM-KH molecular theory of solvation is implicit as it
produces 3D density distributions which are an average of
individual trajectories of solvent molecules, and not continuum
as it uses all molecular interaction potentials in the system
(molecular force field) at input to produce the full molecular

picture of solvation in terms of the solvent distributions and
solvation thermodynamics at output with full account of all
chemical specificities and molecular geometries as specified in
the force field.
Miyata and Hirata performed a pioneering MD/3D-RISM-

KH simulation for hydrated acetylacetone.30 They exploited the
standard reference system propagator algorithm (RESPA)44−46

in the microcanonical ensemble, with calculation of mean
solvation forces by converging the 3D-RISM-KH integral
equation at each outer step without resorting to extrapolation
of solvation forces. With this propagator algorithm, it was
impossible to apply outer time steps larger than 5 fs as a result
of resonance instabilities47−52 that appear in MD/3D-RISM-
KH as well as in conventional MD simulations due to the
multiple time step (MTS) interplay between strong intra-
molecular (solute−solute) and weak intermolecular (solute−
solvent) forces. In conventional MD, the accuracy of MTS
simulation can be increased by carrying out processed phase-
space transformations.53,54 Utilizing them within an energy-
constrained scheme, it was shown55 in MD simulations of water
that outer time steps up to 16 fs are acceptable. However, such
steps cannot exceed the theoretical limiting value of 20 fs
inherent in the microcanonical description. Furthermore, in
hybrid MD/3D-RISM-KH without solvation force extrapola-
tion, the procedure of converging the 3D-RISM-KH integral
equations has to be repeated too frequently (every 5 fs),30

which drastically slows down the computations.
In order to damp MTS instabilities, the MD/3D-RISM-KH

approach has been extended31 to the canonical ensemble within
the Langevin dynamics.56,57 Introducing the method of
solvation force extrapolation (SFE) for mean solvation forces
acting on the solute, it has been demonstrated for hydrated
alanine dipeptide that larger outer time steps of up to 20 fs are
feasible.31 They, however, are still smaller than those achievable
in conventional MD simulations by the best previously known
isokinetic Nose−́Hoover chain RESPA (INR) integrator, for
which an outer time step of 100 fs is possible.58,59 Recently, we
introduced the optimized isokinetic Nose−́Hoover chain
(OIN) canonical ensemble for more efficient elimination of
MTS instabilities in MD simulations.32 It improves over the
INR method58,59 and other canonical-isokinetic schemes60−62

by coupling each set of Nose−́Hoover chain thermostats to
some optimal number of degrees of freedom in the system.
Slightly modifying the original SFE scheme,31 the OIN
integrator has been combined with the MD/3D-RISM-KH
approach. It has been shown on an example of hydrated alanine
dipeptide32 that the OIN ensemble is superior to the Langevin
and INR schemes. In particular, large outer time steps of order
of several hundred femtoseconds can be employed, providing a
speedup up to 20 times in comparison with conventional MD
with explicit solvent.
Very recently, we introduced a method of advanced solvation

force extrapolation (ASFE) in MD/3D-RISM-KH simula-
tions.33 The pivoting idea was to apply a global non-Eckart-
like rotation of atomic coordinates to minimize the distances
between the biomolecule sites in different conformations at
successive time steps. We showed that carrying out the force
extrapolation in the transformed space and extending the set of
outer conformations provide evaluation of mean solvation
forces with a much better accuracy than the previous
extrapolation scheme. This allowed us, without affecting the
equilibrium and conformational properties, to apply huge outer
time steps up to tens of picoseconds in the hybrid MD/3D-
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RISM-KH simulations and thus to get a 100- to 500-fold
acceleration compared to MD with explicit solvent. However,
the validation was limited to hydrated alanine dipeptide, a
relatively simple molecule of only 22 atoms, and it remained
unknown whether this degree of acceleration would hold for
larger biomolecules.
In the present paper, we significantly modify and generalize

our recent ideas and techniques33 so as to obtain the desired
speedup for larger solute molecules, including proteins. First of
all, rather than performing a full rotational transformation of
the whole molecule, we introduce an individual non-Eckart-like
transformation for each atom of the biomolecule in the
presence of a smooth weighing function. For macromolecules,
this appreciably enhances convergence of the extrapolated
forces to their exact values with increase of the number of basis
outer coordinates. Other techniques, such as the least-squares
minimization, extension of the force-coordinate pair set to
select the best subset, and balancing the normal equations have
been modified, too. In addition, we propose the so-called
frequency scheme which appreciably reduces computational
overhead of the extrapolation without loss of precision. With all
the above improvements, the good accuracy attainable with the
original SFE scheme31 for outer time steps of up to 20 fs can
now be held with our new approach of generalized solvation
force extrapolation (GSFE) for much longer steps of order of 1
to 4 ps, even for large biomolecules.
The paper is organized as follows. In Section 2, we introduce

the GSFE approach. Section 3 describes the 3D-RISM-KH
theory and the canonical OIN scheme for integration of the
multiscale equations of motion in the presence of the
extrapolated forces. In Section 4, we validate the resulting
OIN/GSFE/3D-RISM-KH algorithm against MD simulations
on an asphaltene molecule in toluene solvent and on
miniprotein 1L2Y and protein G in water solvent. For
comparison, we examine hydrated alanine dipeptide as well.
In Section 5, we perform folding of the miniprotein. Final
conclusions are made in Section 6.

2. GENERALIZED SOLVATION FORCE
EXTRAPOLATION

2.1. 3D-RISM-KH Mean Solvation Forces. Let us
consider a solute macromolecule consisting of M atoms
solvated in liquid comprising a large number of solvent
molecules with M′ atomic sites. Conventional MD simulation
deals with forces −∂U/∂ri acting on all atoms i = 1, ..., M+M′ at
positions ri in the solute−solvent system with the total
potential energy U(r1, ..., rM, rM+1, ..., rM+M′).
The latter can be split up as U = U1 + U2 into the solute−

solute interaction potential U1(r1,...,rM) and the remaining term
U2(r1,...,rM+M′) comprising the solute−solvent and solvent−
solvent interaction potentials. Accordingly, the forces acting on
solute atoms split up into two parts coming respectively from
solute−solute and solute−solvent atomic interactions, −∂U/∂ri
= −∂U1/∂ri − ∂U2/∂ri, where i = 1, ..., M. In MD simulations of
biomolecules, the total number of atoms of solvent molecules
has to be much larger than that of the solute biomolecule (M′

≫ M) to have good statistics and neglect finite size effects.
Even at infinite dilution, for a biomolecule of M ∼1,000−
10,000 atoms the number of solvent atoms has to be M ∼
10,000−100,000. This considerably complicates conventional
MD because a large portion of the computational costs is spent
on evaluation of solute−solvent and solvent−solvent atomic
forces −∂U2/∂ri, where i = 1, ..., M+M′. In common practice,

the concentration of solute macromolecules (or aggregates of
macromolecules) is small and interactions between solutes (or
composite solutes) are neglected, thus reducing the consid-
eration to infinite dilution.
Since we are interested exclusively in conformational and

folding behavior of the solute biomolecule, one way to improve
the efficiency of MD simulations consists of contracting the
degrees of freedom of solvent (a huge number of molecules)
and evaluating the dynamics of the biomolecule on the
solvation free energy surface. Such quasidynamics of the
biomolecule is then steered with mean solvation forces63,64 that
are defined as a statistical average of solute−solvent atomic
forces −∂U2/∂ri acting on each solute atom i = 1, ..., M over all
arrangements of all M′ solvent atoms around the biomolecule
at a frozen conformation {r1, ..., rM}

∫
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where kBT is the Boltzmann constant times system temper-
ature. Without explicit solvent treatment, mean solvation forces
can be obtained either from continuum solvation models or
from molecular theory of solvation.
In continuum solvation models, mean solvation forces (1)

are empirically constructed and parametrized. In the context of
hydration of biomolecules, polar solvation forces in dilute
systems are reproduced with either the Poisson−Boltzmann
(PB)34 or the Generalized Born (GB)35−37 models, and
nonpolar solvation forces at atomic length scale are accounted
for with the solvent accessible surface area (SASA) model
supplemented with additional volume and dispersion integral
terms.38,39 This approach works well for the values of the
hydration free energy of biomolecules; unfortunately, it has all
inherent disadvantages of continuum solvation theories:
nontransferable to other solvents and solvent systems, in
particular, electrolyte solutions, missing solvent size effects such
as a desolvation barrier in protein aggregation, inadequacy for
solvation of internal cavities such as narrow channels.
As distinct, the 3D-RISM-KH molecular theory of

solvation24−29 is transferable and yields both solvation structure
and mean solvation forces from the first-principles of statistical
mechanics with an accuracy (up to the closure approximation
used) at the level of molecular simulation with a very large
number of solvent molecules that has converged. (Explicit
solvent simulation with viable statistical sampling is a huge
challenge for systems with slow rate processes such as solvent
exchange and localization in protein confined spaces,
preferential adsorption of cosolvent, partitioning of ions,
binding of ligands, and solvent and ions mediated protein−
protein interactions). By converging the 3D-RISM-KH integral
equations discretized on a 3D grid the solvation structure is
obtained in terms of 3D maps of site correlation functions
(including density distributions) (see Section 3.1). The
solvation free energy and mean solvation forces fi acting on
each interaction site of the solute molecule in a solvation box of
infinite size (M′ →∞) are then readily calculated in a closed
form analytically obtained by thermodynamic integration of the
3D-RISM-KH equations as a single 3D spatial integral of the
3D site correlation functions (see Section 3.2). The predictive
capability of the 3D-RISM-KH theory has been validated for
the solvation structure and thermodynamics of chemical species
and biomolecules in various solvents and solution sys-
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tems,27,29,65 in particular, in the context of hybrid MD/3D-
RISM-KH for hydrated biomolecules.30−33 3D-RISM-KH mean
solvation forces fi can then be employed together with direct
intramolecular solute−solute interactions −∂U1/∂ri to integrate
the equations of motion just for solute atoms.
A further, much more important advantage of the hybrid

MD/3D-RISM-KH approach is that slow rate processes of
solvent exchange and re-equilibration in confined spaces due to
conformational changes of the solute biomolecule are entirely
eliminated from the MD/3D-RISM-KH quasidynamics. In fact,
it performs essential dynamics of protein in solution with
effective account for molecular steric forces and chemical
specificities, such as desolvation barrier in hydrophobic
interaction and hydrogen bonding. This drastically contracts
the time scale of quasidynamics compared to real dynamics and
so leads to dramatically shorter simulation times required to
gain adequate statistics. This intrinsic acceleration of MD
steered with 3D-RISM-KH mean solvation forces grows with
complexity of the biomolecule (e.g., protein). Indeed, in
conventional MD, solvent enters pockets and inner cavities of
the biomolecule through its conformational changes. This is a
very slow process with rare statistics which is as difficult to
model explicitly as protein folding conformational changes
themselves. (Note again that continuum solvation models miss
steric effects such as desolvation barrier and hydrogen bonding
and do not adequately reproduce solvation in inner cavities of
biomolecules.) As distinct, the 3D-RISM-KH theory yields the
solvent distribution in the inner cavity or pocket at once for the
final conformation in chemical equilibrium with the bulk
solvent outside the protein by construct of the theory,
bypassing the intermediate conformational states. Calculation
of the 3D-RISM-KH mean solvation forces requires significant
numerical efforts if the integral equations are solved at each
inner time step of the MD trajectory. However, 3D-RISM-KH
mean solvation forces fi vary with solute atomic coordinates and
so with time much smoother than solute−solvent atomic
interaction forces −∂U2/∂ri evaluated directly in conventional
MD. The reason is that mean solvation forces at a given solute
conformation are obtained by statistical averaging over all
arrangements of equilibrated solvent molecules, and so all core
repulsion forces and other strong short-range components
typical to explicit solvent interactions are smoothed out in the
averaging. Therefore, 3D-RISM-KH forces can be efficiently
extrapolated, which allows the 3D-RISM-KH integral equations
to be to converged much less frequently and thus drastically
increases the efficiency of hybrid MD/3D-RISM-KH simu-
lation.
2.2. Generalized Extrapolation of Mean Solvation

Forces for Biomolecules. As mentioned in the Introduction,
the original SFE scheme31 is restricted to small outer time
steps, whereas the advanced solvation force extrapolation
(ASFE) method33 still needs significant modification and
generalization to remain efficient for large flexible macro-
molecules as well. We will now show how 3D-RISM-KH mean
solvation forces can be extrapolated in the best way for a
general case of solvated protein.
2.2.1. Local Non-Eckart-like Rotational Transformations.

Let fi,k be the solvation forces acting on solute sites i = 1, 2, ...,
M at N previous outer time steps k = 1, 2, ..., N for which the
3D-RISM-KH integral equations are converged. The atomic
positions at these steps will be denoted by ri,k. The forces fi,k
and positions ri,k for a given i are ordered in such a way that
larger values of k correspond to earlier moments tk of time, i.e.,

tN < tN−1 < ··· < t2 < t1. The next outer moment is denoted by t0
> t1. Let ri(t) be the current coordinate of atom i at some inner
time point t belonging to the interval ]t1, t0[. The total number
of these points is equal to P = (t0−t1)/Δt ≫ 1, where Δt
denotes the inner time step. Note also that the actual force fi(t)
exerted on atom i at time t will depend on the multidimensional
vector {r1,k, r2,k, ..., rM,k} via the relative positions rij(t) = ri(t) −
rj(t) of M−1 neighbors j (with j ≠ i). This follows from the
translational invariance of solvation interactions when the total
system (solute plus solvent) is arbitrarily shifted as a whole.
One of the main ideas of the new approach is to find such

local rotational transformations Rij = Sirij of the relative
positions rij for each atom i = 1, 2, ..., M (where j = 1, 2, ..., M)
that provide the most smooth behavior of Fi = fi({Rij}) in the
new coordinates. This can be achieved by reducing the
coordinate region of force extrapolation. For the discrete set
(k = 1, 2, ..., N) of the basis coordinate knots ri,k the desired
transformation Rij,k = Si,krij,k with rij,k = ri,k − rj,k can be
determined by minimizing the normalized distances between all
the transformed outer coordinates Rij,k and some origin (where
S ≡ I) point rij* lying in the extrapolating region as

∑ ′ * − * =
=

M
w r S r r

1
( )( ) min

i j

M

ij i k ij k ij

1

, ,
2

(2)

Here w is a weighting function, ∑′ stands for j ≠ i, and Mi is
the total number of neighbors with w(rij*) ≠ 0. The current
inner coordinate rij(t) should also be transformed analogously
by Rij(t) = Si(t)rij(t) with

∑ ′ * − * =

=

=M
w r t t

i M

S r r
1

( )( ( ) ( ) ) min

for each 1, 2, ...,

i j

M

ij i ij ij

1

2

(3)

Any choice for rij* = rij(t*) with t1 ≤ t* ≤ t can be in principle
acceptable, where t is the current inner time and t1 is the most
recent point from the basis outer steps. However, the limiting
values t* = t1 and t* = t are not recommended in the context of
efficiency. Note that in eq 2 we should carry out the
transformation for each k = 1, 2, ..., N (and i = 1, 2, ..., M)
whenever rij* is changed, i.e., up NMP times if t* = t, but only
NM ones for t* = t1. In the latter case, however, the origin rij*
being equal to rij,1 may appear to be too far from the current
point rij(t) when the size of the outer time step h = t0 − t1 is
large. Thus, an optimal choice is when the origin rij* of the
transformation is updated after every 1 ≪ p ≪ P inner time
step during the outer interval (t0 − t1). This constitutes the so-
called frequency reuse scheme.
The necessity of introducing the weighting function w(rij) is

dictated by the fact that the neighbors with smaller interatomic
distances rij contribute to the mean solvation force fi more
significantly and thus are more important for the minimization.
The most natural way to model such a situation is to put w(rij)
= 1/rij

2, meaning that the relative (and not absolute)
interatomic distances are minimized. Then the left-hand sides
of eqs 2 and 3 become dimensionless. At long enough rij > R
the correlations between rij and fi are diminished, and so we can
put w(rij) = 0 in this range. It should be emphasized that the
above truncation concerns only the coordinate transformations
2 and 3 but not the actual solvation forces fi,k which are
calculated for all atomic pairs, without any cutoff. Furthermore,
for small solute molecules of radius less than R, no truncation is
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performed at all. For large macromolecules with M≫ 1, setting
a finite cutoff radius R can considerably improve the quality of
the mean force extrapolation using only a relatively small
number N ≪ M of the basis outer points.
The simplest way to obtain explicit expressions for the

rotational matrix Si,k or Si(t) is to represent them in terms of
the four components quaternion q = {χ,η,ξ,ζ} as66

χ η ξ ζ ηξ χζ χξ ηζ

χζ ηξ χ ξ η ζ ξζ χη

ηζ χξ χη ξζ χ ζ η ξ
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+ − − − +

+ + − − −
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with q2 ≡ q+ q = χ2 + η2 + ξ2 + ζ2 = 1. Inserting eq 4 into the
superposition eq 2 or 3 yields
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are the symmetric 4 × 4 matrices, rij′ is equal either to rij,k or
rij(t) for the cases Si,k or Si(t), respectively, ϑ is the Lagrange
multiplier, I is the identity 3 × 3 matrix, and × denotes the
vector product. Differentiating eq 5 with respect to all four
components of q leads to the eigenvalue problem

Θ = ϑq qi (7)

Because the right-hand sides of eqs 2 and 3 are always ≥ 0,
the matrix Θi is positive semidefinite, having four eigenvectors
q1,2,3,4 and the same number of nonnegative associated
eigenvalues ϑ1,2,3,4 ≥ 0. The latter can be sorted in the
ascending order, such that ϑ1 is the smallest eigenvalue. It
coincides with the global minimum in eqs 2, 3, and 5 since for
any normalized eigenvectors the following equality takes place:
q+ Θiq = ϑ. The normalized eigenvector q1 corresponding to
the smallest eigenvalue ϑ ≡ ϑ1,(i,k) or ϑ1,i is thus the quaternion
describing the optimal transformation by the rotational matrix S
[eq 4].
2.2.2. Individual Minimization by Weighted Least-

Squares. Having the transformed coordinates

= =t t tR S r R S r, ( ) ( ) ( )ij k i k ij k ij i ij, , , (8)

the solvation forces can be extrapolated as follows. First, for
each atom i, the actual neighboring positions Rij(t) are virtually
approximated at a given inner point t of the next outer time
interval ]t1, t0[ by a linear combination of their previous outer
values as

∑̃ =
=

t A tR R( ) ( )ij

k

N

k
i

ij k

1

( )
,

(9)

The expansion coefficients Ak
(i)(t) in eq 9 can then be obtained

as the best representation of the solute neighboring coordinates
Rij(t) at time t in terms of their projections onto the basis of N
previous outer positions Rij,k by minimizing a weighting norm
of the difference between Rij(t) and their approximated
counterparts R̃ij(t). Additionally imposing the normalizing
conditions
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the above minimization leads for each i = 1, 2, ..., M to the
following modified least-squares problem
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where Λi is the Lagrangian multiplier, and εi
2 ≥ 0 is a balancing

parameter. Note that for coordinate deviations, the weighting
function w(Rij*) ≡ w(rij*) used in eq 11 is the same as in local
rotations 2 and 3, meaning again that neighbors j lying more
closely to the reference atom i should be mapped more
accurately. Note also that Rij* = rij* because the rotation
transformation is unitary (S ≡ I) in the origin point rij* ≡ Rij*.
Now, the forces Fi(t) at any inner time t ∈]t1, t0[ can be

extrapolated on the basis of their outer values Fi,k employing a
linear expansion procedure which is quite similar to that [eq 9]
for coordinates Rij(t). This yields

∑̃ =
=

t A tF F( ) ( )i

k

N

k
i

i k

1

( )
,

(12)

where i = 1, 2,..., M and the expansion coefficients Ak
(i)(t) are

the same as those in eq 9. This is justified by the fact that Fi(t)
is a function of only Rij(t). Thus, a better representation of the
coordinates by R̃ij(t) should provide a more accurate
extrapolation of the interactions, expecting a small difference
between the exact forces Fi(t) and their approximated values
F̃i(t). Note that the coordinate mapping is virtual in the sense
that Rij(t) are never replaced by R̃ij(t). It is necessary only to
find the coefficients Ak

(i) for the actual force approximation.
Remember also that in eq 11 the weighting function w(r) being
equal to 1/r2 for r ≤ R is truncated by w(r) = 0 at longer r > R.
Such a truncation in eqs 2, 3, and 11 may lead to some
boundary effects. However, these effects can be neglected by
choosing the radius R to be large enough.
An issue now arises how to obtain Fi,k from fi,k without direct

recalculations Fi,k = f({Rij,k}), and in which way to return back
from F̃i to the desired extrapolated forces f ̃i in the usual
coordinate space. This issue can be solved by taking into
account that the original solvation forces fi are not only
translationally invariant but also satisfy the following orienta-
tional condition

=f S r S f r({ }) ({ })i ij i ij (13)

where S is an arbitrary 3 × 3 rotational matrix. Equation 13
merely states that if the solute molecule is rotated as a whole,
the total solvation forces acting on each atom of this molecule
will be transformed according to the same rotation. Note that
in our case of the detailed extrapolation, the atomic coordinates
are defined relatively to the current reference site i = 1, 2, ..., M.
This means that the virtual rotation of rij ≡ rij,k or rij(t) by Si ≡
Si,k or Si(t) is performed in eq 13 at each given i around this site
for all other atoms j. On the other hand, the rotations in eqs 2
and 3 are performed only for groups of atoms for which rij* ≤ R
with j ≠ i and the truncation of neighbors is possible.
From eq 13 it follows that

= = =F f R f S r S f({ }) ({ })i k ij k i k ij k i k i k, , , , , , (14)

= = =t t t t t tF f R f S r S f( ) ({ ( )}) ({ ( ) ( )}) ( ) ( )i ij i ij i i (15)
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In view of eqs 14 and 15, no additional direct recalculations are
needed, and the desired approximated forces in the usual
coordinate space at each inner point t can be readily
reproduced from eq 12 using the inverse rotational trans-
formation

∑̃ = ̃ =− −

=

t t t t A tf S F S S f( ) ( ) ( ) ( ) ( )i i i i

k

N

k
i

i k i k
1 1

1

( )
, ,

(16)

Furthermore, the inverse matrix can easily be evaluated taking
into account that the rotational transformation is orthonormal,
i.e., S−1 = S+, where S+ denotes the transposed matrix.
We see, therefore, that the proposed individual trans-

formation efficiently excludes local rotations of the solute
molecule, which can be large enough due to the interactions
with the solvent and thermostats. This reduces the volume of
the local coordinate space around each solute atom in view of
eqs 2 and 3. Obviously, then a better accuracy of the force
extrapolation is provided. In other words, the differences
between the approximated values f ̃i(t) and their original
counterparts fi(t) will decrease. In particular, the new
extrapolation scheme 16 is exact, i.e., f ̃i(t) = fi(t), already at
N = 1 for the case of rotating rigid segments constituting the
molecule, where the transformed forces Fi are constant. It
should also be very precise for flexible segments, since the
magnitudes of the atomic vibrational oscillations are small. The
influence of torsion movements on Fi can also be minimized by
extending the basis set and choosing the best subset (see
Section 2.2.4).
2.2.3. Normal Equations with Balancing. The most gentle

way to find the coefficients Ak
(i) in the force extrapolation 14 is

to reduce the least-squares minimization 11 to a normal
representation.67,68 Differentiating eq 11 with respect to these
coefficients and Λi leads to the following set of N+1 linear
equations
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which should be solved for the same number of unknowns Ak
(i)

at k = 1, 2, ..., N and Λi at each i = 1, 2, ..., M, where Gkk
ε(i) =

Gkk
(i) + εi

2 with
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w R R R
1

( )kl
i

i j

M

ij ij k ij l
( )

1

, ,

(18)

∑= ′ * ·
=

G
M

w R R R
1

( )k
i

i j

M

ij ij k ij
( )

1

,

(19)

and l = 1, 2, ..., N. Note that the (N+1) × (N+1) square matrix
in eq 17 remains to be symmetrical, since the εi

2-addition
concerns only diagonal elements.
The Lagrange multiplier Λ normalizes the linear equations

with the imposed constraint ∑kAk = 1 [see eq 10]. It is
necessary to make the extrapolation to be exact for the spatially
homogeneous part of the interactions in the transformed space.
Indeed, the solvation force Fi(t) = Fi(R(t)) can be expanded in

the power series of a deviation of the current coordinate vector
R from the origin R* = Sr* ≡ r* at each i = 1, 2, ..., M as

∑= * +
∂

∂
− *

= *

F R F R
F

R
R R( ) ({ }) ( )i i ij

j

M
i

ij
ij ij

R1
ij (20)

where ∂Fi/∂Rij is the Hessian (3M × 3M) matrix, and the
second and higher order spatial inhomogeneities [(Rij−Rij*)

2]
are neglected. Thus, Fi(R) has the constant zeroth-order part
representing by the first term in the right-hand side of eq 20. It
immediately follows from eq 12 that this term can be
reproduced exactly, provided ∑kAk = 1. The second term in
the right-hand side of eq 20 is linear in coordinates. That is why
it can be extrapolated using the duplex linear expansions 9 and
12. In fact, each of the 3M × 3M ≫ 1 elements of the Hessian
matrix is mapped in a very complicated way via the obtained
solutions for the extrapolation coefficients Ak involving a finite
number (N ≫ 1) of the basis knots Rij,k.
The balancing parameter ε2 > 0 appears as a result of the

required minimization ∑kAk
2 = min for the norm of the

expansion coefficients [see eq 10]. Such an additional
minimization is also needed for the following reason. The
used dual (virtual coordinate and actual force) extrapolation
tentatively assumes that lowering of the coordinate residuals
should immediately lead to a decrease of the deviations
between the approximated and original forces, but this is not so
when N approaches the number of local internal degrees of
freedom 3Mi of the neighboring atoms. Then the least-squares
solver to eq 11 will try to reduce the coordinate residuals to the
global (zeroth) minimum with no regarding to the values of
expansion coefficients Ak which are exploited in both the
coordinate and force extrapolations. As a result, a lot of these
coefficients may accept large negative and positive values,
despite the presence of the linear normalizing condition ∑kAk

= 1. It is well-known from the general theory of extrapolative
and quadrature formulas that the existence of weights large in
magnitude decreases the stability range, leading to an
appreciable increase of the uncertainties outside of this region.
The minimization ∑kAk

2 = min is introduced just to avoid
the above singularity at N ∼ 3Mi when ε = 0. The nonzero
values of ε2 > 0 allow us to effectively balance between the two
kinds of the extrapolations. Of course, ε2 cannot be chosen too
large because then the main effort is directed to minimizing the
squared norm ε2∑kAk

2 = min rather than the coordinate
residuals. This parameter should be treated as a small quantity
aiming at improving the quality of solvation force extrapolation.
Optimal values of ε2 can be found in actual simulations to
obtain the best accuracy.

2.2.4. Extending the Basis Set and Selecting the Best
Subset. Evidently, the accuracy of the force extrapolation
should increase with the number of basis points N. However,
we cannot put N to be too large because then the number of
linear equations increases, too. These eqs 17 need to be solved
frequently (in total P = h/Δt ≫ 1 times per h), namely, at each
inner point inside the outer interval h ≫ Δt for the
minimization of coordinate residuals 11. As a result, the
computational overhead can be unacceptably high at large
enough values of N, reducing the efficiency of MD/3D-RISM-
KH simulation.
A way to remedy the above situation lies in the following. We

can extend the basis set from a relatively small number of N ≲
100, say, to a larger value N′ ≫ N by collecting the force-

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010438
J. Chem. Theory Comput. 2015, 11, 1875−1895

1880

http://dx.doi.org/10.1021/ct5010438


coordinate pairs during a broad previous time interval ΔH =
N′h ≫ Nh. Then the weighting squared distances in the 3M-
dimensional space between the transformed basis outer
coordinates Rij,k′ and the current origin point rij*

∑= ′ * − * ≡ ϑ′
=

′ ′t
M

w r R r( )
1

( )( )ik
i j

M

ij ij k ij i k
2

1

,
2

1,( , )

(21)

can be readily expressed for each i = 1, 2, ..., M and k′ = 1, 2, ...,
N′ in terms of the smallest eigenvalues ϑ1,(i,k′) [see the text after
eq 7]. Now these distances can be sorted in the ascending
order, and the first N most closest points can be selected
among the extended set to satisfy the condition i1 < i2 < ... <

iN. The forces Fi,k′ must be resorted synchronically with the
coordinates Rij,k′ to form the best pair subset with N points. It
should then be used when performing the advanced
extrapolation 16.
The above procedure can further improve the quality of the

extrapolation, especially at N′ ≫ N. The reason is that the
choice of the nearest outer pairs in the transformed space
additionally reduces the coordinate region in which the
extrapolation is performed. This leads to a decrease of the
coordinate residuals and, as a consequence, to an increase of
the accuracy. In fact, such an additional reduction minimizes
the change in the transformed solvation forces during torsion
motion of the solute. Note that such motion (characterizing by
large amplitudes) is responsible for transitions of the
biomolecule from one conformational pool to another where
the torsion potential has a local minima. Thus, an optimal value
for the expanded interval ΔH = N′h should be of order of the
mean lifetime in local conformational minima. Then, whenever
the transition to other conformations occurs, we can quickly
reselect the subset to fit the basis outer points to the current
solute conformation. The accuracy of such fitting is especially
high if the molecule has already been near this conformation at
previous times.
Worth remarking is that the selecting procedure at N ≪ N′

requires only little extra numerical efforts even for large enough
N′ of order of several thousands. This is because the
computational cost grows with N′ just slightly. Indeed, the
selection operates on only the smallest eigenvalues ϑ1,(i,k′) (and
not on eigenvectors) of small 4 × 4 matrices, and so the
computational time scales linearly with N′ (with a small
proportionality factor). The eigenvectors q1,(i,k) are necessary
only for the best subset with k = 1, 2, ..., N ≪ N′ to build the
transformation matrix Si,k for the extrapolation 16. On the other
hand, the overhead increases much more rapidly with N,
namely, proportionally to (N+1)3, which is required to find
solutions to (N+1) linear eqs 17. In addition, the selection
procedure is performed only once per many (p≫ 1) inner time
steps, further lowering the computational costs.
2.2.5. The Whole Algorithm of GSFE. With the techniques

laid out in the preceding subsections, the resulting generalized
solvation force extrapolation (GSFE) algorithm can be briefly
described as follows.
At the very beginning, the 3D-RISM-KH integral equations

are converged after each Δt of the N first inner steps with no
extrapolation to fill out the basis set. Then the extrapolation
starts with N points, and the extended N′-set is accordingly
completed step by step in the integration process. Since h can
be much larger than Δt, we cannot put the outer step to be
immediately equal to h ≫ Δt. The reason is that then the
extrapolation skews because of the significant nonuniformity of

the time intervals between the points from the set. This issue
can be remedied in such as a way that the outer time interval is
smoothly increased every inner step from Δt to h with an
increment of Δt.
Further, after each pΔt step, we solve the eigenvalue problem

6 and 7 for the extended set with N′ coordinates. The first N <
N′ points are selected by sorting the corresponding smallest
eigenvalues 21 in the ascending order. The coordinates and
forces related to the subset obtained are then transformed by
the local non-Eckart-like rotations 14 in terms of the S-matrix 4
constructed on the N eigenvectors. Having the transformed
coordinates, we build the system of (N+1) linear eqs 17 and
solve it for the expansion coefficients. Note that the inversion of
the (N+1) × (N+1) matrix in eq 17 is performed only once per
p inner steps because it remains unchanged during time pΔt
[see eq 18], while the right-hand side vector in eq 17 varies
every Δt [eq 19].
Using the expansion coefficients, the solvent forces are

extrapolated at each inner step Δt within the outer time interval
t ∈]t1, t0[ of length h as the weighted sum of their N previous
outer transformed values, followed by the inverse trans-
formation 16. The extrapolation procedure is applied h/Δt
times to achieve the next outer point. At that point, the solvent
forces are calculated explicitly by solving the 3D-RISM-KH
integral equations. The extended N′-set is then updated by the
new outer force-coordinate pair, while the oldest one is
discarded. All these actions are repeated H/h times for the next
outer intervals until the desired simulation time length H is
achieved.
This completes the derivation of the GSFE algorithm. It

improves and generalizes our previous ASFE approach33 to the
case of arbitrary solute biomolecules. Formally replacing rij = ri
− rj with ri − rc and rij* with ri,1, where rc is the center of mass of
the solute molecule, as well as putting w ≡ 1 with R → ∞ and
Mi ≡ M, we come to the global non-Eckart transformation used
in ASFE.33 For large molecules, however, the global rotations
appear to be small, thus having practically no effect on
extrapolation improvement. Furthermore, in ASFE the
extended set and the inversion of the (N+1) × (N+1) matrix
were carried out at each inner time step (p = 1),33 which
significantly lowered the efficiency of the computations. In
GSFE, applying the frequency regime with 1 ≪ p ≪ P = h/Δt
appreciably reduces computational cost. This is achieved
without loss of precision since the increased distances during
time pΔt are compensated by the inverse non-Eckart-like local
transformations.
It is worth pointing out also that the rotational super-

positions 2 and 3 introduced for GSFE look somewhat similar
to those originally derived in the context of analyzing
macromolecular structures obtained in conventional MD or
experiment.69 Note that there is no unique approach to
separate translational, angular, and internal motions of these
molecules. Within the well-known Eckart scheme70−75 such a
separation can be carried out unambiguously only for molecular
structures with one equilibrium state. It does not work for more
complicated molecules where two or more local equilibrium
states can exist. This problem was solved69 by exploiting Gauss’
principle of least constrain by minimizing the coordinate
deviation norm (1/M)∑i=1

M mi(δS(t,δt)ri(t+δt) − ri(t))
2 = min,

where mi is the mass of the ith atom and Δt is the time step.
For instance, in the limit δt → 0, this allows us to uniquely
define the angular velocity Ω(t) = 1(t) of an arbitrary molecule
at any time t, where δS(t,δt) ≡ S(Δq(t)) with Δq(t)

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010438
J. Chem. Theory Comput. 2015, 11, 1875−1895

1881

http://dx.doi.org/10.1021/ct5010438


={cos(δϕ/2), 1(t) sin(δϕ/2)} is the matrix of rotation of the
whole molecule by angle ϕ around the unit vector 1 passing
through the center of mass. The standard Eckart method
appears as a particular case of the non-Eckart approach when
the number of local equilibrium states is equal to one. In the
absence of internal degrees of freedom the non-Eckart angular
velocity completely coincides with the well-known definition
for rigid bodies.
Our non-Eckart-like superposition scheme differs in several

aspects from the original non-Eckart method.69 It is modified
by normalizing weights and applied individually for each
reference atom of the solute molecule at discrete moments of
time. This results in local reorientations of atomic groups
instead of those in rotation of the molecule as a whole.
Moreover, the newly introduced non-Eckart-like scheme is
aimed at optimizing the performance of MD simulations rather
than at only analyzing simulation or experimental data.69,76−78

3. COUPLING GSFE WITH MTS-MD/3D-RISM-KH IN
THE OPTIMIZED ISOKINETIC NOSÉ−HOOVER
ENSEMBLE

3.1. 3D-RISM-KH Molecular Theory of Solvation. The
3D-RISM-KH theory24−29 yields the solvation structure in
terms of the normalized 3D density distribution functions gα(r)
of interaction site α of solvent molecules at spatial position r
around the whole solute macromolecule or supramolecule,
starting from the input of intermolecular potentials for explicit
solvent and solute molecules (molecular force field). The 3D-
RISM integral equation for 3D solute−solvent site correlation
functions20−24,27 can be derived either within the site formalism
of density functional theory of molecular liquids20−22 or from
the six-dimensional Ornstein−Zernike integral equation for
molecular liquids79 by orientations averaging centered at
interaction sites of solvent molecules to contract orientational
degrees of freedom of solvent.23,24,27 It reads

∫∑ χ= ′ − ′ ′α

γ

γ γα
h c rr r r r( ) d ( ) ( )

(22)

where hα(r) and cα(r) are respectively the 3D total and direct
correlation functions of solvent site α around the solute
molecule, χγα(r) is the radially dependent site−site suscepti-
bility function of solvent which is an input to 3D-RISM and is
calculated beforehand, and the indices γ and α enumerate all
interaction sites on all sorts of solvent species. Diagrammatic
analysis of the total and direct correlation functions79 relates
the former to the density distribution function as hα(r) =
gα(r)−1, and so hα(r) has the meaning of a normalized 3D
distribution of spatial correlations, or normalized deviations of
solvent site density around the solute molecule from the
average value in the solution bulk. The long-range asymptotics
of the 3D direct correlation function cα(r) is given by the 3D
interaction potential uα(r) scaled by kBT between the whole
solute molecule and solvent interaction site α: cα(r) ∼ −uα(r)/
(kBT) for r outside the short-range repulsive core region
(typically comprising the repulsive slope down to the attractive
well minimum); the values of cα(r) inside the repulsive core are
related to the solvation free energy. Usually but not necessarily,
the 3D solute−solvent site interaction potential is given by a
sum of pairwise potentials (typically Coulomb and Lennard-
Jones) dependent on separations between solute and solvent
interaction sites, uα(r) = ∑i uiα(|r−ri|), where ri is the location
of solute atom i.

The 3D-RISM integral eq 22 involves two correlation
functions, hα(r) and cα(r), and to be complete has to be
complemented with another relation between hα(r) and cα(r)
called a closure which also involves the interaction potential
uα(rα) specified at input with the molecular force field. The
exact closure relation has a nonlocal functional form that can be
represented as an infinite diagrammatic series in terms of
multiple integrals of the total correlation function;79 however, it
is computationally intractable, as the series is poorly convergent
and the higher-order diagrams are integrals extremely
cumbersome to calculate. Therefore, the exact closure is
replaced in practice with amenable approximations which
should analytically ensure asymptotics of the correlation
functions and features of the solvation structure and
thermodynamics to properly represent the solvation physics.
The approximation proposed by Kovalenko and Hirata (KH
closure),24,27,29 the 3D version of which reads as

=
− + − ≤
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couples in a nontrivial way the so-called hypernetted chain
(HNC) and mean spherical approximation (MSA) closures,79

the former automatically applied to spatial regions of density
depletion gα(r) < 1, including the repulsive core, and the latter
to spatial regions of solvent density enrichment gα(r) > 1, such
as association peaks and long-range tails of near-critical fluid
phases, while keeping the right long-range asymptotics of cα(r)
peculiar in both the HNC and MSA. (The distribution function
and its first derivative are continuous at the joint boundary
gα(r) = 1 by construct.) The KH approximation consistently
accounts for both electrostatic and nonpolar solvation forces,
such as hydrogen bonding and other associative effects,
hydrophobic hydration and interaction, preferential solvation,
desolvation and other steric effects for macromolecules and
supramolecules in simple and complex liquids, solvent mixtures,
nonelectrolyte and electrolyte solutions in various chem-
ical,24−27,29,80−86 soft matter,87 synthetic organic supramolecu-
l a r , 2 9 , 8 8− 9 0 b iopo l ymer i c , 9 1− 9 3 and b iomo l e cu -
lar27,29,40,41,43,65,87,94−104 systems.
The radially dependent site−site susceptibility of solvent

χγα(r) determines nonlocal response of solvent to an external
field, statistically mechanically averaged over orientations and
arrangements of solvent molecules in the solvation shells. In the
context of eq 22, the solvent density change given by the total
correlation function hα(r) comes from the insertion of a solute
molecule characterized with the direct correlation function
cα(r) which propagates across the solvation shells through the
effective solvent−solvent correlations given by the solvent
susceptibility χγα(r). The latter breaks up into the intra- and
intermolecular terms

χ ω ρ= +
γα γα γ γαr r h r( ) ( ) ( ) (24)

where the intramolecular correlation function ωγα(r) normal-
ized as ∫ drωγα(r) = 1 represents the geometry of solvent
molecules (i.e., ωγα(r) = 0 for sites γ and α on different
species). For rigid molecular species with site separations lγα it
has the form ωγα(r) = δ(r−lγα)/(4πlγα

2) specified in the
reciprocal k-space as ωγα(k) = j0(klγα), where j0(x) is the zeroth-
order spherical Bessel function. ργ is the average number
density of solvent interaction site γ in the solution bulk. The
radially dependent site−site total correlation function hγα(r) for
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all pairs of sites on all species of the solvent are obtained in
advance to the 3D-RISM-KH calculations from the dielectri-
cally consistent RISM theory105,106 coupled with the KH
closure relation for the radial correlation functions (DRISM-
KH approach).27−29 The DRISM-KH theory can be applied to
solution systems of a given composition in a wide range of
thermodynamic conditions, including different solvents,107,108

solvent mixtures,109,110 polymeric solutions,87,111 and electro-
lyte solutions.27,29,112

An important feature of the KH closure 23, is that the
solvation free energy μsolv as determined by Kirkwood’s
thermodynamic integration gradually switching the interactions
on from 0 to the full potential uα(r) is obtained analytically in a
closed form of a single spatial integral in terms of the
correlation functions24,27,29

∫∑μ ρ= Θ −

− −

α
α α α

α α α

⎜
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k T h h
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d
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2
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1

2
( ) ( ) ( )

solv B
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(25)

where the sum goes over all the sites of all solvent species, and
Θ(x) is the Heaviside step function. Other thermodynamic
quantities can also be obtained analytically by taking the
corresponding derivaties. In particular, mean solvation forces
acting on each atom of the solute macromolecule or
supramolecule are readily obtained as a simple 3D spatial
integral in terms of the 3D site distribution functions gα(r)
calculated by converging the 3D-RISM-KH integral eqs 22 and
23 (see the next section).
To properly treat electrostatic forces in electrolyte solution

with polar molecular solvent and ionic species, the long-range
electrostatic asymptotics of both the 3D direct and total
correlation functions in the 3D-RISM integral eq 22 are
separated out and handled analytically.25−28,82,97,113 The
remaining short-range parts of the 3D site correlation functions
are discretized on a uniform rectangular 3D grid in a box large
enough to accommodate the solvation structure, typically 2 to 3
solvation shell oscillations. The spatial convolution of the short-
range therm in eq 22 is calculated by means of 3D fast Fourier
transform. Note that even though the solvent susceptibility
χγα(r) has a long-range electrostatic part, no aliasing occurs in
the backward 3D-FFT of the short-range part of hα(k) on the
3D box supercell since, for the physical reason, it typically
contains merely 2−3 oscillations and thus vanishes at the box
boundaries.28 The same analytical treatment with separation of
the electrostatic asymptotics is applied also to the radial site−
site correlation functions in the DRISM-KH integral equations
that produce the water susceptibility 24, as well as to the 3D
site correlation functions in the solvation free energy integral 25
which is reduced to a 3D integral of the short-range terms on
the 3D box and one-dimensional integrals of the asymptotics
easy to compute.25−28,82,97

The 3D-RISM-KH integral eqs 22 and 23 are converged by
using the modified algorithm of direct inversion in the iterative
subspace (MDIIS).25−28,114,115 The MDIIS numerical solver
accelerates convergence of integral equations of liquid state
theory by optimizing each iterative solution in a Krylov
subspace of typically last 10−20 successive iterations and then
making the next iterative guess by mixing the optimized
solution with the approximated optimized residual.
The computational expenses of converging the 3D-RISM-

KH equations can be significantly reduced with several

strategies, including a high-quality initial guess for the 3D
direct correlation functions cα(r); pre- and postprocessing of
the 3D solute−solvent potentials uα(r), the long-range
asymptotics of the 3D correlation functions cα(r), and hα(r),
and forces; several cutoff schemes and an adaptive solvation
box.31 Further, memory and corresponding CPU load in the
MDIIS numerical solver are decreased by up to an order of
magnitude using the core−shell-asymptotics treatment of
solvation shells.28

3.2. Combining MD with 3D-RISM-KH. Unlike conven-
tional MD dealing with trajectories of explicit solvent
molecules, the hybrid MD/3D-RISM-KH approach30−32

contracts them to 3D site density distribution functions gα(r)
of quasiequilibrium solvent at successive conformations of the
biomolecule and thus performs quasidynamics of the
biomolecule steered with mean solvation forces. The latter
can be determined in a general case from Kirkwood’s
thermodynamic charging integral by differentiation with respect
to solute atomic coordinates. For the solvation free energy not
dependent on a thermodynamic integration path (which is true
for the exact solvation free energy but not necessarily for a
given closure approximation of integral equation theory of
liquids), the mean solvation force is immediately obtained as
the “detailed” solute−solvent site interaction potential force
averaged over the solvation shells with the 3D solute−solvent
site density distribution function30,31

∫∑
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where uiα(r−ri) is the pairwise isotropic interaction potential
between solute atom i located at position ri and solvent site α at
r. With the solute−solute forces evaluated directly as −∂U1/∂ri
(see Section 2.1) and the effect of solvent accounted with mean
solvation forces 26, the equations of quasidynamic motion are
solved only for solute atoms. In the approach of an adaptive
box, the 3D-RISM-KH integral eqs 22 and 23 are discretized
and converged on a grid in a nonperiodic box of size and shape
that includes about 2−3 solvation shells around the
biomolecule to minimize boundary effects and varies during
the simulation adjusting to solute conformational changes so as
to optimize computational load.31 This is different from
conventional MD which typically uses a periodic rectangular
box and the Ewald summation technique116,117 to evaluate
long-range electrostatic interactions.

3.3. MTS-MD in OIN Ensemble Steered with Extrapo-
lated 3D-RISM-KH Mean Solvation Forces. The equations
of motion for solute atoms in hybrid MD/3D-RISM-KH
simulation in the canonical-isokinetic OIN ensemble steered
with 3D-RISM-KH mean solvation forces which are extrapo-
lated with the GSFE technique can be cast in the compact
form32

Γ
Γ=

t
L t

d

d
( )

(27)

where Γ = {r,v;ς,w} denotes the extended phase space and L is
the Liouville operator. The extended space, apart from the full
set of coordinates r ≡ {ri} and velocities v ≡ {vi} of all solute
atoms, includes also all thermostat frequencies ω ≡ { ωκ,i} with
κ = 1, ..., and their conjugated dynamical variables ς ≡ {ςi}.
The latter are introduced by means of the relation dςi/dt =
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thermostat. The Liouvillian can be split up as
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In the canonical OIN ensemble32 each atom is coupled with
its own thermostat by imposing the constraint Ti = 3kBT/2,
where

τ ω
= +

m k Tv
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4 2
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(33)

is the full kinetic energy of the ith subsystem. The quantity τi is
related to the relaxation time, determining the strength of
coupling of atom i with its thermostat.
The total forces f i = fi(f) + fi are now divided into the fast

solute−solute component fi(f) and slow 3D-RISM-KH solute−
solvent one fi. In view of eq 29, this results in the corresponding
splitting of the potential operator as Bi({f i}) = Bi({fi(f)}) +
Bi({fi}) ≡ Bf + Bs. Mention that the solute−solute forces fi( f) are
calculated always directly (by −∂U1/∂ri, see Section 2.1), while
the 3D-RISM-KH solute−solvent mean forces fi are either
evaluated explicitly in the form of eq 26 or approximated with f ̃i
using the transformation 16, as described in Section 2.2. Then
Bs({fi}) transforms to Bs({f ̃i}) ≡ B̃s.
Thus, using the MTS decomposition method,55,61,62,75 the

solution Γ(h) =eLhΓ(0) to eq 27 over the outer time interval h
from an initial state Γ(0) can be presented32 as the following
product of exponential operators:
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Here, n = h/δt ≫ 1 is the total number of subinner time steps
with length δt ≪ Δt each, C = Cv,ω + Cω + Cς ,
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is the generalized velocity propagator, Δt is the inner (δt ≪ Δt
≪ h) time step, (δt2) is the accuracy of the decomposition,

and the subscript i is omitted for the sake of simplicity. Note
that we should first update (by eCδt/2 and eBδt/2) the complete
set of velocities vi and frequencies ωκ,i belonging to all atoms (i
= 1, 2, ..., M) and thermostat chains (κ = 1,..., ) before to

change the coordinates ri of all particles by
δe t . A nice feature

of the OIN decomposition is that the action of all the single-
exponential operators which arise in eqs 34 and 35 on Γ can be
handled analytically using elementary functions.32

Therefore, the propagation Γ(t) = [Γ(h)]t/h of dynamical
variables from their initial values Γ(0) to arbitrary future time t
can be performed by consecutively applying the single
exponential transformations of a phase space point Γ in the
order defined in eqs 34 and 35. As can be seen, the fastest Bf-
component of motion is integrated most frequently, namely, n
= h/δt times per outer interval h with the smallest (subinner)
time step δt, while the (original or approximated) slow 3D-
RISM-KH forces are applied impulsively only every Δt/δt
subinner step, i.e., h/Δt < n times. Note that almost all these
impulses (when Δt ≪ h) are obtained by employing the
extrapolated 3D-RISM-KH forces 16 in terms of the operator
B̃s, and the explicit 3D-RISM-KH calculations 26 are used in Bs

only once per outer time interval h. Taking into account that
the solute−solute forces are much cheaper to evaluate than the
solute−solvent ones, obvious speedup is achieved as compared
to single time step propagation (n = 1, δt = h) without
extrapolation (Δt = h). Furthermore, the existence of the
impulsive inner time steps of length Δt > δt gives a possibility
of reducing the number of (either extrapolative or direct) 3D-
RISM-KH evaluations from h/δt to h/Δt. Finally, applying the
GSFE approach allows further significant improvement of the
overall efficiency, since 3D-RISM-KH calculations which are
the most expensive are performed just once per outer step h.
It is worth emphasizing that the presence of OIN

thermostatting terms in B and C [see eqs 29, 30, 31, and 32]
eliminates MTS resonance instabilities. The latter appear in
conventional MD simulation (in the microcanonical and
canonical ensembles) already at relatively small values of
outer time steps (see Introduction in Section 1). In hybrid
MD/3D-RISM-KH simulation, additional instability can come
from uncertainties caused by the approximate character of
solvent force extrapolation. The canonical-isokinetic OIN
propagation 34 efficiently eliminates both these types of
instabilities by imposing the individual isokinetic constraint 33
on each solute atom. Moreover, the accurate GSFE approach
makes it possible to drastically increase the sizes of inner and
especially outer time steps compared to standard integration.
In view of the above, the following hierarchy of time steps

δ ≪ Δ ≪ ≪ ≪ ′ = Δ ≪t t h Nh N h H H (36)

should be set in order to achieve optimal performance of hybrid
MTS-MD/OIN/3D-RISM-KH simulation using the GSFE
approach. We thus have up to five time scales. This completes
coupling of GSFE with the MTS-MD/OIN/3D-RISM-KH
method. We will refer to the resulting scheme as hybrid MTS-
MD/OIN/GSFE/3D-RISM-KH simulation or OIN/GSFE/
3D-RISM-KH for brevity.
Strictly speaking, quasidynamic behavior obtained in MTS-

MD/OIN/GSFE/3D-RISM-KH simulation differs from true
dynamics in conventional MD with explicit solvent. In
particular, such quasidynamics does not obey the Maxwell
velocity distribution, and thus, unlike microcanonical MD,
cannot get us real time correlation functions. However, as we
have proven rigorously,32 the configurational part of the
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extended partition function obtained in hybrid MTS-MD/
OIN/GSFE/3D-RISM-KH simulation at targeted temperature
T does coincide with the true canonical distribution of the
physical system in coordinate space. This is a very important
feature because the original conformational properties,
including spatial atom−atom density distribution functions of
the solute macromolecule (or supramolecule), are readily
reproduced in MTS-MD/OIN/GSFE/3D-RISM-KH simula-
tion. Such quasidynamic sampling appears to be much more
efficient than that following from “real-time” (microcanonical
or canonical) MD simulations.

4. VALIDATION OF THE HYBRID
MTS-MD/OIN/GSFE/3D-RISM-KH INTEGRATOR ON
DIFFERENT SOLUTE−SOLVENT SYSTEMS

4.1. Simulation Details. We will now examine the
proposed OIN/GSFE/3D-RISM-KH approach in actual
simulations for fully flexible models of the alanine dipeptide
(M = 22) in water solvent, asphaltene (M = 336) in toluene
solvent, miniprotein 1L2Y (M = 304), and protein G (M =
862) in water solvent. The structures of the four solute
molecules considered are shown in the ball-and-stick
representation in Figure 1. The Amber03,118 Amber99SB,119

and general Amber120 force fields were used to describe the
interactions in the alanine dipeptide and miniprotein 1L2Y, in
protein G, and in the asphaltene dimer, respectively. Water was
represented with the modified cSPC/E model.27,30,31 The
parameters for toluene solvent were taken from the optimized

potentials of the general Amber force field.121 We applied free
boundary conditions and an adaptive solvation box with varying
sizes along all the three axes determined by the current size of
the solute molecule plus a buffer space of width rb = 10 Å. Note
that the mean diameters of the alanine-dipeptide, asphaltene,
miniprotein 1L2Y, and protein G molecules are about 9, 28, 26,
and 42 Å, respectively. The cutoff radius of the solute−solvent
interactions was set to rc = 14 Å. No truncation was made for
the solute−solute forces. The 3D-RISM-KH integral equations
were discretized on a rectangular grid of resolution δr = 0.5 Å
and converged to a relative root-mean-square residual tolerance
of δϵ = 10−4 by using the MDIIS accelerated numerical solver
of integral equations.27 Further increase of the cutoff radius rc
and the buffer size rb, as well as refinement of the grid
resolution δr and the accuracy δϵ, did not affect the results
noticeably. The three chains ( = 3) per each atom have been
employed in the OIN ensemble. The correlation times in all the
OIN thermostats were set to the same value τi ≡ τ = 50 fs for
asphaltene and 25 fs for proteins. The subinner and inner time
steps were chosen to be always equal to δt = 1 fs and Δt = 8 fs,
respectively.
Eight OIN/GSFE/3D-RISM-KH simulation series with

outer time steps of h = 12, 24, 96, 200, 400, 1000, 2000, and
4000 fs were carried out to obtain the whole pattern (Section
4.2) on generalized solvation force extrapolation (GSFE)
accuracy. In each of these series, the number of points of the
basis and extended sets varied in the ranges 1 ≤ N ≤ 96 and N
≤ N′ ≤4000, respectively. Several frequency values from the

Figure 1. Ball-and-stick representation of the molecular structures of alanine dipeptide (22 atoms, upper left part), asphaltene dimer (336 atoms,
lower left), miniprotein 1L2Y (304 atoms, upper right), and protein G (862 atoms, lower right). Color scheme: white (hydrogen), red (oxygen),
green (carbon), blue (nitrogen), yellow (sulfur).
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interval 1 ≤ p ≤ 25 were also utilized. The balancing parameter
was set to ε2 = 0.005 for alanine dipeptide and proteins in water
and 0.015 for asphaltene in toluene. An optimal truncation
radius of R = 7 Å was used for the weighting function. For
comparison with the GSFE scheme, simulations were
performed also with the original SFE technique31 and the
ASFE approach.33 The main runs of OIN/GSFE/3D-RISM-
KH simulations were performed at h = 1000 and 2000 ps with
N = 56 and N′ = 1000 (or N′ = 4000) as well as p = 25 to
investigate conformational properties (Sections 4.3 and 5).
The source files SANDER.F, RUNMD.F, MDREAD.F,

MD.H, AMBER_RISM_INTERFACE.F, and FCE_C.F

from the original Amber 11 package122 were modified to run
hybrid MTS-MD/OIN/GSFE/3D-RISM-KH simulation in
parallel by the compiled module SANDER.RISM.MPI. In
the first two Fortran modules, we implemented a program code
for solving the canonical-isokinetic OIN equations of motion by
adapting the velocity-Verlet like version of the decomposition
integration 34 to its leapfrog-like counterpart. (The differences
between the standard velocity-Verlet and leapfrog schemes are
discussed elsewhere.66,123) The third and fourth modules were
altered to organize the input/output for new parameters and
observable quantities. The last two Fortran modules were
rewritten to implement the GSFE procedures.
For comparison, we also performed the conventional

canonical MD simulations of the miniprotein and protein G
in explicit water described with the TIP3P124 and SPC/E125

models, respectively. We deal accordingly with 16895 and 4526
water molecules with 8 and 14 Å cutoffs in the direct space for
nonbonded electrostatic interactions. The truncation terms
were handled by the particle-mesh Ewald summation
method116 with periodic boundary conditions. The equations
of motion were solved with a single time step of Δt = 2 fs and
no extrapolation (h = Δt) exploiting the Langevin algorithm56

at a friction viscosity of γ = 1 ps−1 as well as SHAKE126,127 to fix
bonds involving hydrogen.
All the runs were carried out at temperature T = 300 K, water

solvent density 1 g/cm3, and toluene solvent density 0.87 g/
cm3. The total duration of the MD simulations was extended to
25 and 50 ns. The simulations of miniprotein and protein G
started from the folded crystal conformations obtained in NMR
experiment, taken from PDB (protein data bank) structures
1L2Y128 and 1P7E,129 respectively. The initial structure of the
asphaltene dimer was based on the full geometry optimization
using density functional theory at the ωB97X-D/6-31G*
level.130

4.2. Accuracy of Mean Solvation Force Extrapolation.
The accuracy of mean solvation force extrapolation was
estimated by measuring the relative mean square deviations

Σ =
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of the extrapolated forces f ̃i from their original values fi
calculated directly (i.e., from the 3D-RISM-KH integral
equations) at each outer time step, where ⟨ ⟩ denotes the
statistical averaging along the whole simulation length. Note
that between two successive outer time steps the deviations
increase from zero when the inner coordinates coincide with
those of the first basis point to maximal values at the end of the
current outer time interval, and so a factor of 1/2 appears in the
average value. It is worth remarking also that such an estimate
does not require any extra computational efforts since it

operates on outer forces which are already known when
updating the basis pair set.
The relative mean square deviations Σ obtained during the

MTS-MD/OIN/3D-RISM-KH simulations of the asphaltene in
toluene, hydrated miniprotein 1L2Y, and hydrated protein G by
using various extrapolation approaches at most characteristic
outer time steps h = 1, 2, and 4 ps are depicted in Figure 2

versus the number of basis points N. (Note the N-logarithmic
scale was utilized for presentation convenience.) The
approaches tested are the new GSFE method versus the
original SFE scheme31 as well as the intermediate version,
ASFE.33 The SFE, ASFE, and GSFE functions Σ(N) are plotted
with black, cyan, and red curves, respectively; the other
methods used are described below. The corresponding
dependencies of Σ(h) on the size of the outer time step at a
fixed optimal N = 56 are presented in Figure 3 in the whole
range of h varying up to 2 or 4 ps using the same color scheme.
For comparison, the case of the constant force extrapolation
(CFE), i.e., SFE at N = 1, is included, too.
As can be seen, the SFE and CFE approaches lead to the

worst accuracy of the force extrapolation with the largest
deviations Σ for any values of N and h. Unlike the case of
hydrated alanine dipeptide,33 the ASFE method only slightly
improves the SFE results for asphaltene and proteins. A reason

Figure 2. Uncertainty Σ versus the number of basis points N in the
OIN/3D-RISM-KH simulations of asphaltene in toluene solvent
[parts (a), (b)], hydrated miniprotein 1L2Y [(c), (d)], and hydrated
protein G [(e), (f)] by using different extrapolation approaches [see
the text for color line nomenclature] at outer time steps h = 1, 2, and 4
fs.
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is that both the schemes operate on all the atoms M of the
solute molecule (R = ∞, no truncation) when constructing the
deviations between the exact and extrapolated coordinates.
Obviously, then for large systems with M ≳ 300, such as
asphaltene and proteins, we should come to a poor force
extrapolation because of N ≪ 3M, where 3M is the total
number of degrees of freedom. The uncertainties could be
decreased to some extent with increasing N up to 3M ≳ 1000,
but too large numbers of N ≳ 100 are unacceptable in view of
the drastic increase of the computational costs in this case [see
Section 2.2.4]. The fact that the ASFE can be used with a great
success33 for relatively small solutes, such as alanine dipeptide
(M = 22), is merely explained by their small numbers of
degrees of freedom, enabling to achieve a good extrapolation
already at N ∼ 3M = 66. For much larger 3M ≳ 1000 and the
same N ≲ 100 this is impossible even within ASFE, despite the
usage of much better techniques than in SFE. On the other
hand, applying only a simple truncation (at R = 7 Å) within
SFE somewhat lowers the uncertainties at intermediate N ∼ 30
(dashed curves in Figure 2). However, then the function Σ(N)
exhibits a singular behavior for N ∼ 3M′ ∼ 100, where M′ =
⟨Mi⟩ is the averaged number of neighbors on the distance R
with respect to the reference atoms.
A significant improvement of force extrapolation accuracy for

large solute molecules can be made with the following first

steps [see Sections 2.2.2 and 2.2.3]: (i) when minimizing the
residuals, using local rather than global coordinates, i.e. atomic
positions with respect to each reference site rather than
molecule center of mass; (ii) using the normalized weighting
function with an optimal truncation [at R = 7 Å]; and (iii)
balancing the normal equations by ε2 > 0 to exclude the
singularity at N ∼ 3Mi. The corresponding results which take
into account only these three components of GSFE are plotted
in Figures 2 and 3 with green curves marked as GFE′. A further
decrease of the extrapolation uncertainties is observed on the
following steps: (iv) the local non-Eckart-like transformations
are additionally included during the extrapolation (blue curves).
Furthermore, (v) the basis set can be extended from N to N′ >
N pairs followed by selecting the best subset with N points. We
used N′ = 4000 for the asphaltene and N′ = 1000 for the
proteins. With all these five techniques, we come to the GSFE
approach which provides the best accuracy (red curves).
Finally, applying the frequency scheme for p = 25 (magenta
curves in Figure 2) at N = 56 gives nearly the same accuracy as
for p = 1 but with appreciably less computational effort. Indeed,
the red and magenta curves practically coincide at N = 56.
Computations show that the simple truncation, i.e., when

w(r) = 1 at r ≤ R and w(r) = 0 if r > R, without using the
weighting function w(r) = 1/r2 for the rotational trans-
formations 2 and 3 and minimization of coordinate residuals
11 leads to a considerably worse accuracy in the force
extrapolation. This confirms our theoretical arguments (see
Sections 2.2.1 and 2.2.2) about the importance of introducing
the smooth weighting w(r) = 1/r2 for r ≤ R and w(r) = 0 if r >
R. The truncation radiuses Ropt = 6−8 Å appeared to be optimal
in the sense that then the extrapolation uncertainties accept
minimal values. Out of these radiuses we observed an increase
of Σ. The reason is that for R ≳ Ropt the angles of local rotations
decrease, because larger molecular segments having larger mass
and moments of inertia are less sensitive to the torques acting
on these segments due to the interactions. This does not allow
one to make the transformed solvation forces varying smooth
enough with the atomic coordinates. Moreover, with increasing
R, the number of degrees of freedom 3Mi of molecular
segments around a given reference atom i increases, too. In
turn, this requires a larger number N of basis coordinate-force
pairs to achieve the same accuracy of the extrapolation, which
increases computational cost. On the other hand, the truncation
radius R cannot be chosen too small, since at R ≲ Ropt the
boundary effects in eqs 2, 3, and 11 become too large and
cannot be neglected.
Note that the formula 37 estimates, in fact, the upper limit of

the extrapolation uncertainties. Indeed, it involves scalar
deviations (f ̃i−fi)

2 at the end of each outer interval h without
taking into account that the force f is a vector which can change
its direction during inner time steps. Such a change may
compensate to some extent the uncertainties in velocities which
are determined as a vector sum of force deviations (f ̃i−fi) over
the inner time steps. This in turn decreases the uncertainties in
coordinates as well. The fact that eq 37 overestimates the
extrapolation errors is confirmed in Figure 3 where we see that
Σ(h) does not fall down to small enough values even at a tiny
outer time step of h = 12 fs, whereas limh→0Σ(h) = 0 by
definition. Instead, all the dependencies Σ(h) in Figure 3 tend
to a some finite value of Σ0 ∼ 5% while h approaches very small
steps. Thus, the most simplest way to correct the estimate given
by eq 37 is merely to extract Σ0 from Σ, i.e., ΔΣ = Σ − Σ0. A
more accurate estimate could be to calculate the deviations at

Figure 3. Uncertainty Σ against the outer time step h in the OIN/3D-
RISM-KH simulations of asphaltene in toluene solvent [part (a)],
hydrated miniprotein 1L2Y [(b)], and hydrated protein G [(c)] by
using different extrapolation approaches [see the text for color line
nomenclature] at fixed N = 56. Upper black solid curve: constant force
extrapolation (CFE), i.e. SFE with N = 1.
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each inner time step. However, this would require enormous
computational costs significantly larger than those needed for
extrapolation of forces itself, making no sense to perform such
kind of estimation.
Note also that the set (k = 1, 2, ..., N) of the coefficients Ak

(i)

in the extrapolation 16 is individual for each atom i. Therefore,
from the equality ∑i=1

M fi,k = 0 it does not necessarily follow
that the net force f ̃net =∑i=1

M f ̃i acting on the molecule as a whole
will also be equal to zero. Calculations showed, however, that
the quantity f ̃net is very small and never exceeds 0.5−1% for any
h considered, indicating a high accuracy of the extrapolation.
The possible effect of the nonzero net force on the results can
be minimized by subtracting the term f ̃net/M for each atom, i.e.,
replacing f ̃i by f ̃i − f ̃net/M every outer time step h. We used this
procedure in all our OIN/GSFE/3D-RISM-KH simulations.
In view of the above, we see that the generalized

extrapolation approach we propose gives a possibility of
providing a much better accuracy than the previous schemes.
Taking into account that the conformational properties are
sensitive enough to any uncertainties, not only to the choice of
force fields but to inaccuracy of the extrapolation as well, a
severe criterion of ΔΣ(hm) ∼ 6% has been imposed on the
maximal allowed outer time steps hm. The level ΔΣ(hm) = 6% is
marked in Figure 3 by the horizontal dashed lines. It follows
from Figure 3 that the above criterion can be satisfied by the
original SFE only at very small outer time steps of order of h ≲
24 fs. On the other hand, the same level ΔΣ(hm) = 6% of
accuracy can be provided with our GSFE at huge sizes of outer
time step up to h = 4, 2, or 1.5 ps for the asphaltene,
miniprotein 1L2Y, and protein G, respectively. Such outer time
steps are by 2 orders of magnitude longer than the maximal
allowed outer time steps in SFE.
Even larger outer time steps up to tens of picoseconds can be

achieved for simpler systems, such as hydrated alanine
dipeptide. This conclusion made in our previous paper within
the ASFE scheme33 has been confirmed for GSFE as well. Note
that the present results on Σ for hydrated alanine dipeptide
obtained with the GSFE approach are only slightly better than
those with ASFE,33 and so both are not shown here. The
possibility of using longer outer steps for smaller systems is
explained by two main reasons. First, for a small solute
molecule (almost) all atoms are located inside the truncation
sphere (with an optimal radius R = 6−8 Å) in the rotational
transformation, thus reducing all possible boundary effects to
zero. Second, such systems are characterized with a small
number of equilibrium states with relatively short lifetimes of
order of a nanosecond or less. As a result, the extended basis set
from the broad time interval ΔH = N′h can sample almost all
important conformations already at N′ = 1000 with h ≥ 1 ps
(then ΔH ≥ 1 ns), providing a high accuracy of the force
extrapolation even at h ≳ 10 ps. This is very different from
complex protein systems characterized with a huge number of
degrees of freedom and local equilibrium states, where the
lifetime of the most stable conformations can exceed many
micro- and milliseconds in real time.
4.3. Conformational Properties. We checked the

conformational properties in terms of atomic root-mean-square
deviations (RMSD), radius of gyration Rg, and tertiary structure
of the solute molecules. The RMSDs were calculated with
respect to the initial conformations mentioned in Section 4.1,
which included only the most massive atoms, C for the
asphalatene and Cα for the proteins. The radius of gyration was
computed for all solute atoms. Figure 4 shows the backbone

RMSD and Rg of these systems against the duration t of the
OIN/GSFE/3D-RISM-KH simulations at different outer time
steps h. The black curves in parts (c)−(f) represent the results
of conventional MD simulations with explicit water. As we can
see, both the OIN/GSFE/3D-RISM-KH and explicit MD
atomic deviations starting from 0 quickly exhibit an equilibrium
behavior with oscillations around 0.6 Å, 1 Å levels or higher for
the asphaltene, miniprotein 1L2Y, and protein G, respectively.
The magnitude of these oscillations does not exceed about 0.5
Å in all the cases (except for h = 10 ps, see below). For the
asphaltene [part (a)], the mean values of RMSD almost do not
change with the simulation duration t and remain practically the
same even at the end of the 50 ns runs. We can thus interpret
that as a very stable asphaltene conformation.
A somewhat different situation is for the miniprotein and

protein G where transitions from one to another local
equilibrium state take place [see parts (c) and (e) of Figure
4]. However, the variations in the RMSD are not large and do
not exceed 1 to 2 Å (at h ≤ 2 ps), meaning that the proteins
remain in their folded conformation [see also Figures 5 and 6].
The results obtained for all the three systems with different
sizes of the outer time step h are quite similar, confirming the
high quality of the GSFE approach even at huge h of order of 1
to 4 ps. In addition, they are very close to those in the explicit
MD simulations (black curves). Note that the latter were
carried out at a small single time step Δt = 0.002 ps = 2 fs with
no extrapolation (h =Δt) and should be treated as an “exact”

Figure 4. Root mean square deviation (RMSD) of atomic coordinates
and radius of gyration Rg of the asphaltene [parts (a), (b)],
miniprotein 1L2Y [(c), (d)], and protein G [(e), (f)] against of the
duration of the OIN/GSFE/3D-RISM-KH simulation at different
outer time step h. Black curves in parts (c)-(f): explicit solvent MD.
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(or rather, “expected”) results. Too long outer steps (h > 4 ps)
are not recommended to use, as the accuracy of the
extrapolation then becomes worse. This can affect the proper
conformational behavior. As a demonstration, we increased the
outer time step significantly over the maximum acceptable level
up to h = 10 ps (where Σ ∼ 25%) and so obtained an artificial
unfolding of the protein G from its initial folded state during
already 5 ns [see Figure 4(e)]. A similar pattern to that
described for the RMSD is observed in the case of the gyration
radius [parts (b), (d), and (f) of Figure 4].
Figures 5 and 6 present the tertiary structures of, respectively,

miniprotein 1L2Y and protein G obtained at the end of the
OIN/GSFE/3D-RISM-KH simulations of duration t = 25 ns
with h = 1 ps in comparison to their initial conformations taken
from NMR experiment.128,129 Note that we used the new
cartoon representation with STRIDE131 in the VMD (Visual
Molecular Dynamics) package,132 in which the secondary
structure formations are assigned as follows: α-helix (purple),
β-sheet (yellow), turn (cyan), coil (white), and 310-helix (blue).
As is seen, the OIN/GSFE/3D-RISM-KH quasidynamics
maintains the secondary and tertiary structures very well even
at a huge outer time step of h = 1 ps. It is an excellent result,
taking into account how many numerical techniques have been
involved in this hybrid approach. Note that the main sources of
possible uncertainties here are the approximate characters of
the force fields, their extrapolation, and the 3D-RISM integral

equation with the KH closure approximation. A comparison of
the tertiary structures shows that these uncertainties do not
affect the method ability to reproduce the true conformational
behavior. Some difference between the initial and final
conformations in Figures 5 and 6 is explained by the fact that
they correspond to crystal and liquid states. Moreover, in our
conventional MD simulations with explicit solvent, we obtained
the folded conformations very similar to those presented in the
right-hand parts of Figures 5 and 6.

4.4. Simulation Speedup. The SANDER module in which
the MTS-MD/OIN/GSFE/3D-RISM-KH algorithm has been
implemented is relatively fast for single CPU core run but not
the best for parallel execution, compared to the PMEMD

module, top parallel performer in the Amber MD package.
However, SANDER has been available in the GPL version from
the Amber Tools and thus presents a convenient platform to
test the method, including scaling up in parallelization. All the
MD simulations were carried out with up to 48 CPU cores per
parallel job on the Grex and Parallel clusters with 4x Infiniband
Interconnect, part of the WestGrid − Compute Canada
national advanced computing platform. Figure 7(a) shows the

speedup with the number of parallel CPU cores utilized in the
hybrid OIN/GSFE/3D-RISM-KH simulation of hydrated
protein G at the outer time step h = 1 ps. A similar behavior
was observed for hydrated protein G at other values of h, as
well as for hydrated miniprotein 1L2Y and for the asphaltene
dimer in toluene. The efficiency constitutes 80% to 60% for 4
to 8 CPU cores and then levels out to 50% for up to 48 CPU
cores−a typical picture for interprocessor communication toll
in the SANDER module. The efficiency staying at 50% is far
from the saturation regime, and so utilizing much more CPU
cores in parallel is possible.
The productivity achieved in MTS-MD/OIN/GSFE/3D-

RISM-KH quasidynamics of hydrated protein G on 48 CPU
cores in parallel is presented in Figure 7(b) against the size of
the outer time step h (red curve). The productivity with the
original SFE scheme31 is shown, too (SFE, blue curve). For
comparison, we included also the result of the MD/3D-RISM-
KH with no extrapolation of solvation force (NFE, green
curve). The NFE and SFE curves terminate at h = 8 and 24 fs,
respectively, related to the maximal allowed outer time steps in
these schemes. As distinct, the new GSFE scheme extends up to
h = 2 ps, whereas the maximal allowed outer time step here is 1
to 1.5 ps [see Figure 3(c)]. The 8 fs, 24 fs, and 1 ps upper limits
of h marked in Figure 7(b) with dashed vertical lines
correspond to the possible maximal productivity of 0.15 ns/

Figure 5. Tertiary structure of miniprotein 1L2Y taken from NMR
experiment128 before the simulation (left part) and after OIN/GEFE/
3D-RISM-KH quasidynamics of duration t = 25 ns with outer time
step h = 1 ps (right part).

Figure 6. Same as in Figure 5 but for protein G.129
Figure 7. (a) Total parallel speedup of OIN/GSFE/3D-RISM-KH
against the number of CPU cores. (b) Productivity achieved with 48
cores against the outer time step size.
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day with no extrapolation, 0.44 ns/day with SFE, and 10 ns/day
with GSFE.
For outer time step up to h ∼ 400 fs, the main computing

effort is spent on converging the 3D-RISM-KH integral
equations at each outer time step, and the productivity of
OIN/GSFE/3D-RISM-KH quasidynamics increases linearly
with h [Figure 7(b)]. The growth slows down for larger h
due to the other computing load for solving the OIN equations,
the square-least and eigenvalue problems, and handling the
extension-selection procedures. The portion on converging the
3D-RISM-KH equations drops inversely with h to about 88%,
75%, and 50% at h = 1, 2, and 4 ps. It then goes below the
expenses invariably required at each inner time step for
calculation of intramolecular solute atomic forces, propagation
of coordinates and velocities, and solvation force extrapolation,
and the productivity saturates making no sense to further
increase h above 4 ps. For the present examples of OIN/GSFE/
3D-RISM-KH simulations using the SANDER module of the
Amber MD package, the productivity saturation crossover is
observed at outer time step h ∼ 1 ps.
The acceleration achieved with the GSFE scheme compared

to no force extrapolation (NFE) in OIN/3D-RISM-KH
quasidynamics determined as productivities ratio thus reaches
a factor of 10 ns/day: 0.15 ns/day = 67 times, which is about
half of the ideal acceleration calculated as the ratio 1000/8 =
125 of outer time steps. This provides a very good speedup in
terms of absolute productivity. For comparison, we ran
conventional MD simulation of protein G in explicit water
using the standard SANDER module on 48 CPU cores in
parallel with all the same simulation setup parameters like the
cutoff radii for the solute−solvent interactions and so on and
obtained a productivity of about 1 ns/day of explicit solvent
MD. The OIN/GSFE/3D-RISM-KH quasidynamics of hy-
drated protein G thus achieved 10-fold speedup in terms of a
“direct” comparison of the simulation rate (productivity) of
protein evolution time (number of inner time steps) to that in
explicit solvent MD. Furthermore, as demonstrated in Section 5
below, quasidynamics steered with 3D-RISM-KH mean
solvation forces provides 5- to 100-fold time scale compression
of protein conformational changes coupled with solvent
exchange, thus achieving a huge overall effective speedup of
protein conformational sampling for these systems by a factor
of 50 to 1000 times compared to conventional MD with explicit
solvent or real time dynamics.

5. PROTEIN FOLDING

We will now illustrate the ability of our hybrid MTS-MD/OIN/
GSFE/3D-RISM-KH integrator algorithm to produce self-
organized, native conformations of proteins, starting from
denatured states. For this purpose, we picked miniprotein 1L2Y
that was designed more than ten years ago128 and up to date is
the smallest protein to display folding properties. Its 304 atoms
constitute a 20-residue amino acid sequence within the so-
called tryptophan (Trp) cage (TC5b, PDB code: 1L2Y). The
small size and stability of this miniprotein at room temperature
make it an ideal candidate for computer simulation tests.
So far, there have been no results on folding of this simplest

1L2Y protein by conventional (unbiased) MD simulations in
explicit solvent. The reason is that a time interval of order of 4
to 9 μs is still practically unreachable in one MD run even for
modern supercomputers. There are a lot of challenges
hindering protein folding simulations.1 The main difficulty is
that protein energy landscape is characterized by a vast number

of local minima separated by energy barriers hard to overcome.
One of the ways to obviate this problem lies in applying biased
replica exchange MD simulation.133−135 Mention that in the
replica exchange approach, a great number of short simulations
(replicas) are performed in parallel at different temperatures.
After certain periods, the conformations are exchanged with a
Metropolis probability. As a result, the necessary simulation
length corresponding to each replica may be much shorter than
the real folding time. However, the whole simulation must span
over a wide temperature range with levels spaced closely
enough to enable exchanges with high acceptance ratios. This
significantly increases the total computational load.
Being of much less challenge, high-temperature unfolding

MD simulation of the Trp cage in explicit water has been
performed.136 Replica exchange MD simulations of reversible
unfolding/folding of the miniprotein in explicit water have been
done, too.134,135

An efficient way to overcome the difficulties inherent in
conventional MD of biomolecules is to contract detailed
degrees of freedom of individual solvent molecules and perform
quasidynamics of the biomolecule steered with mean solvation
forces,63,64 as described in Section 2.1. This has several
advantages over explicit solvent including (i) much lower
computational load with no necessity to treat explicit dynamics
and slow exchange and localization of solvent molecules and
(ii) significantly enhanced sampling of protein conformational
space. The latter follows from the fact that averaging out
solvent degrees of freedom to mean solvation forces eliminates
an astronomical number of local minima in the energy
landscape arising from local fluctuations in the solvation
structure. Without explicit solvent treatment, mean solvation
forces can be obtained either from continuum solvation models
constructed empirically or from the integral equations of
molecular theory of solvation derived from the first-principles
of statistical mechanics. In the context of hydration of
biomolecules, continuum solvation methods reproduce polar
solvation forces with either the Poisson−Boltzmann (PB)34 or
the Generalized Born (GB)35−37 models and nonpolar
solvation forces with the solvent accessible surface area
(SASA, or SA) model supplemented with additional volume
and dispersion integral terms.38,39 These empirical methods
work well for the hydration free energy but have inherent
disadvantages of being nontransferable to other solvents,
cosolvents, and solvent systems, in particular, electrolyte
solutions, missing solvent size effects such as a desolvation
barrier in protein aggregation, and being inadequate to
reproduce solvation of internal cavities such as narrow
channels. As distinct, the 3D-RISM-KH molecular theory of
solvation24−29 is transferable and yields solvation structure and
mean solvation forces with proper account of chemical
specificities of a biomolecule and solvent system of various
composition, including in a single framework both electrostatic
associative forces and steric and entropic nonpolar effects, such
as polar solvent and ionic screening, hydrophobicity, hydrogen
bonding, salt bridges, preferential solvation, etc.
Many works have been devoted to study folding and

unfolding pathways in the Trp-cage system by using MD
simulations with GBSA implicit solvation. For example,
Simmerling et al.119 obtained the folded conformation of the
miniprotein beginning from an unfolded state. Laser temper-
ature jump relaxation experiments have shown that it is the
most rapidly folding protein known with a folding time of order
of 4 to 9 μs.137 These experiments were supplemented with
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stochastic MD/GBSA simulations of the kinetics that indicated
a folding time between 1.5 and 8.7 μs.138 Replica exchange MD
in implicit solvent has also been carried out to determine the
folding thermodynamics of the miniprotein.133 Quite recently,
the experimentally suggested intermediate and unfolded states
in the folding pathway of the Trp-cage miniprotein have been
identified in enhanced MD/GBSA simulations.139 Until now,
there have been no successful attempts to fold any protein with
hybrid MD/3D-RISM-KH simulations due to the low
productivity of calculation and account of mean solvation
forces in the previous integrator algorithms.30,31 Inspired by the
high efficiency of the new MTS-MD/OIN/GSFE/3D-RISM-
KH approach as demonstrated with the promising results for
the case studies in the previous section, we applied it to protein
folding. The simulation of miniprotein 1L2Y using the same
force field and parameters as those described in Section 4.1 was
now carried out for 60 ns with 1 ps outer time step, starting
from a well denatured, almost fully extended conformation.
Another difference was that similarly to the MD/GBSA
simulation,119 we increased the solution temperature from T
= 300 to 325 K so as to make the folding time less dependent
on initial conditions.
In Figure 8, we present four conformational states of

hydrated miniprotein 1L2Y obtained in the MTS-MD/OIN/

GSFE/3D-RISM-KH simulation on 15, 18, 20, and 60 ns of
quasidynamics. As is seen, the miniprotein remains almost
completely unfolded like in the initial denatured conformation
until 15 ns of simulation and, after that, drastic conformational
changes appear quickly. An α-helix (purple) begins forming
from 18 ns on and expands to its nearly full size by 20 ns of
quasidynamics. Furthermore, the 310-helix (blue) secondary
structure arises. This looks very similar to the miniprotein
native folded states (Figure 5). Some difference apparently

means that the simulation time length of 20 ns is still not long
enough to achieve the lowest energy state. During the next 40
ns of quasidynamics totaling to 60 ns simulation, the
miniprotein partially unfolded and folded up again several
times but each time in a somewhat different way, confirming
the conclusions from MD/GBSA simulations.139 Finally, by 60
ns of quasidynamics, the most folded lowest energy
conformation of hydrated miniprotein 1L2Y has been attained.
This demonstrates for the first time that protein folding can be
achieved with the unbiased approach of hybrid OIN/GSFE/
3D-RISM-KH quasidynamics. (This was previously considered
feasible rather with biased methods like replica exchange MD.)
A more detailed analysis of these preliminary results will be
presented in our next paper.
For comparison, no folding activity was observed in the 60 ns

conventional MD simulation of miniprotein 1L2Y in explicit
water (with the simulation setup analogous to that in Section
4.1). This is quite reasonable because, as mentioned above, the
folding time of the miniprotein in real experiment is about 4 to
9 μs,137,138 and so the same time scale should be expected in
explicit water MD simulation. With the miniprotein folding
observed in 60 ns quasidynamics of the hybrid OIN/GSFE/
3D-RISM-KH simulation, we thus can claim time scale
compression by a factor of 100 compared to conventional
MD with explicit solvent. (Note that the time scale
compression obtained with the earlier versions of solvation
force extrapolation for hydrated alanine dipeptide was only
about 5 times.33) We could expect the intrinsic acceleration
inherent in OIN/GSFE/3D-RISM-KH quasidynamics to
further increase with the complexity of proteins since 3D-
RISM-KH mean solvation forces properly account for effects of
chemical specificities of both solute and solvent molecules in
protein confinement, as discussed in Section 2.1. Thus, the
hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator can
efficiently sample phase space of solvated biomolecules for
essential events with rare statistics such as protein conforma-
tional changes coupled with solvation exchange and local-
ization. This provides a substantial gain over conventional MD
with explicit solvent which requires an enormous number of
time steps and computational time in such cases. In this
context, the use of the 3D-RISM-KH molecular theory of
solvation appears to be similar to some extent to other
techniques enhancing statistical convergence. Besides replica
exchange MD already mentioned,133−135 these techniques also
include umbrella sampling, weighted histogram, parallel
tempering, and other biased methods18 that were originally
developed for conventional MD or Monte Carlo simulations.
The advantage of the hybrid MTS-MD/OIN/GSFE/3D-RISM-
KH method is that it can dramatically improve conformational
sampling while using much lower computational cost.

6. CONCLUSION

In this paper, we have developed a new method of generalized
solvation force extrapolation (GSFE) for the hybrid approach
of multitime step molecular dynamics (MTS-MD) of
biomolecules steered with 3D-RISM-KH mean solvation forces.
By applying the non-Eckart-like transformation of coordinate
space separately to each solute atom rather than the whole
molecule, it modifies and generalizes our previous method of
advanced solvation force extrapolation (ASFE)33 to the case of
arbitrary biomolecular solutes, including proteins, and signifi-
cantly improves the extrapolation accuracy compared to the
originally proposed method of solvation force extrapolation

Figure 8. Conformational states of hydrated miniprotein 1L2Y in the
OIN/GSFE/3D-RISM-KH folding simulation.
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(SFE).31 The whole procedure of MTS-MD steered with mean
solvation forces calculated with GSFE at inner time steps based
on those obtained from the 3D-RISM-KH molecular theory of
solvation at outer time steps is efficiently stabilized with our
optimized isokinetic Nose−́Hoover chain (OIN) thermostat.32

The computational speed and accuracy of GSFE and the
stabilization efficiency of OIN allowed us to use huge outer
time steps up to 4 ps and thus to achieve dramatic acceleration
compared to conventional MD simulation with explicit solvent.
The 3D-RISM-KH theory yields the solvation structure in

terms of 3D maps of density distribution functions of solvent
interaction sites around a solute molecule with full and
consistent account for effects of chemical functionalities of all
solution species. The solvation free energy and subsequent
thermodynamics is then obtained at once as a simple integral of
the correlation functions by performing thermodynamic
integration analytically. The latter allows analytical differ-
entiation of the free energy functional and thus self-consistent
field coupling with MD.
It should be emphasized that 3D-RISM-KH mean solvation

forces are based on the first-principles of statistical mechanics
and consistently reproduce, at the level of fully converged
molecular simulation, both electrostatic forces (hydrogen
bonding, other association, salt bridges, dielectric and Debye
screening, ion localization) and nonpolar solvation effects
(desolvation, hydrophobic hydration, hydrophobic interaction),
as well as subtle interplays of these such as preferential
solvation,110 molecular recognition,40 and ligand binding.40−43

This is very distinct from the continuum solvation schemes
such as the Poisson−Boltzmann (PB)34 and Generalized Born
(GB)35−37 models combined with the solvent accessible surface
area (SASA) empirical nonpolar terms and additional volume
and dispersion integral corrections,38,39 which are parametrized
for hydration free energy of biomolecules but are neither really
applicable to solvation structure effects in complex confined
geometries nor transferable to solvent systems with cosolvent
or electrolyte solutions at physiological concentrations.
It should be noted again that in MD steered with 3D-RISM-

KH mean solvation forces, the solvent dynamics is averaged
out, and the protein quasidynamics, strictly speaking, differs
from its true dynamics. However, as we have demonstrated, the
contraction of the solvent dynamics does not affect the
equilibrium conformational properties of the system. Moreover,
as mean solvation forces is a statistical average of detailed
solvation forces quickly varying in explicit solvent, this
quasidynamics automatically filters out fast and short move-
ments of the protein due to detailed interactions with solvent
molecules but keeps the overall damping and steering effect of
solvation forces. In fact, it performs essential dynamics of
protein in solution (in the presence of solvent, cosolvent,
counterions, and other possible components), with full effect of
molecular steric forces and chemical specificities, such as
desolvation barrier in hydrophobic interaction and hydrogen
bonding (as distinct from implicit solvent MD missing such
effects).
Another point is that generally speaking, mean solvation

forces obtained by statistical-mechanical averaging depend on
the protein dynamics as well as conformation, which results in
mutual coupling of the protein and solvent dynamics. However,
the protein dynamics, in particular, essential dynamics realizing
protein functions, is usually much slower that the solvent
dynamics. (Mind that solvent localization and exchange have
slow rate−related to diffusion and partitioning in protein

confined geometries, protein conformational transitions, and
binding strength−but fast local solvent motion dynamics.)
Therefore, except for particular processes where the solvent
dynamics is important, its coupling with the protein is weak
enough and can be neglected, resulting in a quasiequilibrium
solvent description. Much in this way, 3D-RISM-KH mean
solvation forces are obtained from statistically averaged
correlations of quasiequilibrium solvent around the protein at
successive conformational snapshots, and so the solvent
dynamics is entirely decoupled from the protein conformational
dynamics and is contracted in the mean solvation forces. (For
comparison, in the continuum solvation models, mean
solvation forces are also calculated for successive frozen
conformational snapshots of the protein and so do not include
coupling of the solute and solvent dynamics. However,
constructed empirically, they are missing important molecular
effects of solvent such as desolvation barrier and hydrogen
bonding directionality, which are naturally represented in the
3D-RISM-KH theory.)
For systems where solvent dynamics is important or is a

target property, these shortcomings can be overcome by
advancing to the recently developed method of the generalized
Langevin equation (GLE) in the 3D site formalism which, using
an input of equilibrium correlation functions from 3D-RISM-
KH, gives time-dependent correlation functions of both protein
and solvent in a single formalism.140−143 The GLE theory is
involved computationally and also requires formulation of so-
called memory kernels that adequately represent both
relaxation physics and effects of chemical specificities of solvent
and protein.140 Nevertheless, it constitutes a promising
approach to include the solvent dynamics and its coupling
with the protein in the framework of MTS-MD steered with
mean solvation forces obtained from molecular theory of
solvation.
On the examples of an asphaltene dimer in toluene solvent,

and alanine dipeptide, miniprotein 1L2Y, and protein G in
water solvent, we have demonstrated that the hybrid MTS-
MD/OIN/GSFE/3D-RISM-KH integrator algorithm even with
huge outer time steps of up to 4 ps accurately reproduces
conformational properties of biomolecular systems against the
reference simulations using conventional MD with explicit
solvent. The OIN/GSFE/3D-RISM-KH quasidynamics of
hydrated protein G showed 10-fold speedup of productivity
in terms of a “direct” comparison of the simulation rate of
protein evolution time (number of inner time steps) to that in
explicit solvent MD.
Moreover, 5- to 100-fold time scale compression achieved in

OIN/GSFE/3D-RISM-KH quasidynamics of solvated protein
due to the use of 3D-RISM-KH mean solvation forces result in
further significant acceleration of protein conformational
sampling compared to experimental real time dynamics and
so to conventional MD with explicit solvent. The overall
productivity of OIN/GSFE/3D-RISM-KH quasidynamics in
protein sampling has been estimated on hydrated miniprotein
1L2Y as 50- to 1000-fold compared to conventional MD with
explicit water. As an illustration, we have been able for the first
time to fold miniprotein 1L2Y from a fully denatured state in
60 ns of our quasidynamics, whereas the folding duration in
explicit solvent MD is expected to be similar to the 4−9 μs
folding time observed experimentally.137,138

The intrinsic acceleration inherent in this quasidynamics is
expected to further increase with the complexity of proteins
since 3D-RISM-KH mean solvation forces properly and
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efficiently account for effects of chemical specificities of both
solute and solvent molecules on slow processes of function
related solvent localization and exchange in protein confine-
ment. The hybrid MTS-MD/OIN/GSFE/3D-RISM-KH in-
tegrator can be applied to various biomolecular systems such as
large proteins and DNA strands and to biomaterials such as
cellulose nanocrystals, in different solvents, solvent systems,
and electrolyte solutions. Illustration of these capabilities will be
a subject of our next investigations.
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